搜档网
当前位置:搜档网 › 等差等比数列经典例题以及详细答案

等差等比数列经典例题以及详细答案

等差等比数列经典例题以及详细答案
等差等比数列经典例题以及详细答案

【本讲教育信息】

一. 教学内容:

等差等比数列综合应用

二. 重点、难点

1. 等差等比数列综合题

2. 数列与其它章节知识综合

3. 数列应用题

【典型例题】

[例1] 一个等比数列共有三项,如果把第二项加上4所得三个数成等差数列,如果再把这个等差数列的第3项加上32所得三个数成等比数列,求原来的三个数。

解:等差数列为d a a d a +-,,

∴ ?????=++--=+?-2

2

)32)(()4()()(a d a d a a d a d a ∴ ?????=-+-+-=-)

2()(32)()1(1682

22222a d a d a a a d a ∴ 2

23232168a d a a =-++-

0432=-+d a 代入(1)

16)24(3

1

82+-?-=-d d

0643232=+-d d 0)8)(83(=--d d ① 8=d 10=a ② 38=d 9

26=a ∴ 此三数为2、16、18或92、910-、9

50

[例2] 等差数列}{n a 中,3931-=a ,76832-=+a a ,}{n b 是等比数列,

)1,0(∈q ,21=b ,}{n b 所有项和为20,求:

(1)求n n b a , (2)解不等式

2211601

b m a a m

m -≤++++

解:(1)∵ 768321-=+d a ∴ 6=d

∴ 3996-=n a n 2011=-q

b 109

=q ∴ 1

)10

9(

2-?=n n b 不等式10

9

21601)

(21

21??-≤++?+m a a m m m

)1(1816)399123936(21

+??-≤-+-?m m m m

0)1(181639692≤+??+-m m m

032122≤+-m m

0)8)(4(≤--m m }8,7,6,5,4{∈m

[例3] }{n a 等差,}{n b 等比,011>=b a ,022>=b a ,21a a ≠,求证:)3(≥

解:q a d a b a 1122=+?= ∴ )1(1-=q a d

d n a q a a b n n n )1(111---=--)]1)(1()1[(11----=-q n q a n )]1)(1()1)(1[(321---+++-=--q n q q q a n n )]1()1)[(1(21--++-=-n q q a n

)]11()1()1()1)[(1(321-+-++-+--=--q q q q a n n *

)1,0(∈q 01<-q 01<-n q ∴ 0*> ),1(+∞∈q 01>-q 01>-n q ∴ 0*>

∴ N n ∈ 3≥n 时,n n a b >

[例4] (1)求n T ;(2)n n T T T S +++= 21,求n S 。

解:??

?=-=????=+++-=+++221

048115987654d a a a a a a a a n T 中共12-n 个数,依次成等差数列

11~-n T T 共有数1222112-=+++--n n 项

∴ n T 的第一个为2)12(21121?-+-=--n n a ∴ 2)12()2(2

1)232(2

11

1

?-?+

-?=---n n n n n T 122112222232-----+?-=n n n n 2222323+-?-?=n n

n n T T T S +++= 21

)]22()222[(3232220+-++-+++=n n

]2

1)21(241)41(1[33-----?=n n 2423143+?--=+n n

)12)(232(232244--=+?-=n n n n

1221-+++=n a a a

[例5] 已知二次函数)(x f y =在22+=t x 处取得最小值)0(4

2

>-t t ,0)1(=f

(1)求)(x f y =的表达式;

(2)若任意实数x 都满足等式)]([)()(1x g x b x a x g x f n n n +=++?为多项式,

*

N n ∈,试用t 表示n a 和n b ;

(3)设圆n C 的方程为222)()(n n n r b y a x =-+-,圆n C 与1+n C 外切),3,2,1( =n ;

}{n r 是各项都是正数的等比数列,记n S 为前n 个圆的面积之和,求n n S r ,。

解:(1)设4

)22()(22t t x a x f -+-= 由0)1(=f 得1=a ∴ 1)2()(2

++-=x t x x f

(2)将)]1()[1()(+--=t x x x f 代入已知得:

1)()]1()[1(+=+++--n n n x b x a x g t x x

上式对任意的R x ∈都成立,取1=x 和1+=t x 分别代入上式得:

???+=++=++1

)1()1(1n n n n n t b a t b a 且0≠t ,解得]1)1[(11

-+=+n n t t a ,])1(1[1

n n t t

t b +-+=

(3)由于圆的方程为222)()(n n n r b y a x =-+-

又由(2)知1=+n n b a ,故圆n C 的圆心n O 在直线1=+y x 上 又圆n C 与圆1+n C 相切,故有111)1(2||2++++=-=+n n n n n t a a r r

设}{n r 的公比为q ,则

?????>

<+=+>

<+=+++++2)1(21)1(22

111

n n n n n n t q r r t q r r <2>÷<1>得11+==+t r r

q n

n 代入<1>得2

)1(21

++=

+t t r n n

∴ 1

)

1()(2221222

21

--=

+++=q q r r r r S n n

n ππ

]1)1[()

2()1(223

4-+++=n t t t t π

[例6] 一件家用电器现价2000元,可实行分期付款,每月付款一次且每次付款数相同,购买后一年还清,月利率为0.8%,按复利计算(每一个月的利息计入第二个月的本金),那么每期应付款多少?()1.1008.112

=

分析:这是一个分期付款问题,关键是计算各期付款到最后一次付款时所生的利息,并注意到各期所付款以及所生利息之和,应等于所购物品的现价及这个现价到最后一次付款所生利息之和。

解析一:设每期应付款x 元

第1期付款与到最后一次付款时所生利息之和为11

)008.01(+x 元,第2期付款与到最后一次付款时所生利息之和为10

)008.01(+x 元,……,第12期付款没有利息,所以各期付

款连同利息之和为x x 1

008.11

008.1)008.1008.11(1211

--=

+++ 又所购电器的现价及利息之和为12

008.12000?

1212008.120001008.11

008.1?=--x 解得1761

008.1008.11612

12

=-?=x 元 ∴ 每期应付款176元

解析二:设每期付款x 元,则

第1期还款后欠款x -+?)008.01(2000

第2期还款后欠款x x x x --?=-?-?008.1008.12000008.1)008.12000(2 ……

第12期还款后欠款为x )1008.1008.1(008.12000101112

+++-?

第12期还款后欠款应为0

∴ 0)1008.1008.1(008.12000101112=+++-?x

解得1761

008.11008.1008.1200012

12=--?=x 元 ∴ 每期应还款176元

[例7] 设数列}{n a 的各项都是正数,且对任意+∈N n 都有

22133231)(n n a a a a a a +++=+++ ,记n S 为数列}{n a 的前n 项和。

(1)求证:n n n a S a -=22

(2)求数列}{n a 的通项公式;

(3)若a n n n b 2)1(31?-+=-λ,(λ为非零常数,+∈N n ),问是否存在整数λ,使得对任意+∈N n 都有n n b b >+1。

解:(1)在已知式中,当1=n 时,2131a a =

∵ 01>a ∴ 11=a

当2≥n 时,3313231n n a a a a ++++- 2

121)(n n a a a a ++++=- ① 2

1

21313231)(--+++=+++n n a a a a a a ②

①-②得)222(1213

n n n n a a a a a a ++++=-

∵ 0>n a ∴ n n n a a a a a ++++=-1212222 ,即n n n a S a -=22 ∵ 11=a 适合上式 ∴ )(22+∈-=N n a S a n n n (2)由(1)知,)(22+∈-=N n a S a n n n ③ 当2≥n 时,11212----=n n n a S a ④

③-④得11212)(2---+--=-n n n n n n a a S S a a 112--+=+-=n n n n n a a a a a

∵ 01>+-n n a a ∴ 11=--n n a a

∴ 数列}{n a 是等差数列,首项为1,公差为1,可得n a n = (3)∵ n a n = ∴ n n n a n n n n

b 2)1(32)1(311?-+=?-+=--λλ

[例8] 已知点),(n a a n A 为函数1:21+=

x y F 上的点,),(n n b n B 为函数x y F =:2上的

点,其中*

N n ∈,设)(*N n b a c n n n ∈-=

(1)求证:数列}{n c 既不是等差数列也不是等比数列; (2)试比较n c 与1+n c 的大小。 (1)证:由已知12+=

n a n ,n b n = ∴ n n b a c n n n -+=-=12

假设}{n c 是等差数列,则必有 3122c c c +=(1) 而)25(2)212(2222-=-+=c

4102)313()111(2131-+=-++-+=+c c

由(1)5210252=?+=

?矛盾

∴ }{n c 不是等差数列

假设}{n c 是等比数列,则必有312

2c c c ?= 即)310)(12()25(2--=-

1023)51(6--=- 即52147=矛盾

∴ }{n c 不是等比数列

综上所述,}{n c 既不是等差数列,也不是等比数列 (2)0)1(1)1(21>+-++=

+n n c n 012>-+=n n c n

∴ )

1(1)1(11)

1(1)1(2

22

21++++++=

-++-++=

+n n n n n

n n n c c n

n

∵ 1)1(1022++<+<

n n

10+<

1(1)1(102

2<++++++<

n n n n

∴ 101

<<+n

n c c 又∵ 0>n c ∴ 1+>n n c c

[例9] 设)

2()(+=

x a x

x f ,)(x f x =有唯一解,10031)(1=x f ,)()(*1N n x x f n n ∈=+

(1)求2004x 的值;

(2)若40094-=n n x a 。且)(2*12

21N n a a a a b n n n

n n ∈+=++,

求证:121<-+++n b b b n ; (3)是否存在最小整数m ,使得对于任意*

N n ∈有2005

m

x n <

成立,若存在,求出m 的值;若不存在,说明理由。

(1)解:由)

2(+=

x a x

x ,可以化为x x ax =+)2(

∴ 0)12(2

=-+x a ax ∴ 当且仅当2

1

=a 时,)(x f x =有唯一解0=x 从而22)(+=

x x

x f 又由已知1)(+=n n x x f 得12

2+=+n n n x x x ∴

n n x x 12111+=+,即)(2

111*1N n x x n n ∈=-+ ∴ 数列}1{

n x 是首项为1

1

x ,公差为21的等差数列

1

12)1(22111x x

n n x x n -+=

-+= ∴ 2

)1(211

+-=

x n x x

∵ 10031)(1=

x f ∴ 1003

1

2211=+x x ,即200521=x ∴ 2004

22

20052)1(20052

2+=

+?-?

=n n x n 故2004

1

2004200422004=+=x

(2)证明:∵ 20042+=n x n ∴ 12400942

2004

-=-?+=

n n a n ∴ 1

414)12)(12(2)12()12(22

22212

1

2-+=+-++-=+=++n n n n n n a a a a b n n n n n 1

21

1211)12)(12(21+--+=+-+

=n n n n

∴ n b b b n -+++ 21

n n n -+--+++-++-+=)1211211()51311()3111(

11

21

1<+-=n

(3)解:由于2004

2

+=n x n

)(2005

20042*N n m

n ∈<+恒成立 ∵ 20052)20042(max =+n ∴ 20052

2005>m

∴ 2>m ,而m 为最小正整数 ∴ 3=m

[例10] 数列}{n a 是公差0≠d 的等差数列,其前n 项和为n S ,且2

152910,1a a a ==。

(1)求}{n a 的通项公式; (2)求n S 的最大值;

(3)将n S 表示成关于n a 的函数。

解:(1)因为x x x y +-=+=1111 所以,函数)10(1<<+=

x x

x

y 是增函数 由已知n

n

n a a a +=

+11,10<

101<

<+n a (2)因为)(1*1N n a a a n n n ∈+=

+,所以n

n n n a a a a 1

1111+

=+=+ 所以

)(111*1

N n a a n n ∈=-

+即数列}1

{n

a 是首项为a 1,公差为1的等差数列

所以

)1(1

1-+=n a

a n ,a n a a n )1(1-+=)(*N n ∈

(3)由已知n

n a

a n a a n 1)1(11)1(1<-+=-+=

(∵ 10<

所以)

1(1

3211111432321+?+

+?+?<+++++n n n a a a a n 1111<+-=n

【模拟试题】(答题时间:45分钟)

1. 数列}{n a 的通项公式是1

1++=n n a n ,若前n 项和为10,则项数n 为( )

A. 11

B. 99

C. 120

D. 121

2. 数列 ,21

)12(,,1617

,8

15,413,211n n +-的前n 项之和为n S ,则n S 的值等于( ) A. n n 2112-+ B. n n n 21122

-+-

C. 12211--+n n

D. n n n 2

112

-+-

3. 数列}{n a 的前n 项和1322

+-=n n S n ,则=++++10654a a a a ( ) A. 171 B. 21

C. 10

D. 161

4. 已知

)(116

115

2642)12(531*N n n n ∈=++++-++++ ,则n 的值为( )

A. 110

B. 115

C. 116

D. 231

5. 一个正整数表如下(表中下一行中的数的个数是上一行中数的个数的2倍):

则第8行中的第5个数是( )

A. 68

B. 132

C. 133

D. 260

6. 农民收入由工资性收入和其他收入两部分构成。2003年某地区农民人均收入为3150元(其中工资性收入为1800元,其他收入为1350元),预计该地区自2004年起的5年内,农民的工资性收入将以每年6%的年增长率增长,其他收入每年增加160元。根据以上数据,2008年该地区农民人均收入介于( )

A. 4200元—4400元

B. 4400元—4600元

C. 4600元—4800元

D. 4800元—5000元 7. 数列}{n a 中,601-=a ,且31+=+n n a a ,则这个数列前30项的绝对值的和是( ) A. 700 B. 765 C. -495 D. 495 8. 数列5,55,555,…的前n 项和为( ) A.

n n +-)110(9

5

B. 110-n

C. 9581)110(50n

n --

D.

n n --81

)

110(50 9. 计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”,如2)1101(表示二进制数,将它转换成十进制形式是132********

1

2

3

=?+?+?+?,那么将二进制数

162)11111(转换成十进制形式是( ) A. 22

17

- B. 22

16

- C. 12

16

- D. 12

15

-

10. 数列}{n a 前n 项和n S 与通项n a 满足关系式)(22*2N n n n na S n n ∈-+=,则

10100a a -的值为( )

A. -90

B. -180

C. -360

D. -400

11. 数列1,),3(4),2(3),1(2,1?-?-?-?n n n n n 的和为( )

A.

)2)(1(61

++n n n B.

)12)(1(61

++n n n C. )3)(2(3

1

++n n n

D. )2)(1(3

1

++n n n

12. 设}{n a )(*

N n ∈ 等差数列,n S 是其前n 项和,且87665,S S S S S >=<,则下列结论错误的是( )

A. 0

B. 07=a

C. 59S S >

D. 6S 与7S 均为n S 的最大值

13. 已知集合},,17,22|{*1N n m m x x x A n n n ∈+=<<=+且,则6A 中各元素之和为( )

A. 792

B. 890

C. 891

D. 990

14. 已知函数?????-=)

()

()(2

2为偶数时当为奇数时n n n n n f 且)1()(++=n f n f a n ,则10021a a a ++等于( )

A. 0

B. 100

C. -100

D. 10200

15. 设数列}{n a 的前n 项和为n S ,且n n S a 43-= (1)求证}{n a 是等比数列。 (2)求)(log 195315a a a a 的值。

16. 已知数列}{n a 中,n a a n n 21+=-,)2(≥n ,21=a (1)求432,,a a a 。 (2)求n a 。 (3)求和

n

a a a 1

1121+++ 。 17. 已知数列}{n a ,11=a ,且数列}{n a 前n 项和n S 等于第n 项的2

n 倍 (1)求432,,a a a 。(2)求通项n a 。(3)求数列}{n a 前n 项和n S 。

【试题答案】

1. C

2. A

3. D

4. B

5. B

6. B

7. B

8. C

9. C 10. C 11. A

12. C

13. C

14. B

15.

解:(1)当2≥n 时,1--=n n n S S a 由n n S a 43-=得1143---=n n S a ∴ )(411----=-n n n n S S a a ∴ n n n a a a 41-=-- ∴ 15-=n n a a

5

1

1=-n n a a ∴ }{n a 是等比数列 (2)当1=n 时11S a = ∴ 1143a a -= ∴ 5

31=

a ∴ n n n a 5

3)51(531==

- ∴ 1953195315

3

535353????= a a a a

100102

)191(1010

19

531105

35

35

3===

+++++ ∴ 原式1003log 105log 3log 5

3log 5100

5105100105-=-==

16.

解: (1)由n a a n n 21+=-,21=a ,求得20,12,6432===a a a (2)由1--n n a a n 2=及112211)()()(a a a a a a a a n n n n n +-++-+-=--- 知)1(222)1(22+=+?++-+=n n n n a n (3)∵

1

11)1(11+-=+=n n n n a n 于是

)111()3121()211(11121+-++-+-=+++n n a a a n 1

111+=+-

=n n

n 17.

解:(1)依题意知n n a n S 2

=

又由121)1(---=n n a n S 及1--=n n n S S a 知

)2()1(122≥--=-n a n a n a n n n

∴ )2(1

1

1≥+-=-n a n n a n n ∵ 11=a ,则313112==a a ,6

1

4223==a a

10

161535334=?==a a

(2)∵

1

1

1+-=

-n n a a n n 则11

2

211a a a a a a a a n n n n n ??=

--- )

1(2

131211+=??-?+-=

n n n n n n (3)∵ )1

1

1(2)1(2+-=+=

n n n n a n

∴ 1

2)111(221+=+-

=+++=n n

n a a a S n n

高二等差等比数列练习题及答案

等差 、 等比数列练习 一、选择题 1、等差数列{}n a 中,10120S =,那么110a a +=( ) A. 12 B. 24 C. 36 D. 48 2、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( ) A.有最小值且是整数 B. 有最小值且是分数 C. 有最大值且是整数 D. 有最大值且是分数 3、已知等差数列{}n a 的公差1 2 d =,8010042=+++a a a ,那么=100S A .80 B .120 C .135 D .160. 4、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13S A .390 B .195 C .180 D .120 5、从前180个正偶数的和中减去前180个正奇数的和,其差为( ) A. 0 B. 90 C. 180 D. 360 6、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )

A. 130 B. 170 C. 210 D. 260 7、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( ) A.54S S < B.54S S = C. 56S S < D. 56S S = 8、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( ) A. 13 B. 12 C. 11 D. 10 9、已知某数列前n 项之和3n 为,且前n 个偶数项的和为)34(2+n n ,则前n 个奇数项的和为( ) A .)1(32+-n n B .)34(2-n n C .23n - D .32 1n 10若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为( ) A .6 B .8 C .10 D .12 二.填空题 1、等差数列{}n a 中,若638a a a =+,则9s = . 2、等差数列{}n a 中,若232n S n n =+,则公差d = .

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

等差等比数列综合习题

等差、等比数列综合习题 一、选择题 1、数列16 14,813,412 ,211…前n 项的和为( ) A 、2212n n n ++ B 、12122+-+n n n C 、n n n 2122-+ D 、12 12)1(+--n n n 2、三个不同实数c b a ,,成等差数列,b c a ,,又成等比数列,则=b a ( ) A 、47 B 、4 C 、-4 D 、2 3、在等差数列}{n a 中,已知30201561=+++a a a a ,则数列的前20项和S 20=( ) A 、100 B 、120 C 、140 D 、150 4、已知数列}{n a 的601-=a ,31-=-n n a a ,那么++||||21a a …||30a +=( ) A 、-495 B 、765 C 、1080 D 、3105 5、某企业的生产总值月平均增长率为p%,则年平均增长率为( ) A 、12p% B 、12%)1(p + C 、1%)1(11 -+p D 、1%)1(12-+p 6、设n S 是等差数列}{n a 的前n 项和,已知331S 与441S 的等比中项为3531,51S S 与44 1S 的等差中项为1,求通项n a 。 7、设有数列,,21a a …n a …又若23121,,a a a a a --…1--n n a a 是首项为1,公比为 31的等比数列。 (1)求n a (2)求++21a a …n a + 8、在等比数列}{n a 中,已知27 21154321= ++++a a a a a ,482111111154321=++++a a a a a ,求3a 。

等差数列及其性质典型例题及练习(学生)

等差数列及其性质 典型例题: 热点考向一:等差数列的基本量 例1. 在等差数列{n a }中, (1) 已知81248,168S S ==,求1,a 和d (2) 已知6510,5a S ==,求8a 和8S 变式训练: 等差数列{}n a 的前n 项和记为n S ,已知 102030,50a a ==. (1)求通项公式{}n a ; (2)若242n S =,求n . 热点考向二:等差数列的判定与证明. 例2:在数列{}n a 中,11a =,1114n n a a +=- ,221 n n b a = -,其中* .n N ∈ (1)求证:数列{}n b 是等差数列; (2)求证:在数列{}n a 中对于任意的* n N ∈,都有 1n n a a +>. (3 )设n b n c =,试问数列{n c }中是否存在三项,使它们可以构成等差数列?如果存在,求出这三项;如果不存在,请说明理由. 跟踪训练:已知数列{n a }中,13 5 a = ,数列11 2,(2,)n n a n n N a *-=-≥∈,数列{n b }满足 1()1 n n b n N a *=∈- (1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项. 热点考向三:等差数列前n 项和 例3 在等差数列{}n a 的前n 项和为n S . (1)若120a =,并且1015S S =,求当n 取何值时,n S 最大,并求出最大值; (2)若10a <,912S S =,则该数列前多少项的和最小? 跟踪训练3:设等差数列}{n a 的前n 项和为n S ,已知 .0,0,1213123<>=S S a (I )求公差d 的取值范围; (II )指出12321,,,,S S S S 中哪一个最大,并说明理由。 热点考向四:等差数列的综合应用 例4.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点列(n ,S n )(n ∈N *)均在函数y =f (x )的图象上. (1)求数列{a n }的通项公式; (2)设b n =3 a n a n +1,T n 是数列{b n }的前n 项和,求使得 T n +都成立。求证:c 的最大值为 2 9。

二-等差等比数列性质练习题(含答案)以及基础知识点

一、等差等比数列基础知识点 (一)知识归纳: 1.概念与公式: ①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列; 2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2 ) 1(2)(11d n n na a a n S n n -+=+= ②等比数列:1°.定义若数列q a a a n n n =+1 }{满足 (常数),则}{n a 称等比数列;2°.通项公式:;11k n k n n q a q a a --==3°.前n 项和公式:),1(1) 1(111≠--=--= q q q a q q a a S n n n 当q=1时.1na S n = 2.简单性质: ①首尾项性质:设数列,,,,,:}{321n n a a a a a 1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =?=?=?--n n n a a a a a a ②中项及性质: 1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2 b a A += 2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ?=? ④顺次n 项和性质: 1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=n k n n k n n k k k k a a a 1 21 31 2,,则 组成公差为n 2d 的等差数列;

高中数学-等差等比数列经典例题以及详细答案

等差等比数列综合应用 【典型例题】 [例1] 一个等比数列共有三项,如果把第二项加上4所得三个数成等差数列,如果再把这个等差数列的第3项加上32所得三个数成等比数列,求原来的三个数。 解:等差数列为d a a d a +-,, ∴ ?????=++--=+?-2 2 )32)(()4()()(a d a d a a d a d a ∴ ?????=-+-+-=-) 2()(32)()1(168222222a d a d a a a d a ∴ 2 23232168a d a a =-++- 0432=-+d a 代入(1) 16)24(3 1 82+-?-=-d d 0643232=+-d d 0)8)(83(=--d d ① 8=d 10=a ② 38=d 9 26=a ∴ 此三数为2、16、18或92、910-、9 50 [例2] 等差数列}{n a 中,3931-=a ,76832-=+a a ,}{n b 是等比数列,)1,0(∈q ,21=b ,}{n b 所有项和为20,求: (1)求n n b a , (2)解不等式 2211601 b m a a m m -≤++++Λ 解:(1)∵ 768321-=+d a ∴ 6=d ∴ 3996-=n a n 2011=-q b 10 9 =q ∴ 1 )10 9( 2-?=n n b 不等式10 921601) (21 21??-≤++?+m a a m m m

)1(1816)399123936(2 1 +??-≤-+-? m m m m 0)1(181639692≤+??+-m m m 032122≤+-m m 0)8)(4(≤--m m }8,7,6,5,4{∈m [例3] }{n a 等差,}{n b 等比,011>=b a ,022>=b a ,21a a ≠,求证:)3(≥ ),1(+∞∈q 01>-q 01>-n q ∴ 0*> ∴ N n ∈ 3≥n 时,n n a b > [例4] (1)求n T ;(2)n n T T T S +++=Λ21,求n S 。 解:???=-=????=+++-=+++221 04811598 7654d a a a a a a a a Λ n T 中共12-n 个数,依次成等差数列 11~-n T T 共有数1222112-=+++--n n Λ项 ∴ n T 的第一个为2)12(211 21?-+-=--n n a ∴ 2)12()2(2 1 )232(2 111 ?-?+-?=---n n n n n T 122112222232-----+?-=n n n n 2222323+-?-?=n n

高中数学-等比数列练习题(含答案)

等比数列练习(含答案) 一、选择题 1.(广东卷文)已知等比数列}{n a 的公比为正数,且3a ·9a =22 5a ,2a =1,则1a = A. 2 1 B. 22 C. 2 D.2 【答案】B 【解析】设公比为q ,由已知得( )2 2 8 41112a q a q a q ?=,即2 2q =,又因为等比数列}{n a 的公比为 正数,所以q = 故212a a q = == ,选B 2、如果1,,,,9a b c --成等比数列,那么( ) A 、3,9b ac == B 、3,9b ac =-= C 、3,9b ac ==- D 、3,9b ac =-=- 3、若数列}{ n a 的通项公式是=+++-=1021),23()1(a a a n a n n Λ则 (A )15 (B )12 (C )-12 D )-15 答案:A 4.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( ) A.18 B.20 C.22 D.24 答案:B 解析: 20 ,100,1111111110=∴+==∴=a d a a a S S Θ 5.(四川)已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是() A.(],1-∞- B.()(),01,-∞+∞U C.[)3,+∞ D.(][),13,-∞-+∞U 答案 D 6.(福建)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为( ) A.63 B.64 C.127 D.128 答案 C 7.(重庆)在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 答案 A 8.若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 答案:B 9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1 =3S n (n ≥1),则a 6= (A )3 × 44 (B )3 × 44+1 (C )44 (D )44+1 答案:A 解析:由a n +1 =3S n ,得a n =3S n -1(n ≥ 2),相减得a n +1-a n =3(S n -S n -1)= 3a n ,则a n +1=4a n (n ≥ 2),a 1=1,a 2=3,则a 6= a 2·44=3×44,选A . 10.(湖南) 在等比数列{}n a (n ∈N*)中,若11a =,41 8 a =,则该数列的前10项和为( ) A .4122- B .2122- C .10122- D .111 22 - 答案 B 11.(湖北)若互不相等的实数 成等差数列, 成等比数列,且 310a b c ++=,则a = A .4 B .2 C .-2 D .-4 答案 D 解析 由互不相等的实数,,a b c 成等差数列可设a =b -d ,c =b +d ,由310a b c ++=可得b =2,所以a =2-d ,c =2+d ,又,,c a b 成等比数列可得d =6,所以a =-4,选D 12.(浙江)已知{}n a 是等比数列,4 1 252= =a a ,,则13221++++n n a a a a a a Λ=( ) A.16(n --41) B.6(n --21) ,,a b c ,,c a b

等差数列经典题型

等差数列 第三课时 前N 项和 1、在等差数列{a n }中,已知d =2,a n =11, S n =35,求a 1和n . 2、设{a n }为等差数列, S n 为数列{a n }的前n 项和,已知S 7=7, S 15=75, T n 为数列? ??? ? ? S n n 的前n 项和,求T n . (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ; (2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5 b 5 的 值. 3、已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45 n +3,则使 得a n b n 为整数的正整数n 的个数是( ) A.2 B.3 C.4 D.5 4、现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( ) A.9 B.10 C.19 D.29 5、等差数列{a n }中, S 10=4S 5,则a 1 d 等于( ) A.12 B.2 C.1 4 D.4

6、已知等差数列{a n}中,a23+a28+2a3a8=9,且a n<0,则S10为() A.-9 B.-11 C.-13 D.-15 7、设等差数列{a n}的前n项和为S n,若S3=9, S6=36.则a7+a8+a9等于() A.63 B.45 C.36 D.27 8、在小于100的自然数中,所有被7除余2的数之和为() A.765 B.665 C.763 D.663 9、一个等差数列的项数为2n,若a1+a3+…+a2n-1=90,a2+a4+…+a2n=72,且a1-a2n=33,则该数列的公差是() A.3 B.-3 C.-2 D.-1 10、设{a n}是公差为-2的等差数列,如果a1+a4+…+a97=50,那么a3+a6+…+a99=______. 11、在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n的值为______.

等差等比数列专项练习题精较版

等差数列、等比数列同步练习题 等差数列 一、选择题 1、等差数列-6,-1,4,9,……中的第20项为() A、89 B、-101 C、101 D、-89 2、等差数列{a n}中,a15 = 33,a45 = 153,则217是这个数列的() A、第60项 B、第61项 C、第62项 D、不在这个数列中 3、在-9与3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n 为 A、4 B、5 C、6 D、不存在 4、等差数列{a n}中,a1 + a7 = 42,a10 - a3 = 21,则前10项的S10等于() A、720 B、257 C、255 D、不确定 5、等差数列中连续四项为a,x,b,2x,那么a:b等于() A、1 4 B、 1 3 C、 1 3 或1 D、 1 2 6、已知数列{a n}的前n项和S n = 2n2 - 3n,而a1,a3,a5,a7,……组成一新 数列{ C n },其通项公式为()

A、C n= 4n - 3 B、C n= 8n - 1 C、C n= 4n - 5 D、C n= 8n - 9 7、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是24与30,若此数列的最后一项比第1项大10,则这个数列共有() A、6项 B、8项 C、10项 D、12项 8、设数列{a n}和{b n}都是等差数列,其中a1 = 25,b1 = 75,且a100 + b100 = 100, 则数列{a n + b n}的前100项和为() A、0 B、100 C、10000 D、505000 二、填空题 9、在等差数列{a n}中,a n = m,a n+m= 0,则a m= ______。 10、在等差数列{a n}中,a4 +a7 + a10 + a13 = 20,则S16 = ______ 。 11、在等差数列{a n}中,a1 + a2 + a3 +a4 = 68,a6 + a7 +a8 + a9 + a10 = 30, 则从a15到a30的和是______ 。 12、已知等差数列110,116,122,……,则大于450而不大于602的各项 之和为______ 。 13、在等差数列{a n}中,已知a1=2,a2 + a3 = 13,则a4 + a5 +a6 = 14、如果等差数列{a n}中,a3 +a4 + a5 = 12,那么a1 + a2 +…+ a7 = 15、设S n是等差数列{a n}的前n项和,已知a1 = 3,a5 = 11,S7 =

等比数列知识点总结与典型例题+答案

等比数列知识点总结与典型例题 2、通项公式: 4、等比数列的前n 项和S n 公式: (1)当 q 1 时,S n na i n ⑵当q 1时,5罟 5、等比数列的判定方法: 等比数列 等比中项:a n 2 a n 1a n 1 (a n 1a n 1 0) {a n }为等比数列 通项公式:a n A B n A B 0 {a n }为等比数列 1、等比数列的定义: a n 1 a n 2,且n N * , q 称为公比 n 1 a n ag a i B n a i 0,A B 0,首项:a 1;公比:q 推广:a n a m q a n a m a n m — \ a m 3、等比中项: (1)如果a, A, b 成等比数 那么A 叫做a 与b 的等差中项,即: A 2 ab 或 A ab 注意:同号的两个数才有等比中并且它们的等比中项有两个( (2)数列a n 是等比数列 2 a n a n 1 a q q A'B n A' ( A, B,A',B'为常数) (1) 用定义:对任意的 都有a n 1 qa n 或旦口 q (q 为常数,a n 0) {a n }为 a n

6、等比数列的证明方法: 依据定义:若-a^ q q 0 n 2,且n N*或i qa“ {a“}为等比数列a n 1 7、等比数列的性质: (2) 对任何m,n N*,在等比数列{a n}中,有a. a m q n m。 (3) 若m n s t(m,n,s,t N*),则a. a m a s a t。特别的,当m n 2k 时,得 2 a n a m a k注:3] a n a2 a n 1 a3a n 2 等差和等比数列比较: 经典例题透析 类型一:等比数列的通项公式

等差等比数列基础练习题

针对练习A1:等差数列 一、填空题 1. 等差数列8,5,2,…的第20项为___________. 2. 在等差数列中已知a 1=12, a 6=27,则d=___________ 3. 在等差数列中已知13 d =-,a 7=8,则a 1=_______________ 4. 2()a b +与2()a b -的等差中项是_______________ 5. 等差数列-10,-6,-2,2,…前___项的和是54 6. 正整数前n 个数的和是___________ 7. 数列{}n a 的前n 项和23n S n n -=,则n a =___________ 8. 已知数列{}n a 的通项公式a n =3n -50,则当n=___时,S n 的值最小,S n 的最小值是_______。 二、选择题 1. 一架飞机起飞时,第一秒滑跑 2.3米,以后每秒比前一秒多滑跑4.6米,离地的前一秒滑跑66.7米, 则滑跑的时间一共是( ) A. 15秒 B.16秒 C.17秒 D.18秒 2. 在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为( c ) A.84 B.72 C.60 D.48 3. 在等差数列{}n a 中,前15项的和1590S = ,8a 为(A ) A.6 B.3 C.12 D.4 4. 等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20下昂的和等于( ) A.160 B.180 C.200 D.220 5. 在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( ) A.45 B.75 C.180 D.300 6. 若lg2,lg(21),lg(23)x x -+成等差数列,则x 的值等于( ) A.0 B. 2log 5 C. 32 D.0或32 7. 设n S 是数列{}n a 的前n 项的和,且2n S n =,则{}n a 是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,且是等比数列 D.既不是等差数列也不是等比数列 8. 数列3,7,13,21,31,…的通项公式是( ) A. 41n a n =- B. 322n a n n n =-++ C. 21n a n n =++ D.不存在

数列教案、考点、经典例题_练习

澳瀚教育 学习是一个不断积累的过程,不积跬步无以至千里,不积小流无以 成江海,在学习中一定要持之以恒,相信自己,你一定可以获得成功! 高中数学 一、定义 1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示) 2.等差数列的通项公式: d n a a n )1(1-+= (=n a d m n a m )(-+) 3.有几种方法可以计算公差d ① d=n a -1-n a ② d = 11--n a a n ③ d =m n a a m n -- 定义:若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项 不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项 如数列:1,3,5,7,9,11,13…中 5是3和7的等差中项,1和9的等差中项 9是7和11的等差中项,5和13的等差中项 看来,73645142,a a a a a a a a +=++=+ 性质1:在等差数列{}n a 中,若m+n=p+q ,则,q p n m a a a a +=+ 即 m+n=p+q ?q p n m a a a a +=+ (m, n, p, q ∈N ) 二.例题讲解。 一.基本问题 例1:在等差数列{}n a 中 111111(1)(1)2()2, (1)(1)2()2, .m n p q m n p q a a a m d a n d a n m d d a a a p d a q d a p q d d a a a a +=+-++-=++-+=+-++-=++-∴+=+证明:

等差等比数列综合题

高二数学必修五数列单元综合练习题 一、选择题: 1.在等差数列{a n }中,若4612a a +=,n S 是数列{a n }的前n 项和,9S 则的值为 (A )48 (B)54 (C)60 (D)66 2.在等比数列{}n a 中,若0n a >且3764a a =,5a 的值为 (A )2 (B )4 (C )6 (D )8 3.设{}n a 是等差数列,1359a a a ++=,69a =,则这个数列的前6项和等于( ) A.12 B.24 C.36 D.48 4.在等差数列{}n a 中,若34567a +a +a +a +a =450,则28a +a =( ) 5.在等比数列{}n a 中,如果69a =6,a =9,那么3a 为( ) (A )4 (B)23 (C)9 16 (D)2 6.数列{}n a 中,123,6,a a ==且12n n n a a a ++=+,则2004a =( ) B.-3 C.-6 7.数列n {a }中,对任意自然数n ,n 12n a +a ++a =21???-,则22212n a +a ++a ???等于( ) A.()2n 2-1 B. ()2n 12-13 C.n 4-1 D. ()n 14-13 8.在各项均为正数的等比数列{a n }中,若a 5·a 6=9,则log 3a 1+log 3a 2+…+log 3a 10= ( ) A .12 B .10 C .8 D .2+log 35 9.已知数列{a n }是等比数列,其前n 项和为S n =5n +k ,则常数k= ( ) A . 1 B .1 C .0 D .以上都不对 10.数列 的前n 项和为 ( ) A . B . C . D . 11.对于数列{a n },满足 ,则该数列前100项中的最大项和最小项分别是 ( ) A .a 1,a 50 B .a 1,a 44 C .a 45,a 44 D .a 45,a 50 12.已知一等差数列的前四项的和为124,后四项的和为156,又各项和为210,则此等差数列共有( ) A 、8项 B 、7项 C 、6项 D 、5项 二、填空题: }232{3--n n 22124---n n 22724--+n n 22236-+-n n 32128-+-n n 20052004--=n n a n

人教课标版高中数学必修5典型例题剖析:等差数列的通项与求和

等差数列的通项与求和 一、知识导学 1.数列:按一定次序排成的一列数叫做数列. 2.项:数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 3.通项公式:一般地,如果数列{a n }的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式. 4. 有穷数列:项数有限的数列叫做有穷数列. 5. 无穷数列:项数无限的数列叫做无穷数列 6.数列的递推公式:如果已知数列的第一项(或前几项)及相邻两项(或几项)间关系可以用一个公式来表示,则这个公式就叫做这个数列的递推公式.递推公式是给出数列的一种重要方法,其关健是先求出a 1,a 2,然后用递推关系逐一写出数列中的项. 7.等差数列:一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示. 8.等差中项:如果a,A,b这三个数成等差数列,那么A=2b a +.我们把A=2 b a +叫做a和b的等差中项. 二、疑难知识导析 1.数列的概念应注意几点:(1)数列中的数是按一定的次序排列的,如果组成的数相同而排列次序不同,则就是不同的数列;(2)同一数列中可以出现多个相同的数;(3)数列看做一个定义域为正整数集或其有限子集({1,2,3,…,n })的函数. 2.一个数列的通项公式通常不是唯一的. 3.数列{a n }的前n 项的和S n 与a n 之间的关系:???≥-==-).2(),1(1 1n S S n S a n n n 若 a 1适合a n (n>2),则n a 不用分段形式表示,切不可不求a 1而直接求a n .

新课标高考数学题型全归纳:等比数列与等差数列概念及性质对比典型例题

等比数列与等差数列概念及性质对比 1.数列的定义 顾名思义,数列就是数的序列,严格地说,按一定次序排列的一列数叫做数列. 数列的基本特征是:构成数列的这些数是有序的. 数列和数集虽然是两个不同的概念,但它们既有区别,又有联系.数列又是一类特殊的函数.2.等差数列的定义 顾名思义,等差数列就是“差相等”的数列.严格地说,从第2项起,每一项与它的前一项的差等于同一个常数的数列,叫做等差数列. 这个定义的要点有两个:一是“从第2项起”,二是“每一项与它的前一项的差等于同一个常数”.这两个要点,刻画了等差数列的本质. 3.等差数列的通项公式 等差数列的通项公式是:a n= a1+(n-1)d .① 这个通项公式既可看成是含有某些未知数的方程,又可将a n看作关于变量n的函数,这为我们利用函数和方程的思想求解问题提供了工具. 从发展的角度看,将通项公式①进行推广,可获得更加广义的通项公式及等差数列的一个简单性质,并由此揭示等差数列公差的几何意义,同时也可揭示在等差数列中,当某两项的项数和等于另两项的项数和时,这四项之间的关系. 4.等差中项 A称作a与b的等差中项是指三数a,A,b成等差数列.其数学表示是: 2b a A + =,或2 A=a+b. 显然A是a和b的算术平均值. 2 A=a+b(或 2b a A + =)是判断三数a,A,b成等差数列 的一个依据,并且,2 A=a+b(或 2b a A + =)是a,A,b成等差数列的充要条件.由此得,等差数列中从第2项起,每一项(有穷等差数列末项除外)都是它的前一项与后一项的等差中项. 值得指出的是,虽然用2A=a+b(或 2b a A + =)可同时判定A是a与b的等差中项及A是b 与a的等差中项,但两者的意义是不一样的,因为等差数列a,A,b与等差数列b,A,a不是同一个数列. 5.等差数列前n项的和

等差等比数列练习题(含答案)

一、选择题 1、如果一个数列既是等差数列,又是等比数列,则此数列 ( ) (A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 2.、在等差数列 {}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( ) (A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则 y c x a +的值为 ( ) (A ) 2 1 (B )2- (C )2 (D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项, y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( ) (A )成等差数列不成等比数列 (B )成等比数列不成等差数列 (C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列 5、已知数列 {}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( ) (A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=2 6、已知))((4)(2z y y x x z --=-,则 ( ) (A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C ) z y x 1,1,1成等差数列 (D )z y x 1 ,1,1成等比数列 7、数列 {}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( ) ①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列 (A )4 (B )3 (C )2 (D )1 8、数列1 ?,16 1 7,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212 112 +--+n n n 9、若两个等差数列 {}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足 5 524-+= n n B A n n ,则 13 5135b b a a ++的值为 ( ) (A ) 9 7 (B ) 7 8 (C ) 2019 (D )8 7 10、已知数列 {}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( ) (A )56 (B )58 (C )62 (D )60 11、已知数列 {}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列 的前n 项和为 ( )

小学奥数等差数列经典练习题

小学奥数等差数列经 典练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

小学奥数等差数列经典练习题 一、判断下面的数列中哪些是等差数列在等差数列的括号后面打√。0,2,6,12,20,30,36…… 6,12,18,24,30,36,42……700,693,686,679,673…… 90,79,68,57,46,35,24,13…… 1,3,5,7,10,13,16……5,8,11,14,17,20…… 1,5,9,13,17,21,23…90,80,70,60,50,……20,10 二、求等差数列3,8,13,18,……的第30项是多少 三、求等差数列8,14,20,26,……302的末项是第几项 四、一个剧院的剧场有20排座位,第一排有38个座位,往后每排比前一排多2个座位,这个剧院一共有多少个座位五、计算 11+12+13……+998+999+10002+6+3+12+4+18+5+24+6+30 3、求等差数列6,9,12,15,……中第99项是几 4、求等差数列46,52,58……172共有多少项 5、求等差数列245,238,231,224,……中,105是第几项 6、求等差数列0,4,8,12,……中,第31项是几在这个数列中,2000是第几项 7、从35开始往后面数18个奇数,最后一个奇数是多少、已知一个等差数列的第二项是8,第3项是13,这1个等差数列的第10项是多少 1、计算:100+200+300+……21001+79+……+17+15+13 2、有20个同学参加聚会,见面的时候如果每人都和其他同学握手一次,那么参加聚会的同学一共要握手多少次 3、请用被4

等差数列典型例题及分析

第四章 数列 [例1]已知数列1,4,7,10,…,3n+7,其中后一项比前一项大3.(1)指出这个数列的通项公式;(2)指出1+4+…+(3n -5)是该数列的前几项之和.正解:(1)a n =3n -2; (2) 1+4+…+(3n -5)是该数列的前n -1项的和. [例2] 已知数列{}n a 的前n 项之和为① n n S n -=22 ② 12 ++=n n S n 求数列{}n a 的通项公式。 正解: ①当1=n 时,1 11==S a 当2≥n 时,3 4)1()1(222 2-=-+---=n n n n n a n 经检验 1=n 时 11=a 也适合,∴34-=n a n ②当1=n 时,3 11==S a 当2≥n 时,n n n n n a n 21)1()1(12 2=-----++= ∴ ?? ?=n a n 23 ) 2()1(≥=n n [例3] 已知等差数列{}n a 的前n 项之和记为S n ,S 10=10 ,S 30=70,则S 40等于 。 正解:由题意:??? ????=?+=?+70 2293030102 9101011d a d a 得152,521= =d a 代入得S 40 =120402 39 40401=??+ d a 。 [例5]已知一个等差数列{}n a 的通项公式a n =25-5n ,求数列{}||n a 的前n 项和; 正解: ??? ????≥+--≤-6,502)5)(520(5,2 ) 545(n n n n n n [例6]已知一个等差数列的前10项的和是310,前20项的和是1220, 由此可以确定求其前n 项和的公式吗? [例7]已知:n n a -+=12lg 1024 (3010.02lg =)+∈N n (1) 问前多少项之和为

等差、等比数列的综合问题

专 题2 数列 知识网络图解 一、数列的概念、性质 例①若数到{αn }满足αn+1 = 若α1=67 则α2009的值为( ) A. 67 B.57 C. 37 D.1 7 ②αn 则数列{αn }最大项为( ) A. α1 B. α45 C. α44 D. α2007 ③通项为αn =n 2 -α n+1的数列{αn }是递增数列,则实数α的取值范围为_________ 二、等差数列、等比数列 知识整合 2αn , 0≤αn <1 2 1 2 ≤αn <1 2αn -1,

要点 热点 探究 例1(1)已知两个等差数列{αn }和{b n }的前n 项和分别为A n 和B n ,且 n n A B =7453 n n ++,则使得 n n a b 为整数的正整数n 的个数是( ) (2)已知等差数列{αn }的前n 项和为S n ,若OB=α6O A +α195OC ,且A 、B 、C 三点共线(该直线不过点O ),则S 200等于( ) (3)与差数列{αn }中,S 6=36,S n =324,S n -6=144,则n =___________ (4)等差数列{αn }共有2n +1次,其中奇数项之和为319,偶数次之和为290则其中间项的值为 ( ) A. α9=10 B. α10 =16 C. α11 =29 D. α12=39 ()121 2112121*(21) 7(21)45122172131 (21)21,2,3,5,11 n n n n n n n n a a n a A n b b b B n n n a z n N n b ----+?--+ ====+ +-++?- ∈ ∈ ∴=Q 解 ()619512006195200 21 1 200200200100 222 A C a a a a a a s ,B,∴+=++=?=?=?=Q 三点共线

相关主题