搜档网
当前位置:搜档网 › 可靠性建模分析

可靠性建模分析

可靠性建模分析
可靠性建模分析

目录

系统可靠性建模分析 (2)

摘要 (2)

关键词 (2)

1.可靠性框图 (2)

2.典型的可靠性模型 (3)

2.1串联模型 (3)

2.2并联模型 (4)

2.3旁联模型 (4)

2.4r/n(G)模型 (5)

2.5复杂系统/桥联模型 (6)

图1:自行车的基本可靠性与任务可靠性框图 (3)

图2:典型可靠性模型 (3)

图3:串联可靠性框图 (4)

图4:并联可靠性框图 (4)

图5:旁联可靠性框图 (5)

图6:r/n(G)系统可靠性框图 (5)

图7:桥联系统示例原理图及可靠性框图 (6)

图8:复杂系统实例 (7)

表1:复杂系统完全列举 (7)

系统可靠性建模分析

[摘要] 为了设计、分析和评价一个系统的可靠性和维修性特征,就必须明系统和它所有的子系统、组件和部件的关系。很多情况下这种关系可以通过系统逻辑和数学模型来实现,这些模型显示了所有部件、子系统和整个系统函数关系。系统的可靠性是它的部件或系统最底层结构单元可靠性的函数。

一个系统的可靠性模型由可靠性框图或原因——后果图表、对所有系统和设备故障和维修的分布定义、以及对备件或维修策略的表述等联合组成。所有的可靠性分析和优化都是在系统概念数据模型的基础上进行的。

[关键词]可靠性框图,串联,并联,表决,复杂系统,可靠度

系统是由相互作用和相互依赖的若干个单元结合成的具有特定功能的有机整体。对于系统管理者而言,系统完成预期任务可靠性以及对系统维修特征等因素的分析是必不可少的。这时就需要借助于系统逻辑及数学模型德理论进行评价分析。本文就是基于可靠性框图(RBD)理论对系统可靠性建立常见的数学分析模型,并结合一些实际例子予以解释说明。

1.可靠性框图

可靠性框图(RBD)是用一种图形的方式显示了系统所有成功或故障的组合,因此系统的可靠性框图显示了系统、子系统和部件的逻辑关系。目前跟据建模目的可分为基本可靠性模型和任务可靠性模型,并用RBD表示出来。

基本可靠性模型是用以估计产品及其组成单元可能发生的故障引起的维修以及保障要求的可靠性模型。可以看到,该模型是对系统每个单元发生故障都进行考虑维修,故其是一个大的串联模型,即使是冗余单元,也都按照串联处理。明显的,贮备单元越多,系统的基本可靠性越低。

任务可靠性模型是用以估计产品在执行任务过程中完成规定功能的概率,描述完成任务过程中产品各单元的预定作用并度量工作有效性的一种可靠性模型。其体现的是对任务完成的可靠度,故系统中对某一单元的冗余数越多,改子单元可靠性也就越大。图1给出了一辆自行车的基本可靠性框图和任务可靠性框图(只对简单的关键地方进行了分析,具体内容不作为实际衡量标准)。

图1:自行车的基本可靠性与任务可靠性框图

按照参考书的建议,任务可靠性框图可一般按如下方式作出:

1)对于系统性能或系统任务所必须的一组部件按串联关系画出;

2)能替换其他部件的部件用并联画出;

3)图中每个模块就像一个开关:但表示部件工作时为闭合状态,而当部件

故障时为断开状态。

2.典型的可靠性模型

典型可靠性模型分为有贮备和无贮备两种,有贮备可靠性模型按贮备单元是否与工作单元同时工作而分为工作贮备模型与非工作贮备模型。可见图2:

图2:典型可靠性模型

下面分别对上面提到的可靠性模型特点进行数学分析建模,并提出可靠度以及失效率的计算方法。

2.1串联模型

系统的所有组成单元中的任一单元故障都会造成整个系统故障的系统称为串联模型。其是最简单的最常用的模型之一。

串联可靠性框图如右图,其可靠性的数学模型为:

式中,默认其含义,本文省略之。

当各单元的寿命分布均为指数分布时,系统的寿命也服从指数分布,系统的故障率λs 为系统各个单元的故障率之和,可表示如下: 11

ln(())ln(())()()n n i s i i i R t Rs t t t t t λλ===-=-=∑∑ 因此,如果忽略所有子系统的故障时间随机变量的概率密度函数形式,在所有的子系统故障时间随机变量是独立的假设条件下系统的故障率是子系统故障率之和。

2.2 并联模型

组成系统的所有党员都发生故障时,系统才发生故障的系统称为并联系统。并联模型是最简单的有贮备模型。其可靠性

框图可如右图。其可靠度的数学模型为:

1()1[1()]n

i i Rs t R t ==--∏

当系统的各单元的寿命服从服从指数

分布时,且每个单元的故障率都是常数λ

时,有

()1(1)t n Rs t e λ-=-- 对应于串联系统通过ln(())()s Rs t t t λ=-

可求的系统的故障率。 2.3 旁联模型

组成系统的n 个单元只有一个单元工作,当工作单元故障时,通过转换装置转移接到另一个单元继续工作,直到所有的单元故障时系统才故障,这样的系统称为非工作贮备模型,也称为旁联模型。

图 3:串联可靠性框图 0()11()t

i t dt n n i i i Rs t R e λ-==?=

=∏∏

图 4:并联可靠性框图

图 5:旁联可靠性框图

考虑由2个子系统的旁联系统的旁联系统的系统可靠性模型。我们可以根据图5逻辑关系得到系统的可靠性(这里假设了切换系统SE 的可靠性为1,并且每个单元的发生故障时间服从指数分数,其故障率分别为12,λλ),

211

22121()t t Rs t e e λλλλλλλλ--=+--

现在考虑切换并不理想的旁联系统的可靠度情况:

1120

()()()()t

se Rs t R t p f x R t x dx =+-?

同时像上面两个单元故障时间服从为指数分布,且故障率相同,而SE 的发生故障时间也服从参数为λse 的指数分布,则上式可简化为:

()[1(1)],0se

t t se Rs t e e t λλλλ--=+-≥ 2.4 r/n(G)模型

n 个单元及一个表决器组成的表决系统,当表决器正常时,正常的单元数不 小于r(1<=r<=n)系统就不会故障,这样的系统称为r/n(G)表决系统,它是工作贮备模型的一种形式。

图 6:r/n(G)系统可靠性框图

如图6的r/n(G)表决系统可靠性框图,其可靠度的数学模型为:

()()(1())n

i n i m i r n Rs t R R t R t i -=??=- ???∑

其中每个组成单元相同,R m 是表决器的可靠度。并联模型是特殊的表决系统:1/n(G)表决系统。

2.5 复杂系统/桥联模型

系统的某些功能冗余形式或替代工作方式的实现,采用的不是并联、表决或 旁联模型,而是一种桥联的形式。因此,在可靠性模型的逻辑描述中出现了电路中桥式结构般的逻辑关系。某一桥联模型的系统可靠性框图如图7所示,其可靠度的数学模型的建立较为复杂,不能建立通用的表达式。

从图中模型可以看出,桥联模型可靠性框图中的单元带有流向(通过连线的方向体现),它反映了系统功能间的流程关系。现在用最简单的朴素方法来构建该例的可靠性数学模型。

图 7

对于一些复杂系统,其可靠性数学建模很难得到,但是本文接下来介绍两种可靠性建模的方法:完全列举法和条件概率法。

完全列举法是基于对单元失效的所有可能组合进行列表的一种方法,即是把所有系统的单元发生情况组合在一起,然后再在这些所有的分析情况进行统计综

合,得到系统靠靠度,该方法对于单元数不是很多的时候很实用。

利用完全列举法,可以把图8系统中所有的可能的系统状态列出来,如表1对图8的描述,每一个代表系统状况组合都能被写成在给定状态下的单元概率的乘积。最终通过计算可得图8的可靠度为

() +B C D E A B C B C D

B C E B D E A C B C B D B E

Rs t R R R R R R R R R R R R R R R R R R R R R R R R =----+++

完全列举法对于单元偏小时的系统很实效,在列举过程中同时也能很好的对系统分析,对于一般工程案例实用性很大,也是能很好体现遍历思想,同时也可以用计算机代劳,大大缩短工程计算量。

图 8:复杂系统实例

表 1:复杂系统完全列举

条件概率法是根据总概率法则(同时也是借鉴数学中的BAYS思想),允许状态处于t时刻的系统被所选单元分解的一种方法。例如,系统可靠度就等于单元A在t时刻处于运行状态的系统可靠度(以Rs|As来表示)乘以单元A的可靠度,加上单元A在t时刻处于故障状态的系统的可靠度(以Rs|A F表示)乘以单元A的不可靠度,或者

Rs=(Rs|A G)R A+(Rs|A F)Q A

分解过程可以继续进行,直到每一项都是按照所有单元的可靠度和不可靠度来表达的。作为这种方法的应用实例,仍考虑图8所示的结构,考虑单元C,假设其在t时刻处于运行状态或者故障状态,通过上式拆分方式,可以把图进行简化,直到简化后的图是我们熟知的串或者并联模式,就可以得出系统的可靠度。

条件概率分解方法并不是什么样的复杂系统都比较方便的适用,当单元数目不多,且其对于构造比较特殊的复杂系统特别有效,比如某一个节点若发生故障或者成功运行都能把整个系统框图简化成很简单的形式。

除了上面提到的两种方法,工业研究领域更一般用的是最小路集和最小割集来构建系统的可靠度的数学模型。这里不详细展开,但是这两种方法目前一比较成熟,能满足一般工程中的需求,同时对于系统整个的可靠度关联分析也比较方便,对于提高系统可靠度或降低致命故障发生都有很多帮助。FMEA,FMECA,FTA都通过应用该理论计算我们关注的参数指标。

3.结束语

可靠性建模在在多年的实践应用中已经体现了其理论与现实价值。本文提到的一些传统方法至今仍是工程中比较常用的建模方式,对于复杂系统,本文最后提到的结构函数来分析。但是对于可靠性框图中结点数过多,且系统复杂度提升的时候,本文提到的分析建模方法还是有一定的局限性。

随着可靠性领域发展,除了通过建模来构建可靠性评价体系,通过仿真或对收集的数据进行分析,从而得到数学可靠性的结果。这种方法对于复杂的系统不失为一种比较好的,比较实用的方法。

系统可靠性建模与预计

系统可靠性建模与预计某型欠压保护电路的建模

一.课程设计目标 1.复习可靠性建模和预计的理论方法; 2.基本掌握工程实例可靠性建模和预计过程; 3.明白任务可靠性建模与任务之间的相关性; 二.课程设计内容 1.课程设计原理: 某型电源的欠压保护电路 图1 欠压保护电路 电路原理: a.当该型电源电压正常时,系统电源电压信号Vi较高,二极管P2截止,VB > VC,运放Y输出为高电平,晶体管T导通,继电器J吸合,V0为低电平; b.当该型电源电压欠压时,系统电源电压信号Vi较低,相应的二极管P2导通,将B点电位箝位,VB< VC,运放Y输出为低电平,晶体管T截止,继电器J释放,V0为高电平。 该型电源正常时,输出V0为低电平,继电器J吸合; 电源欠压时,输出V0为高电平,继电器J释放,引起整机跳闸。 2.课程设计内容: a.建立欠压保护电路的基本可靠性框图。

b.针对误动故障和拒动故障,任选一种情况作为任务故障进行分析,建立欠压保护电路的任务可靠性框图。 c.预计欠压保护电路的MTBF。 d.根据建立的任务可靠性框图预计欠压保护电路的MTBCF。 条件说明: 以电路图中的元器件作为基本单元(方框)建立基本可靠性框图。 以电路图中的元器件及其特定故障模式作为基本单元(方框)建立任务可靠性框图 三.课程设计 1.建立基本可靠性框图 基本可靠性框图:用以估计产品及其组成单元故障引起的维修及保障要求的可靠性模型。系统中任一单元(包括储备单元)发生故障后,都需要维修或更换,都会产生维修及保障要求,故而也可把它看作度量使用费用的一种模型。基本可靠性模型是一个全串联模型,即使存在冗余单元,也按串联处理。 由此可得欠压保护电路的基本可靠性框图如图所示: 图2 基本可靠性框图 2.建立任务可靠性框图 任务可靠性框图:用以估计产品在执行任务过程中完成规定功能的程度,描述完

复杂系统动态可靠性建模及其数值仿真研究_苏春(精)

复杂系统动态可靠性建模及其数值仿真研究* 苏春,王圣金,许映秋 (东南大学机械工程学院,江苏南京210096 摘要:分析传统可靠性建模理论存在的缺陷,提出复杂系统动态可靠性求解的可行方法。以系统结构、功能及故障分析为基础,建立系统可靠性随机Petr i网模型,得到系统的状态空间及可能的故障状态,为动态可靠性数值仿真创造条件。以Petr i 网模型为基础,基于蒙特卡洛仿真求解系统动态可靠性指标,通过仿真,分析影响系统可靠性的关键因素。并以某城市排污液压系统为例,验证方法的有效性。 关键词:动态可靠性;故障;P etri网;蒙特卡洛仿真;液压系统 中图分类号:T B114.3文献标识码:A文章编号:1001-2354(200702-0004-03 可靠性是产品质量的核心指标之一。在全球化背景下,性能、可靠性、价格及服务等成为产品竞争不可或缺的要素,未来市场将由具有高可靠性产品的企业所主导。 产品固有可靠性是由设计阶段决定的。但是,传统可靠性建模方法存在诸多不足,难以准确分析和求解复杂系统的可靠性指标[1]。例如:可靠性框图(RBD和故障树分析(F T A缺乏描述系统动态运行过程的能力,马尔科夫(M ar kov模型建模过程繁琐,模型求解和分析困难。近年来,动态可靠性建模引起人们关注,人们提出了动态故障树、G O-F LO W法、随机Petr i 网(Stochastic Petr i N et,SP N等动态可靠性建模方法[2~5]。 随机Petr i网着眼于系统状态及其动态变化,兼有图形化建模能力和数学计算能力,成为复杂系统调度、控制和性能评价研究的有效工具[6]。但是,随机P etri网存在状态爆炸问题,造成复杂系统可靠性指标的求解困难。蒙特卡洛(M onte Car lo仿真弥补了SP N在模型计算求解方面的不足。文中以某液压系统为对象,采用SP N

工业产品系统可靠性仿真建模方法及仿真算法

1999年11月系统工程理论与实践第11期 工业产品系统可靠性仿真建模方法及仿真算法α 焦国太,谭迎新 (华北工学院机械电子工程系,山西太原030051) 摘要: 根据一般工业产品的可靠性结构特点,从系统可靠性仿真模拟的角度出发,提出了一种通用 的可靠性仿真建模的方法,并给出了以该建模方法为基础的仿真算法软件编制框图,该仿真算法的特 点是仿真速度快. 关键词: 系统;可靠性;仿真;模型 T he E stab lish ing of Si m u lati on M odels and P rocedu res on R eliab ility of Indu stry P roduct System s J I AO Guo2tai,TAN Y ing2x in (N o rth Ch ina In stitu te of T echno logy,T aiyuan030051) Abstract: In th is paper,acco rding to the reliab ility con structu re featu res of general in2 du stry p roducts,a m ethod of si m u lati on models and p rocedu res on reliab ility of indu stry p roducts are estab lished.O n th is basis,the b lock diagram of si m u lati on p rocedu res is given.It is very fast to calcu late the reliab ility of general indu stry p roducts by u sing the estab lished si m u lati on p rocedu res. Keywords: system;reliab ility;si m u lati on;model 借助于计算机进行工业产品系统的可靠性统计仿真模拟,是研究高可靠工业产品系统可靠性的最先进和最有前途的方法.充分利用组成系统的分系统、设备、部件、组件、单元甚至零件和元器件的试验信息进行系统的可靠性统计仿真模拟,可以克服可靠性计算和可靠性验证试验中存在的局限性,并且可以在一定程度上节省试验经费.文献[1,2]中采用失效树或可靠性框图的结构函数作为可靠性仿真的逻辑关系式,从方法上来说并不存在什么问题,但是这种方法的缺点是仿真速度慢,因为在每次仿真运行中根据组成系统的各单元的寿命分布类型产生寿命抽样值以后,都要按由小到大的顺序对其进行排序,然后还要按寿命顺序逐个设置各单元的状态,并按系统的结构函数计算系统的状态,直到计算出系统的失效状态为止.这样势必要耗去大量的机时,尤其当组成系统的单元特别多时,仿真速度会更慢.本文提出的方法就旨在解决这样的问题. 1 有关概念的提出 系统可靠性是表示系统总体可靠性高低的一种可靠性数量指标,它和系统的寿命密切相关.所谓寿命,对于可修复产品来说,是指一个产品相继两故障间的工作时间,对于不可修复产品来说,则是指产品出故障前的工作时间.系统的寿命显然取决于组成系统的各单元的寿命,当各单元的寿命一定时,系统的寿命也随之确定,因此系统寿命与各单元寿命之间必然存在某种逻辑关系.为了便于进行系统可靠性仿真模拟及建模,特提出如下概念: α

可靠性建模资料整理

软件可靠性建模 1模型概述 1.1软件可靠性的定义 1983年美国IEEE计算机学会对“软件可靠性”作出了明确定义,此后该定义被美国标准化研究所接受为国家标准,1989年我国也接受该定义为国家标准。该定义包括两方面的含义: (1)在规定的条件下,在规定的时间内,软件不引起系统失效的概率; (2)在规定的时间周期内,在所述条件下程序执行所要求的功能的能力; 其中的概率是系统输入和系统使用的函数,也是软件中存在的故障的函数,系统输入将确定是否会遇到已存在的故障(如果故障存在的话)。 软件失效的根本原因在于程序中存在着缺陷和错误,软件失效的产生与软件本身特性、人为因素、软件工程管理都密切相关。影响软件可靠性的主要因素有软件自身特性、人为因素、软件工程管理等,这些因素具体还可分为环境因素、软件是否严密、软件复杂程度、软件是否易于用户理解、软件测试、软件的排错与纠正以及软件可靠性工程技术研究水平与应用能力等诸多方面。 1.2软件可靠性建模思想 建立软件可靠性模型旨在根据软件可靠性相关测试数据,运用统计方法得出软件可靠性的预测值或估计值,下图给出了软件可靠性建模的基本思想。 图软件可靠性建模基本思想

从图中可以看出软件失效总体来说随着故障的检出和排除而逐渐降低,在任意给定的时间,能够观测到软件失效的历史。软件可靠性建模的目标如下:(1)预测软件系统达到预期目标所还需要的资源开销及测试时间;(2)预测测试结束后系统的期望可靠性。 1.3软件可靠性建模基本问题 软件可靠性建模需要考虑以下基本问题: (1)模型建立 模型建立指的是怎样去建立软件可靠性模型。一方面是考虑模型建立的角度,例如从时间域角度、数据域角度、将软件失效时刻作为建模对象,还可以将一定时间内软件故障数作为建模对象;另一方面是考虑运用的数学语言,例如概率语言。 (2)模型比较 在软件可靠性模型分类的基础上,对不同的模型分析比较,并对模型的有效性、适用性、简洁性等进行综合权衡,从而确定出模型的适用范围。 (3)模型应用 软件可靠性模型的应用需要从以下两方面考虑:一是给定了软件的开发计划,如何选择适当的模型;二是给定了软件可靠性模型,如何指导软件可靠性工程实践。 软件系统的失效历史可以通过对测试得到的失效数据分析获得,而实际情况中,人们最为关注的是软件未来的失效趋势。软件可靠性模型基本都是建立在一定的假设基础之上,所以,即使花费了大量的时间和精力对软件的可靠性进行预计,也只是一种预测,这种预测的不确定性是许多未知原因交互作用的结果,根据软件可靠性模型的预测只能以概率形式表示。 1.4软件可靠性模型的特点 (1)与使用的程序设计语言无关。软件可靠性的应用与选用什么程序设计语言来编写软件之间没有什么直接关系。但对于根据同一个规格说明书,不管你用什么程序设计语言软件来编写软件,同一个软件可靠性模型应给出同样的估测结果。 (2)与具体用到的软件开发方法无关。软件开发是一个十分复杂的过程,涉及到许多的人为因素,从而使得对软件的质量难以进行预测。为了保证预测的精度,不妨假设待估测的软件系统是用最坏的软件开发方法开发出来的。 (3)测试方法的选择问题。实际上是无法通过彻底的测试来获得完全可靠的软件,所以不得不采用有限的测试,那么目标就是用最少的测试以求最大限度的软件可靠性。

软件可靠性模型综述(完整资料).doc

【最新整理,下载后即可编辑】 软件可靠性模型综述 可靠性是衡量所有软件系统最重要的特征之一。不可靠的软件会让用户付出更多的时间和金钱, 也会使开发人员名誉扫地。IEEE 把软件可靠性定义为在规定条件下, 在规定时间内, 软件不发生失效的概率。该概率是软件输入和系统输出的函数, 也是软件中存在故障的函数, 输入将确定是否会遇到所存在的故障。 软件可靠性模型,对于软件可靠性的评估起着核心作用,从而对软件质量的保证有着重要的意义。一般说来,一个好的软件可靠性模型可以增加关于开发项目的效率,并对了解软件开发过程提供了一个共同的工作基础,同时也增加了管理的透明度。因此,对于如今发展迅速的软件产业,在开发项目中应用一个好的软件可靠性模型作出必要的预测,花费极少的项目资源产生好的效益,对于企业的发展有一定的意义。 1软件失效过程 1.1软件失效的定义及机理 当软件发生失效时,说明该软件不可靠,发生的失效数越多,发生失效的时间间隔越短,则该软件越不可靠。软件失效的机理如下图所示:

1)软件错误(Software error):指在开发人员在软件开发过程中出现的失误,疏忽和错误,包括启动错、输入范围错、算法错和边界错等。 2)软件缺陷(Software defect):指代码中存在能引起软件故障的编码,软件缺陷是静态存在的,只要不修改程序就一直留在程序当中。如不正确的功能需求,遗漏的性能需求等。 3)软件故障(Software fault):指软件在运行期间发生的一种不可接受的内部状态,是软件缺陷被激活后的动态表现形式。 4)软件失效(Software failure):指程序的运行偏离了需求,软件执行遇到软件中缺陷可能导致软件的失效。如死机、错误的输出结果、没有在规定的时间内响应等。 从软件可靠性的定义可以知道,软件可靠性是用概率度量的,那么软件失效的发生是一个随机的过程。在使用一个程序时,在其他条件保持一致的前提下,有时候相同的输入数据会得到不同的输出结果。因此,在实际运行软件时,何时遇到程序中的缺陷导致软件失效呈现出随机性和不稳定性。 所有的软件失效都是由于软件中的故障引起的,而软件故障是一种人为的错误,是软件缺陷在不断的测试和使用后才表现出来的,如果这些故障不能得到及时有效的处理,便不可避免的会

预测模型可靠性的模糊数学评价方法

收稿日期:2003-11-10 作者简介:许康(1969-),男(汉族),江苏宜兴人,讲师,博士研究生,从事油气储运与热能工程方面的教学与科研工作。 文章编号:1000-5870(2004)04-0102-03 预测模型可靠性的模糊数学评价方法 许 康,张劲军,陈 俊,李鸿英 (石油大学石油天然气工程学院,北京102249) 摘要:预测模型的可靠程度是通过预测结果中分布规律的可信度体现出来的。针对常见的预测模型可靠性评价中存在的问题,将预测模型预测结果的可信概率定义为预测模型的可靠度,提出了一种评价预测模型的新方法。在新方法中,运用模糊数学理论对预测结果的可信程度进行了评价,建立了预测结果可信度与预测结果相对误差绝对值之间的隶属函数关系,并将模糊数学与可靠性理论相结合,给出了求解预测模型可靠度的计算公式。以含蜡原油粘温关系模型为例,对新方法的评价过程进行了验证。结果表明,对同一种油样采用不同的隶属函数,或对不同油样采用同一个隶属函数,所得预测模型的可靠度均不相同,这说明该方法具有通用性。关键词:含蜡原油;粘温关系;预测模型;可靠度;评价方法;模糊数学;隶属函数中图分类号:O 159 文献标识码:A A new assessment method for reliability of prediction model with fuzzy mathematics XU Kang,ZHANG Jin -jun,CH EN Jun,LI Hong -ying (College of Petr oleum Engineer ing in the University of Petroleum ,China,Beij ing 102249,China) Abstract :T he distribution of the authentic forecast results can embo dy the fiduciar y level o f the prediction model.T he probability o f the authentic for ecast results obtained by t he prediction model w as defined as the fiduciary lev el o f prediction model.A new method for assessment of t he fiduciary level of prediction model was proposed.In or der to assess the fiduciary lev el of the for ecast results,a membership function for describing the relationship betw een the fiduciary lev el and absolute value of relative err or of fo recast results was established on the theory of fuzzy mathematics.By using the fuzzy mat hemat ics and reliabilit y theory ,the formula to calculate the fiduciary level of the pr edict ion model w as provided.A prediction model for waxy o il viscosity was taken as an ex ample to prove the applicability of the assessment method.T he r esults show that the fiduciary levels of prediction model are different fo r the same o il sample with the different membership function or for the different oil sample with the same membership function. Key w ords :w ax y oil;viscosity -temperature r elationship;prediction model;reliabilit y;assessment method;fuzzy mathe -matics;membership function 我国生产的原油80%以上属于含蜡原油,其组成复杂,粘度及粘温关系的变化规律往往不能用纯液体的粘度模型进行描述。原油粘度及粘温关系 直接影响其管道输送的摩阻,是管输工艺设计及运行管理所需的重要基础数据。国内外研究者提出了若干含蜡油粘度模型,这些模型都是基于实验数据统计分析得出的经验模型,对于预测模型预测结果的可靠程度,常见的方法是用大量的预测结果与实测值之间的(绝对或相对)误差的平均值和其中最大 值来说明。但是预测结果是否 准确可信 是一个很模糊的概念,预测结果的 准确可信 与 不可信 之间没有一个明显的界限,对预测结果可信程度的评 价用常规的数学方法不能解决,需要引入模糊数学的理论。对于使用预测模型进行预测时获得可信的预测结果的概率(可靠度),用常用的预测模型的评价方法是无法得出的。因此,笔者根据模糊数学和可靠性理论提出一种评价预测模型可靠性的新方法,介绍新方法的评价过程。 2004年 第28卷 石油大学学报(自然科学版) Vol.28 No.4 第4期 Journal of the U niversity of Petroleum,China Aug.2004

软件可靠性模型综述

软件可靠性模型综述 可靠性是衡量所有软件系统最重要的特征之一。不可靠的软件会让用户付出更多的时间和金钱, 也会使开发人员名誉扫地。IEEE 把软件可靠性定义为在规定条件下, 在规定时间, 软件不发生失效的概率。该概率是软件输入和系统输出的函数, 也是软件中存在故障的函数, 输入将确定是否会遇到所存在的故障。 软件可靠性模型,对于软件可靠性的评估起着核心作用,从而对软件质量的保证有着重要的意义。一般说来,一个好的软件可靠性模型可以增加关于开发项目的效率,并对了解软件开发过程提供了一个共同的工作基础,同时也增加了管理的透明度。因此,对于如今发展迅速的软件产业,在开发项目中应用一个好的软件可靠性模型作出必要的预测,花费极少的项目资源产生好的效益,对于企业的发展有一定的意义。 1软件失效过程 1.1软件失效的定义及机理 当软件发生失效时,说明该软件不可靠,发生的失效数越多,发生失效的时间间隔越短,则该软件越不可靠。软件失效的机理如下图所示: 1)软件错误(Software error):指在开发人员在软件开发过程中出现的失误,疏忽和错误,包括启动错、输入围错、算法错和边界错等。 2)软件缺陷(Software defect):指代码中存在能引起软件故障的编码,软件缺陷是静态存在的,只要不修改程序就一直留在程序当中。如不正确的功能需求,遗漏的性能需求等。3)软件故障(Software fault):指软件在运行期间发生的一种不可接受的部状态,是软件缺陷被激活后的动态表现形式。 4)软件失效(Software failure):指程序的运行偏离了需求,软件执行遇到软件中缺陷可能导致软件的失效。如死机、错误的输出结果、没有在规定的时间响应等。

本科毕业设计__可靠性建模论文

可靠性建模可靠性分配可靠性预计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

软件可靠性的评价准则

软件可靠性的评价准则 迄今为止,尚无一个软件可靠性模型对软件的不同特性和不同使用环境都有效。已公开发表的100余种软件可靠性模型,表达形式不同,适应性各异,与实际的软件开发过程有较大差异。而且,新模型还在不断发表。因此,在进行软件可靠性预计、分析、分配、评价和设计之前,对软件可靠性模型进行评价及选择与软件项目相符或相近的模型非常重要。通过建立有效的评价准则,在考虑它们与各种软件的关系的基础上,对拟评价的可靠性模型就有效性、适应性和模型能力等进行评价,判定它们的价值,比较它们的优劣,然后选择有效的软件可靠性模型。另一方面,在可接受的模型之间无法做出明确的选择时,可根据模型的使用环境等,在模型评价准则的基础上,进行模型择优。当然,软件可靠性模型的评价不仅依赖于模型的应用,还依赖于理论的支持和丰富的、高质量可靠性数据的支持。软件可靠性模型的评价最早始于1984年Iannino、Musa、Okumoto和Littlewood所提出的原则。根据这一原则,结合后人的工作,形成了基本的软件可靠性评价准则集。它们是软件可靠性模型比较、选择和应用的基础。 准则一:模型预测有效 软件可靠性模型最重要的评价指标是模型预测的有效性。它根据软件现在和过去的故障 行为,用模型预测软件将来的故障行为和可靠性水平。它主要通过能有效描述软件故障随机过程特性的故障数方式对模型进行描述与评价。基于软件故障时间特性的随机过程也是一种常用的方法,而且这两种方法相互重叠。 要确定软件可靠性模型预测的有效性,首先要比较模型预测质量。这种比较通常通过相 对误差法、偏值、U图法、Y图法、趋势法等方法进行。故障数度量是一种在工程上被广泛应 用的方法。此外,还可以通过比较不同数据集合所做出的中位线图形来评价模型预测的有效性。如果一个模型产生的曲线最接近于0,则该模型是最优的。而且,这种有效性测定方法有效地克服了规范化图形评价与具体软件项目之间的联系,保证了它的独立性。 用给定可靠性数据对软件可靠性模型进行比较时,必须考察拟合模型与观察数据的一致 性和符合性。当然,根据拟合模型进行采样,是否可以获得足够的观察数据非常重要。拟合优度检验是一种系统地表达并证明观察数据和拟合模型之间全局符合性的方法,使用最广泛的是x2检验。 1.准确性 软件可靠性模型预测的准确性可用前序似然函数来测定。设观察到的失效数据对应于软 件相继失效之间的时间序列t1,t2,..,ti-1,并用这些数据来预测软件在未来可能的Ti,即希 望得到Ti的真实概率密度函数Fi(t)的最优估计值。假设以t1,t2,...,ti-1为基础预测Ti的 分布Fi(t)的概率密度函数 @@42D11000.GIF;表达式1@@ 对Ti+1,Ti+2,...,Ti+n的这种向前一步预测,即进行了n+1次预测之后的前序似然函数为 @@42D11001.GIF;表达式2@@ 由于这种度量常常接近于0,所以常用其自然对数进行比较。假定比较的两个软件可靠性 模型分别为A和B,则对它们进行n次预测之后的前序似然比为 @@42D11002.GIF;表达式3@@

给水管网系统建模及其可靠性分析报告

给水管网系统建模及其可靠性分析 摘要 给水管网系统是一个拓扑结构复杂、规模庞大、用水变化随机性强、运行控制为多目标的网络系统。管网建模是仿真给水管网系统动态工况的最有效的方法,是为模拟管网系统建立数学模型的过程。模拟容主要是图形模拟、状态模拟和参数模拟。而建立模型并不是一蹴而就的,要不断的开发、更新和完善。在管网优化设计的四个方面中,保证给水系统可靠性是给水设计的主要容之一。随着现代科学技术的快速发展,可靠性工程理论日益受到广泛重视。 关键词:给水管网系统建模;管网优化设计:管网系统可靠性 一、引言 我国各城市的市政公用输配系统(供水、供气)是城市重要的基础设施之一,也是城市建设和可持续性发展的制约因素,这些工程网络在系统规划上有许多方面存在着共性。 对给水管网系统进行建模,一方面对于大量复杂、繁琐的问题能够取得快速、准确的计算结果,大大提高了工作效率,使得以前很少或者不可能进行的大型工程量计算问题和多方案比较问题得以顺利解决。另一方面,可以对输配系统的工作状态(水力、水质)进行比较准确的模拟仿真,尤其当系统中有较完善的设施时,更可以对系统的实时工况进行在线模拟,这样不仅可为系统的优化运行、调度提供很好的基础条件,为系统的改扩建提供可靠的依据,也为给水管网水质预测和安全输配提供支持。 对给水管网系统建模完成后应注意管网的优化设计,包括四个方面:水压、水量的保证性;水质的安全性;可靠性和经济性。随着现代科学技术的快速发展,作为系统工程之一的可靠性工程理论日益受到广泛重视。在近代,各种工程系统、构筑物设计时,已经开始应用可靠性的数学理论。可靠性和其他技术经济指标一样,成为评价系统优劣的主要指标。可靠性问题之所以得到重视,是因为系统、构筑物、设备相互有关,任一部分损坏可能导致整个系统的故障,而整个系统的故障,例如给水系统发生故障,将对社会和人民生活带来损害。而故障的发生多数为随机事件,一般无法预料和预防,因此给水系统可靠性具有概率的性质。在生活节奏日益加快的今天,确保给水管网系统的正常运行具有十分重要的意义。

可靠性建模分析

目录 系统可靠性建模分析 (2) 摘要 (2) 关键词 (2) 1.可靠性框图 (2) 2.典型的可靠性模型 (3) 2.1串联模型 (3) 2.2并联模型 (4) 2.3旁联模型 (4) 2.4r/n(G)模型 (5) 2.5复杂系统/桥联模型 (6) 图1:自行车的基本可靠性与任务可靠性框图 (3) 图2:典型可靠性模型 (3) 图3:串联可靠性框图 (4) 图4:并联可靠性框图 (4) 图5:旁联可靠性框图 (5) 图6:r/n(G)系统可靠性框图 (5) 图7:桥联系统示例原理图及可靠性框图 (6) 图8:复杂系统实例 (7) 表1:复杂系统完全列举 (7)

系统可靠性建模分析 [摘要] 为了设计、分析和评价一个系统的可靠性和维修性特征,就必须明系统和它所有的子系统、组件和部件的关系。很多情况下这种关系可以通过系统逻辑和数学模型来实现,这些模型显示了所有部件、子系统和整个系统函数关系。系统的可靠性是它的部件或系统最底层结构单元可靠性的函数。 一个系统的可靠性模型由可靠性框图或原因——后果图表、对所有系统和设备故障和维修的分布定义、以及对备件或维修策略的表述等联合组成。所有的可靠性分析和优化都是在系统概念数据模型的基础上进行的。 [关键词]可靠性框图,串联,并联,表决,复杂系统,可靠度 系统是由相互作用和相互依赖的若干个单元结合成的具有特定功能的有机整体。对于系统管理者而言,系统完成预期任务可靠性以及对系统维修特征等因素的分析是必不可少的。这时就需要借助于系统逻辑及数学模型德理论进行评价分析。本文就是基于可靠性框图(RBD)理论对系统可靠性建立常见的数学分析模型,并结合一些实际例子予以解释说明。 1.可靠性框图 可靠性框图(RBD)是用一种图形的方式显示了系统所有成功或故障的组合,因此系统的可靠性框图显示了系统、子系统和部件的逻辑关系。目前跟据建模目的可分为基本可靠性模型和任务可靠性模型,并用RBD表示出来。 基本可靠性模型是用以估计产品及其组成单元可能发生的故障引起的维修以及保障要求的可靠性模型。可以看到,该模型是对系统每个单元发生故障都进行考虑维修,故其是一个大的串联模型,即使是冗余单元,也都按照串联处理。明显的,贮备单元越多,系统的基本可靠性越低。 任务可靠性模型是用以估计产品在执行任务过程中完成规定功能的概率,描述完成任务过程中产品各单元的预定作用并度量工作有效性的一种可靠性模型。其体现的是对任务完成的可靠度,故系统中对某一单元的冗余数越多,改子单元可靠性也就越大。图1给出了一辆自行车的基本可靠性框图和任务可靠性框图(只对简单的关键地方进行了分析,具体内容不作为实际衡量标准)。

可靠性建模

可靠性建模 可靠性分配 可靠性预计 刘保中 二零零九年八月八日

目录 1. 何谓可靠性模型 (3) 2.建立可靠性模型的目的 (3) ⒊可靠性建模的约定 (4) 3.1可靠性建模限定为任务可靠性模型 (4) 3.2 可靠性建模暂不可考虑维修问题 (5) 4. 建立可靠性模型的步骤 (5) 4.1 定义产品 (5) 4.2 绘制产品的可靠性框图 (9) 4.3 确定计算系统可靠性的数学公式 (12) 5. 可靠性分配与预计 (12) 5.1 可靠性分配 (12) 5.1.1 可靠性分配概述 (12) 5.1.2 初次分配时的假设 (13) 5.1.3 按复杂程度进行分配 (14) 5.1.4 参考相似产品进行分配 (15) 5.2可靠性预计 (16) 5.2.1 可靠性预计概述 (16) 5.2.2 可靠性预计的程序 (17) 6. 常用的可靠性模型 (19) 6.1 串联模型 (20) 6.2 并联模型 (21) 6.3 混联模型 (244) 6.4 表决模型 (266) 6.5 旁联(非工作贮备)模型 (299) 6.6 网络模型 (311) 6.7 典型模型的应用 (322)

1. 何谓可靠性模型 在着手建立可靠性模型之前,首先要明白什么是可靠性模型。可靠性模型由两部分组成:一个可靠性框图和一个计算可靠性数值的数学公式。例如,本文第20页的图3及其对应的计算公式(8),二者共同构成串联系统的可靠性模型。可靠性框图用来描述系统与其组成单元之间的可靠性逻辑关系;而计算公式则是用来描述系统与单元之间的可靠性定量关系。 这里所说的“系统”和“单元”是一个相对的概念。例如,对于组成惯性导航系统的平台和计算机而言,惯性导航系统是“系统”,而平台和计算机则是“单元”。但对于惯性导航系统的装载对象(例如飞机和导弹)而言,惯性导航系统就只能算做单元了。一般来说,总是把复杂的产品叫做系统,而把它的组成部分叫做单元。有时候,为了表述上的方便起见,也把系统及其组成单元统称为“产品”。这里所说的产品是指能够独立进行研究和试验的对象。 2.建立可靠性模型的目的 可靠性建模是一项基础性的工作,是一切可靠性活动的前提。在产品的方案设计阶段,是为了进行可靠性的分配和预计;在产品的制造阶段,用于故障的分析(可靠性分析);在产品制造出来之后,还需对产品的固有可靠性进行评估,此时也要用到可靠性模型。总之,几乎所有的可靠性活动都会或多或少地涉及到可靠性模型。 可靠性模型的用途虽然很多,但主要应用于可靠性分配和可靠性预计。可靠性建模、可靠性分配和可靠性预计,三者都是产品“方案

相关主题