搜档网
当前位置:搜档网 › 《数值计算方法》试题集及答案修订

《数值计算方法》试题集及答案修订

《数值计算方法》试题集及答案修订
《数值计算方法》试题集及答案修订

《计算方法》期中复习试题

一、填空题:

1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得

?≈3

1

_________

)(dx x f ,用三点式求得≈')1(f 。

答案:2.367,0.25

2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2

x 的系数为 ,

拉格朗日插值多项式为 。

答案:-1,

)2)(1(21

)3)(1(2)3)(2(21)(2--------=

x x x x x x x L

3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;

4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );

答案

)(1)(1n n n n n x f x f x x x '---

=+

5、对1)(3

++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );

6、计算方法主要研究( 截断 )误差和( 舍入 )误差;

7、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为

( 1

2+-n a b );

8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为

( 0.15 );

11、 两点式高斯型求积公式?1

d )(x

x f ≈(

?++-≈1

)]

321

3()3213([21d )(f f x x f ),代数精

度为( 5 );

12、 为了使计算 32)1(6

)1(41310--

-+-+

=x x x y 的乘除法次数尽量地少,应将该

表达式改写为

11

,))64(3(10-=

-++=x t t t t y ,为了减少舍入误差,应将表达式

19992001-改写为 199920012

+ 。

13、 用二分法求方程01)(3

=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在

区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。 14、 计算积分?1

5

.0d x

x ,取4位有效数字。用梯形公式计算求得的近似值为

0.4268 ,用辛卜生公式计算求得的近似值为 0.4309 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。

15、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿

插值多项式为 )1(716)(2-+=x x x x N 。

16、 求积公式

?∑=≈b

a k n

k k x f A x x f )(d )(0

的代数精度以( 高斯型 )求积公式为最高,

具有( 12+n )次代数精度。 17、 已知

f (1)=1,f (3)=5,f (5)=-3,用辛普生求积公式求

?5

1

d )(x

x f ≈( 12 )。

18、 设f (1)=1, f (2)=2,f (3)=0,用三点式求≈')1(f ( 2.5 )。

19、如果用二分法求方程043

=-+x x 在区间]2,1[内的根精确到三位小数,需对分

( 10 )次。

20、已知?????≤≤+-+-+-≤≤=31)1()1()1(2110)(2

33x c x b x a x x x x S 是三次样条函数,则

a =( 3 ),

b =( 3 ),

c =( 1 )。

21、)(,),(),(10x l x l x l n Λ是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则

∑==

n

k k

x l

0)(( 1 ),

∑==

n

k k j

k x l

x 0

)((

j

x ),当

2

≥n 时

=

++∑=)()3(20

4

x l x x

k k n

k k ( 32

4++x x )。

22、区间[]b a ,上的三次样条插值函数)(x S 在[]b a ,上具有直到_____2_____阶的连续导数。

23、改变函数f x x x ()=+-1 (x >

>1)的形式,使计算结果较精确 ()x x x f ++=

11

24、若用二分法求方程()0=x f 在区间[1,2]内的根,要求精确到第3位小数,则需

要对分 10 次。

25、设

()???≤≤+++≤≤=21,10,22

3

3x c bx ax x x x x S 是3次样条函数,则 a= 3 , b= -3 , c= 1 。

26、若用复化梯形公式计算?

10

dx

e x ,要求误差不超过6

10-,利用余项公式估计,至

少用 477个求积节点。

27、若

4

321()f x x x =++,则差商2481632[,,,,]f = 3 。 28、数值积分公式1

12

18019()[()()()]f x dx f f f -'≈-++?的代数精度为

2 。

选择题

1、三点的高斯求积公式的代数精度为( B )。

A . 2

B .5

C . 3

D . 4 2、舍入误差是( A )产生的误差。

A. 只取有限位数 B .模型准确值与用数值方法求得的准确值 C . 观察与测量 D .数学模型准确值与实际值 3、3.141580是π的有( B )位有效数字的近似值。

A . 6

B . 5

C . 4

D . 7 4、用 1+x 近似表示e x

所产生的误差是( C )误差。 A . 模型 B . 观测 C . 截断 D . 舍入

5、用1+3x

近似表示3

1x 所产生的误差是( D )误差。

A . 舍入

B . 观测

C . 模型

D . 截断 6、-324.7500是舍入得到的近似值,它有( C )位有效数字。 A . 5 B . 6 C . 7 D . 8

7、设f (-1)=1,f (0)=3,f (2)=4,则抛物插值多项式中x 2的系数为( A )。 A . –0.5 B . 0.5 C . 2 D . -2 8、三点的高斯型求积公式的代数精度为( C )。 A . 3 B . 4 C . 5 D . 2 9、( D )的3位有效数字是0.236×102。

(A) 0.0023549×103 (B) 2354.82×10-2 (C) 235.418 (D) 235.54×10-1 10、用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=?(x),则f(x)=0

的根是( B )。

(A) y=?(x)与x 轴交点的横坐标 (B) y=x 与y=?(x)交点的横坐标

(C) y=x 与x 轴的交点的横坐标 (D) y=x 与y=?(x)的交点 11、拉格朗日插值多项式的余项是( B ),牛顿插值多项式的余项是( C ) 。

(A) f(x,x0,x1,x2,…,xn)(x-x1)(x -x2)…(x-xn -1)(x -xn),

(B)

)!1()

()()()()1(+=

-=+n f x P x f x R n n n ξ (C) f(x,x0,x1,x2,…,xn)(x-x0)(x -x1)(x -x2)…(x-xn -1)(x -xn),

(D) )

()!1()

()()()(1)1(x n f x P x f x R n n n n +++=-=ωξ

12、用牛顿切线法解方程f(x)=0,选初始值x0满足( A ),则它的解数列

{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。

13、为求方程x3―x2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,

并建立相应的迭代公式,迭代公式不收敛的是(A )。

(A)1

1:,1

1

12-=-=

+k k x x x x 迭代公式

(B)

21211:,11k

k x x x x +=+

=+迭代公式

(C)

3

/12123)

1(:,1k k x x x x +=+=+迭代公式

(D)

11:,12

2

1

2

3+++==-+k k k

k x x x x x x 迭代公式

14、在牛顿-柯特斯求积公式:

?

∑=-≈b

a

n

i i n i x f C a b dx x f 0

)()

()()(中,当系数)(n i C 是负值时,

公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。

(1)8≥n , (2)7≥n , (3)10≥n , (4)6≥n ,

23、有下列数表

所确定的插值多项式的次数是( )。

(1)二次; (

2)三次; (3)四次; (4)五次

15、取1732.≈计算4

1)x =,下列方法中哪种最好?( )

(A)28- (B)24(-; (C ;。

26、已知

3

3

02

21224()()()x x S x x a x b x ?≤≤=?-+-+≤≤?是三次样条函数,则,a b 的值为

( )

(A )6,6; (B)6,8; (C)8,6; (D)8,8。

16、由下列数表进行Newton 插值,所确定的插值多项式的最高次数是( )

(A)5; (B)4; (C) 3; (D ) 2。

17、形如112233()()()()

b

a

f x dx A f x A f x A f x ≈++?

的高斯(Gauss )型求积公式的代数精

度为( )

(A)9; (B)7; (C ) 5; (D) 3。

18Newton 迭代格式为( )

(A)

132k k k x x x +=

+;(B )1322k k k x x x +=+;(C) 122k k k x x x +=+;(D) 133k k k x x x +=+。

19、用二分法求方程32

4100x x +-=在区间12[,]内的实根,要求误差限为

3

1102

ε-=?,

则对分次数至少为( )

(A )10; (B)12; (C)8; (D)9。

20、设()i l x 是以019(,,,)k x k k ==L 为节点的Lagrange 插值基函数,则

9

()i

k kl k ==

∑( )

(A)x ; (B )k ; (C )i ; (D )1。

33、5个节点的牛顿-柯特斯求积公式,至少具有( )次代数精度

(A )5; (B)4; (C)6; (D)3。

21、已知

3

3

02

21224()()()x x S x x a x b x ?≤≤=?-+-+≤≤?是三次样条函数,则,a b 的值为( )

(A )6,6; (B)6,8; (C)8,6; (D)8,8。

35、已知方程3

250x x --=在2x =附近有根,下列迭代格式中在02x =不收敛的是

( )

(A)1k x +=

(B)1k x += (C )315k k k x x x +=--; (D)

3

1225

32k k k x x x ++=-。 22、由下列数据

确定的唯一插值多项式的次数为( )

(A ) 4; (B)2; (C)1; (D)3。

23、5个节点的Gauss 型求积公式的最高代数精度为( )

(A)8; (B )9; (C)10; (D)11。

三、是非题(认为正确的在后面的括弧中打?,否则打?)

1、 已知观察值)210()(m i y x i i ,,,,

,Λ=,用最小二乘法求n 次拟合多项式)(x P n 时,)(x P n 的次数n 可以任意取。 ( )

2、

用1-22

x 近似表示cos x 产生舍入误差。 ( )

3、

))(()

)((210120x x x x x x x x ----表示在节点x 1的二次(拉格朗日)插值基函数。 ( ? )

4、牛顿插值多项式的优点是在计算时,高一级的插值多项式可利用前一次插值的结

果。 ( ? )

5、矩阵A =?

???? ?

?-521352113具有严格对角占优。 ( ) 四、计算题:

1、 求A 、B 使求积公式?-+-++-≈1

1)]21

()21([)]1()1([)(f f B f f A dx x f 的代数精度尽

量高,并求其代数精度;利用此公式求

?

=2

1

1dx

x I (保留四位小数)。

答案:2

,,1)(x x x f =是精确成立,即

???

??=+=+32212222B A B A 得98,91==B A

求积公式为

)]21

()21([98)]1()1([91)(1

1f f f f dx x f +-++-=?- 当3)(x x f =时,公式显然精确成立;当4

)(x x f =时,左=52,右=31。所以代

数精度为3。

2、 已知

分别用拉格朗日插值法和牛顿插值法求)(x f 的三次插值多项式)(3x P ,并求

)2(f 的近似值(保留四位小数)。

答案:

)53)(43)(13()

5)(4)(1(6

)51)(41)(31()5)(4)(3(2

)(3------+------=x x

x x x x x L

差商表为

5、已知

求)(x f 的二次拟合曲线)(2x p ,并求)0(f 的近似值。 答案:解:

正规方程组为

???

?

?=+==+41

34103101510520

120a a a a a

6、已知x sin 区间[0.4,0.8]的函数表

如用二次插值求63891.0sin 的近似值,如何选择节点才能使误差最小?并求该近似值。

答案:解: 应选三个节点,使误差

尽量小,即应使|)(|3x ω尽量小,最靠近插值点的三个节点满足上述要求。即取节点}7.0,6.0,5.0{最好,实际计算结果

596274.063891.0sin ≈,

7、构造求解方程0210=-+x e x

的根的迭代格式Λ,2,1,0),(1==+n x x n n ?,讨论其收

敛性,并将根求出来,4

110||-+<-n n x x 。

答案:解:令

010)1(,

02)0(,210e )(>+=<-=-+=e f f x x f x

.

010e )(>+='x

x f )(∞+-∞∈?,对x ,故0)(=x f 在(0,1)内有唯一实根.将方程0)(=x f 变形为

则当)1,0(∈x 时

)e 2(101

)(x x -=

?,

1

10

e

10e |)(|<≤-='x x ?

故迭代格式

收敛。取5.00=x ,计算结果列表如下:

且满足

6671095000000.0||-<≤-x x .所以008525090.0*≈x .

10、已知下列实验数据

试按最小二乘原理求一次多项式拟合以上数据。

解:当0

d e 1

0?有一位整数.

要求近似值有5位有效数字,只须误差

4)

(11021

)(-?≤

f R n .

)(12)()(

2

3

)

(1ξf n a b f R n ''-≤,只要

即可,解得

所以 68=n ,因此至少需将 [0,1] 68等份。

12、取节点1,5.0,0210===x x x ,求函数x

x f -=e )(在区间[0,1]上的二次插值多项式

)(2x P ,并估计误差。

解:

)15.0)(05.0()

1)(0()10)(5.00()1)(5.0()(5.002----?

+----?

=--x x e x x e x P

1

|)(|max ,)(,)(]

1,0[3='''=-='''=∈--x f M e x f e x f x x x

故截断误差

|)1)(5.0(|!31

|)(||)(|22--≤

-=-x x x x P e x R x 。

14、给定方程

01e )1()(=--=x

x x f 1) 分析该方程存在几个根;

2) 用迭代法求出这些根,精确到5位有效数字; 3) 说明所用的迭代格式是收敛的。

解:1)将方程

01e )1(=--x

x (1) 改写为

x

x -=-e 1 (2)

作函数1)(1-=x x f ,x

x f -=e )(2的图形(略)知(2)有唯一根)2,1(*∈x 。

2) 将方程(2)改写为 x

x -+=e 1

构造迭代格式 ??

?=+=-+5.1e 101x x k x k ),2,1,0(Λ=k

计算结果列表如下:

3) x x -+=e 1)(?,x

x --='e )(?

当]2,1[∈x 时,]2,1[)]1(),2([)(?∈???x ,且

所以迭代格式 ),2,1,0()(1Λ==+k x x k k ?对任意]2,1[

0∈x 均收敛。

15、用牛顿(切线)法求3的近似值。取x 0=1.7, 计算三次,保留五位小数。

解:3是03)(2

=-=x x f 的正根,x x f 2)(=',牛顿迭代公式为

n n n n x x x x 23

2

1

--

=+, 即

)

,2,1,0(2321Λ=+=+n x x x n n n

取x 0=1.7, 列表如下:

16、已知f (-1)=2,f (1)=3,f (2)=-4,求拉格朗日插值多项式)(2x L 及f (1,5)的近似值,取五位小数。

解:

)12)(12()

1)(1(4)21)(11()2)(1(3)21)(11()2)(1(2)(2-+-+?

--+-+?+------?

=x x x x x x x L

17、n =3,用复合梯形公式求x

x

d e 10

?的近似值(取四位小数),并求误差估计。

解:

7342.1]e )e e (2e [3201d e 1210

310

≈+++?-=

≈?T x x

x x x f x f e )(,e )(=''=,10≤≤x 时,e |)(|≤''x f

至少有两位有效数字。

20、(8分)用最小二乘法求形如2

bx a y +=的经验公式拟合以下数据:

解:

},1{2

x span =Φ 解方程组

y A AC A T

T =

其中

??????=3529603339133914A A T ?

?????=7.1799806.173y A T

解得:

???

???=0501025.09255577.0C 所以 9255577.0=a , 0501025.0=b 21、(15分)用8=n 的复化梯形公式(或复化 Simpson 公式)计算dx

e

x

?

-1

时,试用

余项估计其误差。用8=n 的复化梯形公式(或复化 Simpson 公式)计算出该积分的近似值。

解:

001302.07681

81121)(12][022==??≤''--

=e f h a b f R T η

22、(15分)方程013

=--x x 在5.1=x 附近有根,把方程写成三种不同的等价形式(1)

31+=x x 对应迭代格式31

1+=+n n x x ;(2)x x 11+=对应迭代格式n n x x 111

+=+;(3)

13-=x x 对应迭代格式13

1-=+n n x x 。判断迭代格式在5.10=x 的收敛性,选一种收敛

格式计算5.1=x 附近的根,精确到小数点后第三位。

解:(1)32

1(31

)(-+=')x x ?,

118.05.1<=')(?,故收敛; (2)

x x x 1

121)(2+

-

='?,117.05.1<=')(

?,故收敛; (3)23)(x x ='?,

15.135.12>?=')(?,故发散。

选择(1):5.10=x ,3572.11=x ,3309.12=x ,3259.13=x ,3249.14=x ,

32476.15=x ,32472.16=x

25、数值积分公式形如

?'+'++=≈1

)

1()0()1()0()()(f D f C Bf Af x S dx x xf 试确定参数D C B A ,,,使公式代数精

度尽量高;(2)设]1,0[)(4

C x f ∈,推导余项公式?-=1

0)

()()(x S dx x xf x R ,并估计误差。

解:将3

2,,,1)(x x x x f =分布代入公式得:

201,301,207,203-====

D B B A

构造Hermite 插值多项式)(3x H 满足???

='='=1,0)()()()(33i x f x H x f x H i i i i 其中1,010==x x

则有:?=1

03)()(x S dx x xH , 2

2)4(3

)1(!4)()()(-=-x x f x H x f ξ

27、(10分)已知数值积分公式为:

)]

()0([)]()0([2)(''20

h f f h h f f h

dx x f h

-++≈?

λ,试确定积分公式中的参数λ,使其代

数精确度尽量高,并指出其代数精确度的次数。 解:1)(=x f 显然精确成立;

x x f =)(时,]

11[]0[22220

-++==?h h h

h xdx h

λ;

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

数值计算方法试题及答案

【 数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数, 则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( )。 ; 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ?,则?= 1 4)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。 9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ??? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

数值计算方法试题及答案

数值计算方法试题一 一、填空题(每空1分,共17分) 1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。 2、迭代格式局部收敛的充分条件是取值在()。 3、已知是三次样条函数,则 =( ),=(),=()。 4、是以整数点为节点的Lagrange插值基函数,则 ( ),( ),当时( )。 5、设和节点则 和。 6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。 7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。 8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。 9、解初值问题的改进欧拉法是 阶方法。 10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。 二、二、选择题(每题2分) 1、解方程组的简单迭代格式收敛的充要条件是()。(1), (2) , (3) , (4) 2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 (1),(2),(3),(4), (1)二次;(2)三次;(3)四次;(4)五次 4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。 (1), (2), (3), (4)

三、1、 2、(15 (1)(1) 试用余项估计其误差。 (2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。 四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。 2、(8分)已知方程组,其中 , (1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。 (2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。 五、1、(15分)取步长,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格—库塔法求的值。 2、(8分)求一次数不高于4次的多项式使它满足 ,,,, 六、(下列2题任选一题,4分) 1、1、数值积分公式形如 (1)(1)试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。 2、2、用二步法 求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。 数值计算方法试题二 一、判断题:(共16分,每小题2分) 1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。()

数值分析试题及答案

一、填空题( 每题6分,共30分) 1、辛普生求积公式具有 3 次代数精度,其余项表达式为 4(4) ()(),(,)1802 b a b a f a b ζζ--- ∈。 2、2 ()1,f x x =+则[1,2,3]1,[1,2,3,4]0f f ==。 3、设()(0,1,2 )j l x j n =是n 次拉格朗日插值多项式的插值基函数,则 ()j i l x =1,,0,i j i j =??≠?(,0,1,2 )i j n =;0 ()n j j l x ==∑ 1 。 4、设()(0,1,2 )j l x j n =是区间[,]a b 上的一组n 次插值基函数。则插值 型求积公式的代数精度为 至少是n ;插值型求积公式中求积系数j A = ()b k a l x dx ? ;且0 n j j A ==∑ b-a 。 5、按四舍五入原则数2.7182818与8.000033具有五位有效数字的近似值分别为 2.7183 和 8.0000 。 二、计算题(每题10分,共计60分,注意写出详细清晰的步骤) 1、已知函数()y f x =的相关数据 由牛顿插值公式求三次插值多项式3()P x ,并计算1()2 P =的值近似值。(注:要求给出差商表) 解:差商表

由牛顿插值公式: 323332348 ()()21,33 141181 ()()2()() 12 232232 p x N x x x x p == -++≈=-++= 求它的拟合曲线(直线)。 解:设y a bx =+则可得 530052.90 300220003797a b a b +=?? +=? 于是 1.235,0.15575a b ==,即 1.2350.15575y x =+。 4、已知012113 ,,,424 x x x = == (1)推导以这三点为求积节点在[0,1]上的插值型求积公式 1 0120 113 ()()()()424 f x dx A f A f A f ≈++? ; (2)指明求积公式所具有的代数精度;(3)用所求公式计算1 20 x dx ? 。 解:(1)所求插值型的求积公式形如: 1 0120 113 ()()()()424 f x dx A f A f A f ≈++?

数值计算方法试题

数值计算方法试题 重庆邮电大学数理学院 一、填空题(每空2分,共20分) 1、用列主元消去法解线性方程组 1、解非线性方程f(x)=0的牛顿迭代法具有 ,,,,,,,收 敛 2、迭代过程(k=1,2,…)收敛的充要条件是 2、已知y=f(x)的数据如下 ,,, x 0 2 3 3、已知数 e=2.718281828...,取近似值 x=2.7182,那麽x具有的有 f(x) 1 3 2 效数字是,,, 4、高斯--塞尔德迭代法解线性方程组求二次插值多项式及f(2.5) 3、用牛顿法导出计算的公式,并计算,要求迭代误差不超过 。 4、欧拉预报--校正公式求解初值问题的迭代格式中求 ,,,,,,,,,,,,, ,

5、通过四个互异节点的插值多项式p(x),只要满足,,,,,,取步长k=0.1,计算 y(0.1),y(0.2)的近似值,小数点后保留5位. ,,则p(x)是不超过二次的多项式 三、证明题 (20分每题 10分 ) 6、对于n+1个节点的插值求积公式 1、明定 积分近似计算的抛物线公式 具有三次代数精度至少具有,,,次代 数精度. 7、插值型求积公式的求积 2、若,证明用梯形公式计算积分所 系数之和,,, 得结果比准确值大,并说明这个结论的几何意义。 参考答案: T8、 ,为使A可分解为A=LL, 其中L一、填空题 1、局部平方收敛 2、< 1 3、 4 为对角线元素为正的下三角形,a的取值范围, 4、

5、三阶均差为0 6、n 7、b-a 9、若则矩阵A的谱半径(A)= ,,, 8、 9、 1 10、二阶方法 10、解常微分方程初值问题的梯形二、计算题 格式 1、是,,,阶方法 二、计算题(每小题15分,共60分) 修德博学求实创新 李华荣 1 重庆邮电大学数理学院 2、 右边: 3、 ?1.25992 (精确到 ,即保留小数点后5位) 故具有三次代数精度 4、y(0.2)?0.01903 A卷三、证明题

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式就是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差与( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 10、已知f (1)=2,f (2)=3,f (4)=5、9,则二次Newton 插值多项式中x 2系数为( 0、15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式

数值分析整理版试题及答案

例1、 已知函数表 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1) 故所求二次拉格朗日插值多项式为 (2)一阶均差、二阶均差分别为 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0,1]上关于()1x ρ=,{}span 1,x Φ=的最佳平 方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有 所以,法方程为

011231261192 34a a ??????????=?????????? ?????????? ,经过消元得012311 62110123a a ??? ???????=???????????????????? 再回代解该方程,得到14a =,011 6 a = 故,所求最佳平方逼近多项式为* 111()46S x x =+ 例3、 设()x f x e =,[0,1]x ∈,试求()f x 在[0,1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近 多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,这样,有 所以,法方程为 解法方程,得到00.8732a =,1 1.6902a =, 故,所求最佳平方逼近多项式为 例4、 用4n = 的复合梯形和复合辛普森公式计算积分1 ? 。 解: (1)用4n =的复合梯形公式 由于2h =,( )f x =()121,2,3k x k k =+=,所以,有 (2)用4n =的复合辛普森公式 由于2h =,( )f x =()121,2,3k x k k =+=,()12 220,1,2,3k x k k + =+=,所以,有 例5、 用列主元消去法求解下列线性方程组的解。 解:先消元 再回代,得到33x =,22x =,11x = 所以,线性方程组的解为11x =,22x =,33x = 例6、 用直接三角分解法求下列线性方程组的解。 解: 设 则由A LU =的对应元素相等,有 1114u = ,1215u =,1316u =, 2111211433l u l =?=,3111311 22 l u l =?=, 2112222211460l u u u +=?=-,2113232311 545l u u u +=?=-,

数值计算方法试题一

数值计算方法试题一

数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043 =-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1 -+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(2 110)(2 33x c x b x a x x x x S 是三次样条函数,则 a =( ),b =( ),c =( )。 4、)(,),(),(1 x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当 2 ≥n 时 = ++∑=)()3(20 4 x l x x k k n k k ( )。 5、设1326)(2 4 7 +++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[1 n x x x f 和=?0 7 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0 )(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0 =x ?,则 ?= 1 4 )(dx x x ? 。 8、给定方程组?? ?=+-=-2 21121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ?? ? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。 10、设?? ?? ? ?????=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。 二、 选择题(每题2分) 1、解方程组b Ax =的简单迭代格式g Bx x k k +=+) () 1(收敛的充要条件是( )。 (1)1)(A ρ, (4) 1)(>B ρ 2、在牛顿-柯特斯求积公式: ?∑=-≈b a n i i n i x f C a b dx x f 0 )() ()()(中,当系数) (n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。 (1)8≥n , (2)7≥n , (3)10≥n , (4)6≥n , x 0 0.5 1 1.5 2 2.5

数值计算方法试题集和答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。

数值分析试题及答案05708

页脚内容1 一、填空题( 每题6分,共30分) 1、辛普生求积公式具有 3 次代数精度,其余项表达式为 4(4) ()(),(,)1802 b a b a f a b ζζ--- ∈。 2、2()1,f x x =+则[1,2,3]1,[1,2,3,4]0f f ==。 3、设()(0,1,2 )j l x j n =是n 次拉格朗日插值多项式的插值基函数,则 ()j i l x =1,, 0,i j i j =??≠? (,0,1,2 )i j n =;0 ()n j j l x ==∑ 1 。 4、设()(0,1,2 )j l x j n =是区间[,]a b 上的一组n 次插值基函数。则插值型求积公式的代数精 度为 至少是n ;插值型求积公式中求积系数j A = ()b k a l x dx ? ;且0 n j j A ==∑ b-a 。 5、按四舍五入原则数2.7182818与8.000033具有五位有效数字的近似值分别为 2.7183 和 8.0000 。 二、计算题(每题10分,共计60分,注意写出详细清晰的步骤) 1、已知函数()y f x =的相关数据

页脚内容2 由牛顿插值公式求三次插值多项式3()P x 1 ()2 P =的值近似值。(注:要求给出差 商表) 解:差商表 3] i +由牛顿插值公式: 323332348 ()()21,33 141181 ()()2()()12 232232 p x N x x x x p == -++≈=-++= 2、已知一组试验数据如下

页脚内容3 求它的拟合曲线(直线)。 解:设y a bx =+则可得 530052.90 300220003797 a b a b +=?? +=? 于是 1.235,0.15575a b ==,即 1.2350.15575y x =+。 4、已知012113 ,,,424 x x x === (1)推导以这三点为求积节点在[0,1]上的插值型求积公式 1 0120 113 ()()()()424 f x dx A f A f A f ≈++? ; (2)指明求积公式所具有的代数精度;(3)用所求公式计算1 20 x dx ?。 解:(1)所求插值型的求积公式形如: 1 0120 113 ()()()()424 f x dx A f A f A f ≈++?

计算方法模拟试题及答案

计算方法模拟试题 一、 单项选择题(每小题3分,共15分) 1.近似值210450.0?的误差限为( )。 A . 0.5 B. 0.05 C . 0.005 D. 0.0005. 2. 求积公式)2(3 1 )1(34)0(31)(2 0f f f dx x f ++≈ ?的代数精确度为( )。 A. 1 B. 2 C. 3 D. 4 3. 若实方阵A 满足( )时,则存在唯一单位下三角阵L 和上三角阵R ,使LR A =。 A. 0det ≠A B. 某个0 det ≠k A C. )1,1(0det -=≠n k A k D. ),,1(0det n k A k =≠ 4.已知?? ?? ? ?????=531221112A ,则=∞A ( )。 A. 4 B. 5 C. 6 D 9 5.当实方阵A 满足)2(,221>>-=i i λλλλ,则乘幂法计算公式1e =( )。 A. 1+k x B. k k x x 11λ++ C. k x D. k k x x 11λ-+ 二、填空题(每小题3分,共15分) 1. 14159.3=π,具有4位有效数字的近似值为 。 2. 已知近似值21,x x ,则=-?)(21x x 。 3.已知1)(2-=x x f ,则差商=]3,2,1[f 。 4.雅可比法是求实对称阵 的一种变换方法。

5.改进欧拉法的公式为 。 三、计算题(每小题12分 ,共60分) 1. 求矛盾方程组; ??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2.用列主元法解方程组 ??? ??=++=++=++4 26453426352321 321321x x x x x x x x x 3.已知方程组 ???? ? ?????=????????????????????----131********x x x a a a a (1) 写出雅可比法迭代公式; (2) 证明2

数值分析试题及答案

数值分析试题及答案 一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有()和()位有效数字. A.4和3 B.3和2 C.3和4 D.4和4 2. 已知求积公式,则=() A. B.C.D. 3. 通过点的拉格朗日插值基函数满足() A.=0,B.=0, C.=1,D.=1, 4. 设求方程的根的牛顿法收敛,则它具有()敛速。 A.超线性B.平方C.线性D.三次 5. 用列主元消元法解线性方程组作第一次消元后得到的第3个方程(). A.B. C.D. 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得分评卷 人 二、填空题(每小题3分,共15分) 1. 设, 则, . 2. 一阶均差 3. 已知时,科茨系数,那么 4. 因为方程在区间上满足,所以在区间内有根。 5. 取步长,用欧拉法解初值问题的计算公式.填空题答案

1. 9和 2. 3. 4. 5. 得分评卷 人 三、计算题(每题15分,共60分) 1. 已知函数的一组数据:求分段线性插值函数,并计算的近似值. 计算题1.答案 1. 解, , 所以分段线性插值函数为 2. 已知线性方程组 (1)写出雅可比迭代公式、高斯-塞德尔迭代公式; (2)对于初始值,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算(保留小数点后五位数字). 计算题2.答案 1.解原方程组同解变形为 雅可比迭代公式为 高斯-塞德尔迭代法公式 用雅可比迭代公式得 用高斯-塞德尔迭代公式得 3. 用牛顿法求方程在之间的近似根 (1)请指出为什么初值应取2? (2)请用牛顿法求出近似根,精确到0.0001. 计算题3.答案

数值分析计算方法试题集及答案

数值分析复习试题 第一章 绪论 一. 填空题 1.* x 为精确值 x 的近似值;() **x f y =为一元函数 ()x f y =1的近似值; ()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-: *** r x x e x -= ()()()*'1**y f x x εε≈? ()() () ()'***1**r r x f x y x f x εε≈ ? ()()()() ()* *,**,*2**f x y f x y y x y x y εεε??≈?+??? ()()()()() ** * *,***,**222r f x y e x f x y e y y x y y y ε??≈ ?+??? 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误 差 。 3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和 7 位;又取 1.73≈-21 1.73 10 2 ≤?。 4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。 5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。 6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得 到,则相对误差限为 0.0000204 . 7、 递推公式,??? ? ?0n n-1y =y =10y -1,n =1,2, 如果取0 1.41y ≈作计算,则计算到10y 时,误 差为 81 10 2 ?;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3* =π,则近似值141.3*1=π和1415.3*2=π分别有 3

计算方法练习题与答案

练习题与答案 练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.*x=–1 2.0326作为x的近似值一定具有6位有效数字,且其误差限 ≤ 4 10 2 1 - ? 。() 2.对两个不同数的近似数,误差越小,有效数位越多。( ) 3.一个近似数的有效数位愈多,其相对误差限愈小。( ) 4.用 2 1 2 x - 近似表示cos x产生舍入误差。( )

5. 3.14和 3.142作为π的近似值有效数字位数相同。 ( ) 二、填空题 1. 为了使计算 ()()2334912111y x x x =+ -+ ---的乘除法次数尽量少,应将该 表达式改写为 ; 2. * x =–0.003457是x 舍入得到的近似值,它有 位有效数字,误差限 为 ,相对误差限为 ; 3. 误差的来源是 ; 4. 截断误差为 ; 5. 设计算法应遵循的原则是 。 三、选择题 1.* x =–0.026900作为x 的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x 近似表示e x 所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s *=21 g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是在 时间t 内的实际距离,则s t - s *是( )误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.1.41300作为2的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。 四、计算题

《数值计算方法》试题及答案

数值计算方法考试试题 一、选择题(每小题4分,共20分) 1. 误差根据来源可以分为四类,分别是( A ) A. 模型误差、观测误差、方法误差、舍入误差; B. 模型误差、测量误差、方法误差、截断误差; C. 模型误差、实验误差、方法误差、截断误差; D. 模型误差、建模误差、截断误差、舍入误差。 2. 若132)(3 56++-=x x x x f ,则其六阶差商 =]3,,3,3,3[6210 f ( C ) A. 0; B. 1; C. 2; D. 3 。 3. 数值求积公式中的Simpson 公式的代数精度为 ( D ) A. 0; B. 1; C. 2; D. 3 。 4. 若线性方程组Ax = b 的系数矩阵A 为严格对角占优矩阵,则解方程组的Jacobi 迭代法和Gauss-Seidel 迭代法 ( B ) A. 都发散; B. 都收敛 C. Jacobi 迭代法收敛,Gauss-Seidel 迭代法发散; D. Jacobi 迭代法发散,Gauss-Seidel 迭代法收敛。 5. 对于试验方程y y λ=',Euler 方法的绝对稳定区间为( C ) A. 02≤≤-h ; B. 0785.2≤≤-h ; C. 02≤≤-h λ; D. 0785.2≤≤-h λ ; 二、填空题(每空3分,共18分) 1. 已知 ? ??? ??--='-=4321,)2,1(A x ,则 =2 x 5,= 1Ax 16 ,=2A 22115+ 2. 已知 3)9(,2)4(==f f ,则 f (x )的线性插值多项式为)6(2.0)(1+=x x L ,且用线性插值可得f (7)= 2.6 。 3. 要使 20的近似值的相对误差界小于0.1%,应至少取 4 位有效数字。 三、利用下面数据表, 1. 用复化梯形公式计算积分 dx x f I )(6 .28 .1? =的近似值; 解:1.用复化梯形公式计算 取 2.048 .16.2,4=-= =h n 1分 分 分分7058337 .55))6.2()2.08.1(2)8.1((22.04)) ()(2)((231 1 1 4=+++=++=∑∑=-=f k f f b f x f a f h T k n k k 10.46675 8.03014 6.04241 4.42569 3.12014 f (x ) 2.6 2.4 2.2 2.0 1.8 x

数值分析试题及答案

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以 当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。

数值分析版试题及答案

例1、已知函数表 求() f x的Lagrange二次插值多项式和Newton二次插值多项式。 解: (1)由题可知 插值基函数分别为 故所求二次拉格朗日插值多项式为 (2)一阶均差、二阶均差分别为 均差表为

故所求Newton 二次插值多项式为 例2、 设2()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的 最佳平方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有 所以,法方程为 011231261192 34a a ??????????=?????????? ?????????? ,经过消元得012311 62110123a a ??? ???????=???????????????????? 再回代解该方程,得到14a =,011 6 a = 故,所求最佳平方逼近多项式为* 111 ()46 S x x = +

例3、 设()x f x e =,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平 方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,这样,有 所以,法方程为 解法方程,得到00.8732a =,1 1.6902a =, 故,所求最佳平方逼近多项式为 例4、 用4n =的复合梯形和复合辛普森公式计算积分1?。 解: (1)用4n =的复合梯形公式 由于 2h =,()f x =,()121,2,3k x k k =+=,所以,有 (2)用4n =的复合辛普森公式 由于2h =,()f x =,()121,2,3k x k k =+=,()1 2 220,1,2,3k x k k +=+=,所以,有 例5、 用列主元消去法求解下列线性方程组的解。 解:先消元 再回代,得到33x =,22x =,11x =

数值计算方法试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知/⑵=12 /⑶= 1.3 ,则用辛普生(辛卜生)公式计算求得 J 1 /(x )d“ ,用三点式求得广⑴? ___________ 。 答案:2.367, 0.25 2、/(1) = -1, /⑵=2, /(3) = 1,则过这三点的二次插值多项式中F 的系数为 ___________ ,拉格 朗日插值多项式为 ________________________ L 、(x) — — (x — 2)(x — 3) — 2(x — l)(x — 3) — — (x — l)(x — 2) 3、近似值疋=0.231关于真值% = 0.229有(2 )位有效数字; 4、设/(J 可微,求方程Y = /U )的牛顿迭代格式是( 答案畑 1 一厂 (x“) 5、 对/V ) = P + x + l 差商/'[0,1,2,3]=( 1 ),/[0丄2,3,4] =( 0 ); 6、 计算方法主要研究(裁断)误差和(舍入)误差; 7、 用二分法求非线性方程f (x )=0在区间@力)内的根时,二分〃次后的误差限为 b-a (耐 ); 8、已知人1)=2,人2)=3,人4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15 ); 11、 两点式高斯型求积公式匸心皿利"曲4[磴#)+磴为]),代数精度为 (5); … 3 4 6 y = 10 ---------- 1 -------- ------------ T 12、 为了使计算 兀一 1匕一1广 仗一1)的乘除法次数尽量地少,应将该表达 式改写为〉'=1°+(3+(4-6/””,『=口,为了减少舍入谋差,应将表达式^/555^-^/i^ 答案:-1, );

数值分析试题及答案汇总

数值分析试题及答案汇 总 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

数值分析试题 一、填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数 的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当系数 a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 (B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。

相关主题