搜档网
当前位置:搜档网 › 空调水系统水力平衡处理方法

空调水系统水力平衡处理方法

空调水系统水力平衡处理方法
空调水系统水力平衡处理方法

空调水系统水力平衡处理方法

自动恒压差阀+电动调节阀是目前用于解决空调水系统平衡一个非常好的方法,当系统的压力发生变化时,恒压差阀可以通过改变自身的通流面积使电动调节阀两端的压差保持不变,使调节阀的CV 值始终为一,从而保证电动调节阀一直在最理想的工况下运行,真正做到水量的变化只与温度有关而与压力无关,可以保证进入空调箱的水量在任一时刻都是您所需要的水量。丛而使系统的性能更优越,维护更方便。

在系统的末端使用自动恒压差阀+电动调节阀后可以省去大量使用在分层控制中的平衡阀,所以可以使系统性能更优越,维护更方便。

自动恒压差阀+电动调节阀是变流量空调水系统水力平衡的重要保证,在系统中使用自动平衡比例积分调节阀能为您带来众多的利益。

1.由于不需要进行系统调试,所以省去许多麻烦,节约了大量的时间,缩短竣工日期;

2.由于不用使用阀门组和用于分层控制的阀门,所以为您节约了较多的管材,保温材料及安装费用和时间;

3.使水系统时时刻刻都处于平衡状态,所以无论安装分期施工或设备分期使用都不会影响水系统的平衡。

4.即使工程后期或投入运行后因改变某些用途而需要改变某些区域的水系统设计,也不会影响其他区域的水系统设计,更不会影响

其他区域的水系统平衡。

5.由于整个系统处于动态平衡状态,所以制冷机组及水泵将以最节能状态运行,节省了大量的运行维护费用。

6.由于系统的流量平衡是自动进行的,使安装维护更加便利,并杜绝了人为操作失误破坏平衡的可能。

自动平衡比例积分调节阀与静态平衡阀的比较

静态平衡阀实际上是一种可人为精确设定开度的截止阀,他通过人为调整局部阻力来解决空调水系统管路部分的水力平衡问题的。在系统初调试时,系统所有的阀门都处于某一开度,调试人员依据原有的数学模型逐一对每个静态平衡阀进行开度的设定(设定好后阀门开度为一定值),但是对不同的水系统其阻力分布曲线绝对是不一样的,而且是无法测出的。因此,静态平衡阀只能模糊的,定性的控制水流量。对一个变流量空调水系统来说,每个空调箱水量的变化是随机的,整个管路系统压力的变化也是不可测的,调节阀的开度变化也是随机的。因此我们从公式

G(流量)=CV*A(阀门通流面积)*△P(阀门两端的压差)可以得出:

由于静态平衡阀调好后开度为一定值。因此,阀门两端的压差发生的变化,势必会导致通过静态平衡阀的流量也发生变化。所以在一个变流量系统中当系统的压力发生变化时静态平衡阀是无法解决水力失调问题的。仍会造成系统的过流和欠流。

给水排水管道系统水力计算汇总

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

关于空调水系统全面水力平衡的分析

摘要:本文将分析产生水力失调的原因,着重介绍平衡阀的分类以及各自的功能与特性,分析各类平衡阀在水力平衡调节中所起的作用,总结出平衡阀在设计选用以及合理性布置方面的一些经验。 关键词:静态平衡阀;动态流量平衡阀;动态压差平衡阀;水力失调 在空调水系统中水力失调的现象是普遍存在的,一方面由于设计、施工、设备材料等原因导致的系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起系统的静态水力失调。另一方面当用户阀门开度变化引起水流量改变时,其它用户的流量也随之发生改变,偏离设计要求流量,从而导致的动态水力失调。静态水力失调是稳态的、根本性的,是系统本身所固有的,是当前我国暖通空调水系统中水力失调的重要因素。动态水力失调是动态的、变化的,它不是系统本身所固有的,是在系统运行过程中产生的。对于空调水系统存在的静态和动态水力失调,通过在管道系统中增设静态水力平衡阀对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,系统总流量达到设计流量时,各末端设备流量均同时达到设计流量,系统实现静态水力平衡。以及利用动态水力平衡阀的屏蔽作用,使其自身的流量不随其他用户阀门开度发生变化而变化,实现系统的动态平衡。因此平衡阀在空调水系统的水力平衡中具有很好的调节作用,也是保证空调系统正常运行必不可少的重要部件。 1水力失调和水力平衡的概念: 1.1在热水供热系统以及空调冷冻水系统中各热(冷)用户的实际流量与设计要求流量之间的不一致性称为该用户的水力失调。 水力失调的程度可以用实际流量与设计要求流量的比值x来衡量,x称水力失调度。 x = qs/qj(qs:用户的实际流量,qj:用户的设计要求流量) 1.2水力平衡是指网路中各个热用户在其它热用户流量改变时保持本身流量不变的能力,通常用热用户的水力稳定性系数r来表示。 r=1/ xmax = qj/ qmax (qj:用户的设计要求流量,qmax:用户出现的最大流量) 2产生水力失调的原因与分析 2.1静态失调 空调水系统虽经过详细的水力计算,但在施工安装过程中,各用户的流量仍不能达到设计要求。如管网中流体流动的动力源(一般指泵、重力差等)提供的能量与设计要求不符,泵的型号、规格的变化及其性能参数的差异,流体自由液面差的变化等,导致管网中压头和流量偏离设计值;再比如管材粗糙度,焊接光滑度,管路路由的长度量,三通的增减等参数发生变化时,均会导致管网的实际流动阻力特性与设计值偏离。这种水力失调是稳定的、根本性的,是不以设计为转移的,如不加以解决影响将始终存在。 2.2动态失调 系统在实际运行中,当一些末端用户的水流量发生改变时(关闭或调节),会使其它用户的流量随之产生变化。 因此,在通过详细的水力计算选择合适的管径及设备的基础上,为使水流量合理完善地分配至每一个环路的采暖或空调末端,满足每一栋建筑及功能房间的冷、热负荷需求,我们往往会通过平衡阀来有效的解决这个问题。 接下来,将针对平衡阀的选择设置进行探讨,以供同行在工程设计中参考。 3 平衡阀的选择与应用 3.1平衡阀的分类及特性 结合目前市场上的水力平衡阀,主要可分为两类:静态平衡阀和动态平衡阀。其中,静

风路系统水力计算

风路系统水力计算 1 水力计算方法简述 目前,风管常用的的水力计算方法有压损平均法、假定流速法、静压复得法等几种。 1.压损平均法(又称等摩阻法)是以单位长度风管具有相等的摩擦压力损失 m p ?为前提 的,其特点是,将已知总的作用压力按干管长度平均分配给每一管段,再根据每一管段的风量和分配到的作用压力,确定风管的尺寸,并结合各环路间压力损失的平衡进行调整,以保证各环路间的压力损失的差额小于设计规范的规定值。这种方法对于系统所用的风机压头已定,或对分支管路进行压力损失平衡时,使用起来比较方便。 2.假定流速法 是以风管内空气流速作为控制指标,这个空气流速应按照噪声控制、风管本身的强度,并考虑运行费用等因素来进行设定。根据风管的风量和选定的流速,确定风管的断面尺寸,进而计算压力损失,再按各环路的压力损失进行调整,以达到平衡。各并联环路压力损失的相对差额,不宜超过15%。当通过调整管径仍无法达到要求时,应设置调节装置。 3.静压复得法(略,具体详见《实用供热空调设计手册》之11.6.3) 对于低速机械送(排)风系统和空调风系统的水力计算,大多采用假定流速法和压损平均法;对于高速送风系统或变风量空调系统风管的水力计算宜采用静压复得法。工程上为了计算方便,在将管段的沿程(摩擦)阻力损失m P ?和局部阻力损失 j P ?这两项进行叠加时, 可归纳为下表的3种方法。 将m P ?与 j P ?进行叠加时所采用的计算方法 计算方法名称 基本关系式 备注 单位管长压力损失法(比摩阻法) 管段的全压损失 ) (2 222j m e j m P l p V l V d P l P P ?+?=+= ?+?=?ρζρ λ P ?——管段全压损失,Pa ; m p ?——单位管长沿程摩擦阻力,Pa/m 用于通风、空 调的送(回)风和排风系统的压力损失计算,是最常用的方法 当量长度法 2222ρ ζρ λV V d l e e = 风管配件的当量长度 λζ e e d l = 常见用静压 复得法计算高速风管或低速风管系统的压力损失。提供各类常用风管配

二级换热系统的水力平衡调节

二级换热系统的水力平衡调节 首都机场动力能源公司暖通分公司秦春雨夏晨宇 摘要:本文介绍了首都机场动力能源公司暖通分公司供暖站解决水力失调的几种方法和措施,提出了一套根据不同年代建筑的单位面积热负荷和建筑面积进行水力平衡调节的计算公式和理论依据,并介绍了针对不同情况的高温水系统、低温水系统进行水力平衡调节的步骤和方法,最后对水力平衡调节的节能效果进行了分析。 关键词:二级换热系统、水力平衡调节、高温水系统、低温水系统 1、系统概况 1.1供热系统布置情况介绍 在一个以3台75吨、l台45吨燃气蒸汽锅炉为热源的180万平方米大型供热系统中, 有一级换热站3个,直接将燃气蒸汽锅炉生产出压力为0.9MPa、温度约为230℃的过热蒸汽, 换热成高温水。大部份高温水需要经过二级换热站换热后用于供暖,小部分高温水直接用于 供暖。各换热站的关系如图1.所示。其中:1#、2#、6#换热站为汽一水一级换热站,4#、 5#、7#、航站楼等换热站为水一水二级换热站。6#、7#换热站负责住宅区的供热,其余几个 站负担工作区的供热。供回水设计温度:一次高温热水130/90℃,二次低温热水95/70℃。 图1.各换热站关系 1.2系统的运行方式 一级换热站均已采用变频自控技术,电脑控制变频器,使水泵流量随室外温度自动改变 见表l,通过电脑调节蒸汽电动阀使供水回水温度随室外温度变化,调节曲线见图2。

循环水流量调节表 2.供回水温度随室外温度变化 1.3水力失调现象: (1)以前对高温水系统未进行水力平衡调节,只对一部分换热站点的低温水进行水力平衡调节,以l#站高温水为例见图3. 图3.1#站部份高温水水力平衡失调度图 *表示水力失调度:实际流量/计算流量*100% 一些近端二级换热站(4#站)的高温水水力失调度达2.46,远端换热站(国航货运)的高温水水力失调度为0.76。(2)水力失调的影响: a.对用户的室内温度影响:个别用户室温低于16度,05年1月底开展的测温活动发现室温低于16度的用户如下:西消防支队温度15度,货运仓库14度,场务队特种车库14度。

有压引水系统水力计算

一、设计课题 水电站有压引水系统水力计算。 二、设计资料及要求 1、设计资料见《课程设计指导书、任务书》; 2、设计要求: (1)、对整个引水系统进行水头损失计算; (2)、进行调压井水力计算球稳定断面; (3)、确定调压井波动振幅,包括最高涌波水位和最低涌波水位; (4)、进行机组调节保证计算,检验正常工作状况下税基压力、转速相对值。 三、调压井水力计算求稳定断面 <一>引水道的等效断面积:∑= i i f L L f , 引水道有效断面积f 的求解表 栏号 引水道部位 过水断面f i (m 2 ) L i (m) L i/f i

所以引水道的等效断面积∑= i i f L L f =511.28/21.475=23.81 m 2 <二>引水道和压力管道的水头损失计算: 引水道的水头损失包括局部水头损失 h 局和沿程水头损失h 沿两部分 压力管道的水头损失包括局部水头损失h 局和沿程水头损失h 沿两部分 1, 2 2g 2h Q ?ξ局局= g :重力加速度9.81m/s 2 Q :通过水轮机的流量取102m 3/s ω :断面面积 m 2 ξ:局部水头损失系数 局部水头损失h 局计算表 栏号 引水建筑物部位及运行 工况 断面面积 ω(m 2 ) 局部水头损失系数 局部水头损失 10-6Q 2(m ) 合计(m) (1) 进 水 口 拦污栅 61.28 0.12 0.017 0.307 (2) 进口喇叭段 29.76 0.10 0.060 (3) 闸门井 24.00 0.20 0.184 (4) 渐变段 23.88 0.05 0.046 (5) 隧 洞 进口平面转弯 23.76 0.07 0.066 0.204 (6) 末端锥管段 19.63 0.10 0.138 (7) 调 压 正常运行 19.63 0.10 0.138 2.202 (1) 拦污栅 61.28 4.1 0.067 (2) 喇叭口进水段 29.76 6.0 0.202 (3) 闸门井段 24.00 5.6 0.233 (4) 渐变段 2 3.88 10.0 0.419 (5) D=5.5m 23.76 469.6 19.764 (6) 锥形洞段 21.65 5.0 0.231 (7) 调压井前管段 19.63 10.98 0.559

工程变流量水力系统全面平衡

工程变流量水力系统全面平衡 在暖通空调工程中,水力平衡的调节是个重要的课题。本文分析了暖通空调工程定流量和变流量系统水力平衡的特点;提出了变流量系统全面平衡的概念;同时对水力平衡和水力失调系统进行了比较;最后结合工程实例分析了全面平衡水力系统的舒适节能性。 一.水力平衡的概念及分类: 1、静态水力失调和静态水力平衡: 由于设计、施工、设备材料等原因导致的系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起的水力失调,叫做静态水力失调。 静态水力失调是稳态的、根本性的,是系统本身所固有的。 通过在管道系统中增设静态水力平衡设备,在水系统初调试时对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计总流量时,各末端设备流量同时达到设计流量,实现静态水力平衡。 2、动态水力失调和动态水力平衡: 系统实际运行过程中当某些末端阀门开度改变引起水流量变化时,系统的压力产生波动,其它末端的流量也随之发生改变,偏离末端要求流量,引起的水力失调,叫做动态水力失调。 动态水力失调是动态的、变化的,它不是系统本身所固有的,是在系统运行过程中产生的。 通过在管道系统中增设动态水力平衡设备,当其它用户阀门开度改变引起水流量变化时,通过动态水力平衡设备的屏蔽作用,自身的流量并不随之变化,末端设备流量不互相干扰,实现动态水力平衡。 3、全面水力平衡: 全面水力平衡就是消除了静态和动态水力失调,使系统同时达到静态和动态水力平衡。 二.定流量系统的静态水力平衡: 定流量系统是早期的暖通空调工程中常见的水力系统。 定流量系统是指系统不含任何调节阀门,系统在初调试完成后阀门开度无须做任何改变,系统各处流量始终保持恒定。定流量系统主要适用于末端设备无须通过流量来进行调节的系统,如采用变风量来调节的风机盘管和空调箱等。

中央空调系统水平衡调整

暖通空调水系统水力平衡调节 作者:王晓松上传:water 来源:网易行业 2005-09-07 00:00 1、引言: 在建筑物暖通空调水系统中,水力失调是最常见的问题。由于水力失调导致系统流量分配不合理,某些区域流量过剩,某些区域流量不足,造成某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起能量的浪费,或者为解决这个问题,提高水泵扬程,但仍会产生热(冷)不均及更大的电能浪费。因此,必须采用相应的调节阀门对系统流量分配进行调节。 虽然某些通用阀门如截止阀、球阀等也具有一定的调节能力,但由于其调节性能不好以及无法对调节后的流量进行测量,因此这种调节只能说是定性的和不准确的,常常给工程安装完毕后的调试工作和运行管理带来极大的不便。因此近些年来,在越来越多的暖通空调工程水系统的关键部位(如集水器)、特别是在一些国外设计公司设计的工程项目中,均大量地选用水力平衡阀来对系统的流量分配进行调节(包括系统安装完后的初调节和运行管理调节,本文主要阐述的是前者,也可作后者的参考)。 水力平衡阀有两个特性:⑴、具有良好的调节特性。一般质量较好的水力平衡阀都具有直线流量特性,即在阀二端压差不变时,其流量与开度成线性关系;⑵、流量实时可测性。通过专用的流量测量仪表可以在现场对流过水力平衡阀的流量进行实测。 2、系统水力平衡调节: 水系统水力平衡调节的实质就是将系统中所有水力平衡阀的测量流量同时调至设计流量。 2.1 单个水力平衡阀调节 单个水力平衡阀的调节是简单的,只需连接专用的流量测量仪表,将阀门口径及设计流量输入仪表,根据仪表显示的开度值,旋转水力平衡阀手轮,直至测量流量等于设计流量即可。 2.2 已有精确计算的水力平衡阀的调节 对于某些水系统,在设计时已对系统进行了精确的水力平衡计算,系统中每个水力平衡阀的流量和所分担的设计压降是已知的。这时水力平衡阀的调节步骤如下:⑴、在设计资料中查出水力平衡阀的设计压降;⑵、根据设计图纸,查出(或计算出)水力平衡阀的设计流量;⑶、根据设计压降和设计流量以及阀口径,查水力平衡阀压损列线图,找出这时水力平衡阀所对应的设计开度;⑷、旋转水力平衡阀手轮,将其开度旋至设计开度即可。 2.3 一般系统水力平衡阀的联调 对于目前绝大部分的暖通空调水系统,其设计只有水力平衡阀的设计流量,而不知道压差,而且系统中包含多个水力平衡阀,在调节时这些阀的流量变化会互相干扰。这时如何对系统进行调节,使所有的水力平衡阀同时达到设计流量呢? 2.3.1 系统水力平衡调节的分析:

水带系统水力计算资料

第二节水带系统水力计算 一、了解水带压力损失计算方法 每条水带的压力损失,计算公式如下:hd= SQ2 式中:hd――每条20米长水带的压力损失,104 Pa S ――每条水带的阻抗系数, Q――水带内的流量,L/ s 注:1mH2O=104 Pa(1米水柱=104帕);1Kg/cm2=105 Pa(1千克/厘米2) 二、了解水带串、并联系统压力损失计算方法 同型、同径水带串联系统压力损失计算: 压力损失叠加法:公式Hd=nhd 式中:Hd――水带串联系统的压力损失,104 Pa; n――干线水带条数,条; hd――每条水带的压力损失,104 Pa 。 阻力系数法:公式Hd=nSQ2 式中:Hd――水带串联系统的压力损失,104 Pa; n――干线水带条数,条; S――每条水带的阻抗系数; Q――干线水带内的流量,L/ s 。 不同类型、不同直径水带串联系统压力损失计算: 压力损失叠加法:公式Hd =hd1+ hd2+ hd3+…+ hdn 式中:Hd――水带串联系统的压力损失,104 Pa;

hd1、hd2、hd3、hdn――干线内各条水带的压力损失,104 Pa 。 阻力系数法:公式:Hd=S总Q2 Hd――水带串联系统的压力损失,104 Pa; S总――干线内各条水带阻抗系数之和; Q――干线水带内的流量,L/ s 。 同型、同径水带并联系统压力损失计算: 流量平分法公式:Hd =hd1+ hd2+ hd3+…+ hdn或Hd=S总(Q∕n)2 式中:Hd――并联系统水带的压力损失,104 Pa; hd1、hd2、hd3、hdn――任一干线中各条水带的压力损失,104 Pa; S总――并联系统中任一干线中各条水带阻抗系数之和;Q――并联系统的总流量,L/ s n――并联系统中干线水带的数量,条。 阻力系数法公式:Hd=S总Q2或S总=S∕n2 式中:Hd――并联系统水带的压力损失,104 Pa; S总――并联系统总阻抗系数之和; Q――并联系统的总流量,L/ s S――每条干线的阻抗; n――并联系统中干线水带的数量,条 灭火剂喷射器具应用计算

暖通空调系统全面水力平衡解决方案

暖通空调系统全面水力平衡解决方案 建筑能耗在我国能源总消费中所占的比例已达35%,且持增长态势。大型公共建筑中空调系统耗能约占建筑总能耗的50~65%。空调系统存在的典型问题:能耗高、舒适度低。 1)制冷机组、水泵、空调机组等设备工作效率较低; 2)空调房间温度无法达到设定值、波动较大; 3)水系统的噪音。 水力失调: 静态水力失调:主要由于系统在设计、产品选型、施工等过程中的种种误差迭加产生的,设计需要的系统管道阻力特性与实际系统管道阻力特性不相符,所造成的实际流量与设计流量不一致的水力失调状态。静态水力失调:天生的,所有系统都有,平衡调试后消失。 动态水力失调:在暖通空调水系统上安装了很多调控设备,应用了变流量技术,从而使系统的瞬时阻力特性与设计所需阻力特性不符,而造成了系统的瞬时失调状况。后天的,所有系统都有,必须由动态阀门修正! 水力平衡阀的分类: 一、静态平衡阀—并联管路 二、动态平衡阀 1、动态流量平衡阀/定流量阀—冷冻机干管

2、动态压差平衡阀/压差调节器—水平支管、垂直立管 三、电动平衡阀—末端设备 1、动态平衡电动二通阀—风机盘管 2、动态平衡电动调节阀—新风机组、组合式空气处理机组 水力平衡阀的作用: 平均分配流量(按设计流量分配):静态平衡阀; 按需分配流量(按实时负荷分配):动态平衡阀。 阀门流量计算公式: 静态(水力)平衡阀: 各主要并联管路的平衡方案(集水器、垂直立管、水平支管)

水力失调的典型现象(存在的问题): 部分区域过流从而导致部分区域欠流的冷热分配不均; 为照顾不利环路而加大流量运行导致能源浪费; 有利环路阀门、末端设备处存在水流噪音。 并联环路流量分配与压降的关系: 平衡方案:各并联管路设置静态平衡阀。 平衡原理:通过调节自身开度改变阀门阻力,平衡各并联环路的阻力比值,使流量合理分配,达到实际流量与设计流量相同; 消除水系统存在的部分区域过流从而导致部分区域欠流的冷热分配不均现象,有效避免了为照顾不利环路而加大流量运行的能源浪费现象,因此可节省冷/热量,同时还可以减少水泵运行费用。

9.水系统水力计算

9 空调水系统方案确定和水力计算 9.1 冷冻水系统的确定 9.1.1 冷冻水系统的基本形式 9.1.1.1 双管制、三管制和四管制系统 (1)双管制系统夏季供应冷冻水、冬季供应热水均在相同管路中进行。优点是系统简单,初投资少。绝大多数空调冷冻水系统采用双管制系统。但在要求高的全年空调建筑中,过渡季节出现朝阳房间需要供冷而背阳房间需要供热的情况,这时改系统不能满足要求。 (2)三管制系统分别设置供冷、供热管路,冷热回水管路共用。优点是能同时满足供冷供热的要求,管路系统较四管制简单。其最大特点是有冷热混合损失,投资高于两管制,管路复杂。 (3)四管制系统供冷、供热分别由供回水管分开设置,具有冷热两套独立的系统。优点是能同时满足供冷、供热要求,且没有冷热混合损失。缺点是初投资高,管路系统复杂,且占有一定的空间。 9.1.1.2 开式和闭式系统 (1)开式水系统与蓄热水槽连接比较简单,但水中含氧量较高,管路和设备易腐蚀,且为了克服系统静水压头,水泵耗电量大,仅适用于利用蓄热槽的低层水系统。 (2)闭式水系统不与大气相接触,仅在系统最高点设置膨胀水箱。管路系统不易产生污垢和腐蚀,不需克服系统静水压头,水泵耗电较小。 9.1.1.3 同程式和异程式系统 (1)同程式水系统除了供回水管路以外,还有一根同程管,由于各并联环路的管路总长度基本相等,各用户盘管的水阻力大致相等,所以系统的水力稳定性好,流量分配均匀。高层建筑的垂直立管通常采用同程式,水平管路系统范围大时宜尽量采用同程式 (2)异程式水系统管路简单,不需采用同程管,水系统投资较少,但水量分配。调节较难,如果系统较小,适当减小公共管路的阻力,增加并联支管的阻力,并在所有盘管连接支路上安装流量调节阀平衡阻力,亦可采用异程式布置。 9.1.1.4 定流量和变流量系统 (1)定流量水系统中的循环水量保持定值,负荷变化时可以通过改变风量或改变供回水温度进行调节,例如用供回水支管上三通调节阀,调节供回水量混合比,从而调节供水温度,系统简单操作方便,不需要复杂的自控设备,缺点是水流量不变输送能耗

水暖供热系统水力平衡的调节

目录 一、水力平衡的基本概念 (1) 二、定流量系统的静态水力平衡 (2) 三、变流量系统的全面水力平衡 (2) 四、水力平衡和水力失调系统的比较 (3) 五、结束语 (9)

水暖供热系统水力平衡的调节 供热管网是一个复杂的水力系统,系统中各环路间水力状况的变化相互影响和制约。因此,在供热工程中,水力平衡的调节是个重要的问题。通过调节系统水力平衡,可以实现供热水力系统的舒适性和节能性。 一、水力平衡的基本概念: 1、静态水力失调和静态水力平衡: 静态水力失调是系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起的水力失调。静态水力失调是系统本身所固有的。它是由于设计、施工、管材等原因导致的。 通过在管道系统中增设静态水力平衡设备,在水系统初调试时对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计总流量时,各末端用户流量同时达到设计流量,实现静态水力平衡。 2、动态水力失调和动态水力平衡: 动态水力失调实际上是系统运行过程中当某些末端阀门开度改变引起水流量变化时,系统的压力产生波动,其它末端的流量也随之发生改变,偏离末端要求流量,引起的水力失调。动态水力失调是在系统运行过程中产生的。 通过在管道系统中增设动态水力平衡设备,当其它用户阀门开度改变引起水流量变化时,通过动态水力平衡设备的屏蔽作用,自身的

流量并不随之变化,末端用户散热设备流量不互相干扰,实现动态水力平衡。 3、全面水力平衡: 全面水力平衡就是消除了静态和动态水力失调,使系统同时达到静态和动态水力平衡。 二、定流量系统的静态水力平衡: 定流量系统是早期供热工程中常见的水力系统。 定流量系统是指系统不含任何调节阀门,系统在初调试完成后阀门开度无须做任何改变,系统各处流量始终保持恒定。定流量系统主要适用于末端用户无须通过流量来进行调节室内热量的系统。 定流量系统只存在静态水力失调,基本不存在动态水力失调,因此只需在相关部位安装静态水力平衡调节阀即可。 三、变流量系统的全面水力平衡: 随着人们对室内温度舒适性要求、节能意识的不断提高,变流量水力系统在供热工程中占据越来越重要的位置。 变流量系统是指系统在运行过程中各分支环路的流量随外界负荷的变化而变化。由于近年暖冬的出现,变流量供热系统的管道流量都低于设计流量,因此这种系统是高效节能的。 变流量系统一般既存在静态水力失调,也存在动态水力失调,因此必须采取相应的水力平衡措施来实现系统的全面平衡。 1、静态水力平衡的实现: 通过在相应的部位安装静态水力平衡阀,使系统达到静态水力平

暖通空调水系统的水力平衡调节

暖通空调水系统的平衡调节 摘要通过对集中供热和空调水系统流量变化的分析,阐述了选用静态水力平衡阀、动态平衡阀、动态平衡电动调节阀的原因,并介绍了这几种阀门的特性和控制机理,包括控制方式、方法。探讨了这几种阀门的调试过程,提出了暖通空调水系统调试的重要性。 关键词:水力失调静态水力平衡动态水力平衡压差控制调试方法前言 集中供热和中央空调的水系统运行中,水力失调是常见的问题。水力系统的失调有两方面的含义:一是指虽然经过详细的水力计算并达到规定要求,但在实际运行后,各用户的流量与设计要求不符,这种水力失调是稳定的、根本性的。如不加以解决影响将始终存在。称之为稳态失调。二是指系统运行中,当一些用户的水流量改变时(关闭或调节时),会使其它用户的流量随之变化。这涉及到水力稳定性的概念。对其它用户影响小,则水力失调程度小,水力稳定性好,称之为动态(稳定性)失调。 产生水力失调的原因。管网水力失调的原因是多方面的,归纳起来主要有两种:(1管网中流体流动的动力源(一般泵、重力差等)提供的能量与设计要求不符。例如:泵的型号,规格的变化及其性能参数的差异,动力电源的波动,流体自由液面差的变化等,导致管网中压头和流量偏离设计值。(2)管网的流 动阻力特性发生变化,很多原因会导致管网阻抗发生变化。例如:在管路安装中,管材实际粗糙度的差别,焊接光滑程度的差别,存留于管道中泥沙、焊渣多少的差别,管路走向改变而使管长度的变化,弯头、三通等局部阻力部件的增 减等,均会导致管网实际阻抗与设计值偏离。尤其是一些在管网设置的阀门,改变其开度即可能大大改变管网的阻力特性。 水力失调对管网系统运行会产生不利影响。管网系统往往是多个循环环路并联在一起的管路系统。各并联环路之间的水力工况相互影响,必然会引起其他环路的流量发生变化。如果某一管段的阀门开大或关小,必然导致管路流量的重新分配,即引起了水力工况的改变。当某些环路因发生水力失调而流量过小,如锅炉循环系统中水冷壁管路流量分配不均,使部分管束水流停滞则有可能发生爆管事故;在制冷机水循环系统中,蒸发器管束因此可能发生冻管事故。在供热空调系统中流体流量的变化使其负担输配的冷热量改变,即其水力失调必然会导致热力失调。在水力失调发生的同时,管网中的压力分布也发生了变化。在一些特殊情况下,局部管路和设备内的压力超过一定的限值,则可能使之破坏。 空调、采暖水系统中,由于水力失调导致流量分配不合理,区域流量过剩和区域流量不足,造成了某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起了能源的浪费,为了解决这个问题,提高水泵的扬程,但仍会产生冷热不均及更大的能源浪费。因此必须采用相应的调节阀门对系统的流量分配进行控制和调整。虽然通用阀门如截止阀、球阀等也具有一定的调节能力,但由于调节性能不好以及无法对调节后的流量进行测量和控制。近年来,在越来 越多的暖通空调水系统,普遍采用了平衡阀系列产品对水系统的流量分配起到了积极地作用,使管网的运行得到了保证,特别是近年来变流量系统的控制。平衡阀系列产品包括:静态水力平衡阀、动态水力平衡阀等等,下面会和大家一起来分析一下,究竟什么系统需要什么样的水力平衡阀。 静态水力平衡阀 静态水力平衡阀的工作机理

空调水管水力计算

一、空调水系统的设计原则: 1、力求水力平衡; 2、防止大流量小温差; 3、水输送符合规范要求; 4、变流量系统宜采用变频调节; 5、要处理好水系统的膨胀与排气; 6、解决好水处理与水过滤; 7、切勿忽视管网的保冷与保温效果。 二、冷冻水、冷却水管的计算 1、压力式水管道管径计算 D=103πνL 4(mm ) 公式中 L------水流量(m 3/s ) v-------计算流速(m/s ) 一般水管系统的管内水流速可参考表13-12的推荐值取用 表13-13选择。 2、直线管段的阻力计算 Δh=d l λ×2 2v ρ=R ×l 式中Δh---长度为l (m )的直管段的摩擦阻力(Pa ) λ---水与管内壁间的摩擦阻力系数; l----直管段的长度(m ); d----管内径(m ); ρ----水的密度(kg/m 3),当4℃时为1000kg/m 3 R-----长度为1m 直管段的摩擦阻力(Pa/m ) 三、空调设备流量计算 由Q=CM ΔT 可得出:M=Q/C*ΔT (Kg/S ) Q-----空调制冷或制热量(Kw ) C-----水的比热容,4.2KJ/Kg*℃ ΔT---进出空调设备的供回水温差,ΔT =T G -T H 四、风机盘管选择 1、计算室内空调冷负荷Q (W ),简单依单位面积指标及经验估算。 2、考虑机组的盘管用后积垢积尘对传热的影响,对空调冷负荷要进行修正,冷负荷应乘以系数a 仅冷却使用 a=1.10 作为加热、冷却两用 a=1.20 仅作为加热用 a=1.15 3、依据空调冷负荷选择风机盘,一般按中档运行能力选择。 4、校核风量:L=) (3600s n h h Q -ρ L-----风机盘管名义风量(m 3/h )

(完整版)水力计算

室内热水供暖系统的水力计算 本章重点 ? 热水供热系统水力计算基本原理。 ? 重力循环热水供热系统水力计算基本原理。 ? 机械循环热水供热系统水力计算基本原理。 本章难点 ? 水力计算方法。 ? 最不利循环。 第一节热水供暖系统管路水力计算的基本原理 一、热水供暖系统管路水力计算的基本公式 当流体沿管道流动时,由于流体分子间及其与管壁间的摩擦,就要损失能量;而当流体流过管道的一些附件 ( 如阀门、弯头、三通、散热器等 ) 时,由于流动方向或速度的改变,产生局部旋涡和撞击,也要损失能量。前者称为沿程损失,后者称为局部损失。因此,热水供暖系统中计算管段的压力损失,可用下式表示: Δ P =Δ P y + Δ P i =R l + Δ P i Pa 〔 4 — 1 〕 式中Δ P ——计算管段的压力损失, Pa ;

Δ P y ——计算管段的沿程损失, Pa ; Δ P i ——计算管段的局部损失, Pa ; R ——每米管长的沿程损失, Pa / m ; l ——管段长度, m 。 在管路的水力计算中,通常把管路中水流量和管径都没有改变的一段管子称为一个计算管段。任何一个热水供暖系统的管路都是由许多串联或并联的计算管段组成的。 每米管长的沿程损失 ( 比摩阻 ) ,可用流体力学的达西.维斯巴赫公式进行计算 Pa/m ( 4 — 2 ) 式中一一管段的摩擦阻力系数; d ——管子内径, m ; ——热媒在管道内的流速, m / s ; 一热媒的密度, kg / m 3 。 在热水供暖系统中推荐使用的一些计算摩擦阻力系数值的公式如下: ( — ) 层流流动 当 Re < 2320 时,可按下式计算;

暖通空调系统中的水力平衡问题

暖通空调系统中的水力平衡问题 时间:2012-06-12 16:15 来源:特灵空调编辑:公司编辑点击:1492次字号:小大 在供热或空调水系统中,热水或冷冻水由闭式输配系统输送到各用户末端。水流量应按设计要求合理地分配至供热或空调末端,以及每一个控制环路以满足其热/冷负荷需求,保证理想的供热或空调舒适度。但由于种种原因大部分输配环路及冷热源机组(并联)环路存在水力失调 在供热或空调水系统中,热水或冷冻水由闭式输配系统输送到各用户末端。水流量应按设计要求合理地分配至供热或空调末端,以及每一个控制环路以满足其热/冷负荷需求,保证理想的供热或空调舒适度。但由于种种原因大部分输配环路及冷热源机组(并联)环路存在水力失调,使得流经用户及机组的流量与设计流量要求不符。 1.产生水力失调的原因和结果 水力失调有两方面:动态水力失调,是指当某些用户的水流量改变时,会影响其它用户的流量也随之变化,偏离设计要求。静态水力失调,是指系统虽然经过水力平衡计算,并达到规定的要求,但由于设计、施工安装、设备材料等原因导致的,各用户的实际流量与设计要求不符引起的系统水力失调。这种水力失调是先天性的、根本的,如果不加以解决,影响将始终存在。 水力不平衡常会导致: (1)系统中某些用户流量过大引起其他用户流量过小,不利环路无法获得所需要的流量。 (2)由于冷热源与输配管路流量不匹配,在满负荷时,供热温度比预期值低,供冷温度比预期值高,导致水系统处于大流量、小温差运行工况。 (3)水泵选型偏大,水泵运行在偏离高效区不合适的工作点处。能量输配效率低下,无法进行整体调控和节能运行。 (4)在大流量小温差的工况下运行,冷热源难以达到其额定出力,使实际运行的机组超负荷或运行机组台数超过实际负荷要求的台数。 (5)在装备有自动控制的系统中,往往由于水量不符合设计要求,而使自控装置失灵或不能充分发挥其控制功能,导致温控效果差。 (6)由于调节阀的调节相互影响,电机频繁动作,使用寿命缩短。 2.解决水力失调的方式 目前,国内中央空调水系统按流量的稳定性可分为定流量和变流量系统;按布置形式又分为同程式系统和导程式系统。本文将就这不同系统中如何克服水力失调进行探讨。 2.1同程系统不能解决水力平衡问题 同程系统在所有末端要求完全相同的设计流量的情况下,各用户盘管的水阻力大致相等,所以流量是可以得到均匀分配的。但这种均匀分配也只是在满负荷时的设计流量下的平衡,如果末端设备由电动二通调节阀进行调节时,此时同程系统的平衡作用也就不再起作用了。因此同程系统的平衡实际上也只是适用于设计流量工况,而不适用于部分负荷工况。 2.2平衡阀的种类 我们已经知道水力失调并不能通过在设计时进行平衡计算解决,即使是同程式系统。为了解决这一问题,必须采用各种水力平衡阀:手动平衡阀、自动流量

平衡阀介绍及其工作原理

暖通空调系统 一、暖通空调系统常见得几种水力平衡设备:?暖通空调系统常见得水力平衡设备主要有用于消除静态水力失调、实现静态水力平衡得静态水力平衡阀与用于消除动态水力失调、实现动态水力平衡得动态压差平衡阀、动态流量平衡阀、动态平衡电动开关阀、“动态压差平衡阀与电动调节阀组合"以及一体式动态平衡电动调节阀等。?1、静态平衡阀: 静态平衡阀就是消除暖通空调水系统静态水力失调、实现静态水力平衡得主要设备、?静态平衡阀实质上就是一个具有明确得“流量—压差-开度”关系、清晰可调得开度指示以及良好调节特性得阻尼调节元件。?在暖通空调水系统中,静态平衡阀保证得不就是系统中单个管道得流量值,它要维持得就是在系统初调试时,通过静态平衡阀得调节作用,使系统中各个管路得流量比值与设计流量得比值一致,这样当系统得总流量等于设计总流量时,各个末端设备及管道得流量也同时达到设计流量、?静态平衡阀主要应用于系统分集水器、分支管道以及末端设备处。 2、动态压差平衡阀:?动态压差平衡阀就是消除暖通空调系统动态水力失调、实现动态平衡得主要设备之一、?动态压差平衡阀具有关键点定压差功能,它通过阀门内部得自力式机构,能自动地将系统两个关键点之间得压差恒定在设定压差值。?基于全面水力平衡系统对分系统定压、分级定压以及设备定压得要求,动态压差平衡阀广泛地应用在系统主管、分支管道以及各种末端设备处。? 3、动态流量平衡阀: 动态流量平衡阀就是消除系统动态水力失调得设备之一。 动态流量平衡阀实质就是在一定得压差范围内维持管道得流量始终不变,流量值得大小可以根据系统要求进行定制,因此它又叫做“定流量平衡阀”。?动态流量平衡阀主要应用于水力系统中要求保持流量不变得管道,如冷水机组冷冻、冷却水管以及采用变风量调节系统制冷供热量得末端设备管道处、?4、动态平衡电动开关阀: 动态平衡电动开关阀就是暖通空调水系统消除动态水力失调、实现动态平衡得主要设备之一、?动态平衡电动开关阀具有动态平衡与电动开关功能,当阀门开启时,它能动态地将管道得实际流量恒定在设计流量值,并不受系统压力波动得影响。?动态平衡电动开关阀主要应用于风机盘管处,一方面,它具有传统电动开关阀得电动开关功能;另一方面,它又能在阀门开启时将流量始终恒定在风机盘管得设计流量、 5、“动态压差平衡阀与电动调节阀”组合:?动态压差平衡阀与电动调节阀组合就是暖通空调水系统消除动态水力失调、实现动态平衡得主要设备之一。 动态压差平衡阀与电动调节阀组合既具有动态平衡功能,即能动态地平衡系统得压力波动,使流经管道得流量不受系统压力波动得影响,又具有电动调节功能,即能根据目标区域得负荷变化自动地调节开度从而调节流量值,保证目标区域得温度始终恒定在设定温度。 动态压差平衡阀与电动调节阀组合主要应用于空调箱、空气处理机组与新风机组等处。?6、一体式动态平衡电动调节阀:

水力平衡

暖通空调水力平衡的调节 摘要:在暖通空调水系统中,水力失调是最常见的问题。由于水力失调导致系统流量分配不合理,某些区域流量过剩,某些区域流量不足,造成某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起能量的浪费,或者为解决这个问题,提高水泵扬程,但仍会产生热(冷)不均及更大的电能浪费。因此,必须采用相应的调节阀门对系统流量分配进行调节。 关键词:静态;动态;水力平衡;定流量;变流量 Hydronic Balancing Analysis of Heating and Air Conditioning Abstract:Introduces the conception and classify of hydronic maladjustment and hydronic balancing . Analyses the characteristic of hydronic maladjustment and step of realizing hydronic balancing in invariableness flowrate system and variableness flowrate system . Deeply analyses a few typical system forms . Keywords:static: dynamic; hydronic balancing; invariableness flowrate; variableness flowrate 0.引言 在暖通空调工程中,水力平衡的研究是个很重要的课题。本文提出了静态水力平衡和动态水力平衡的概念,并结合二种水力平衡的特点,分析了定流量系统和变流量系统中几种典型方式的水力平衡设备的选择及实现水力平衡的方式。 1 水力失调和水力平衡的分类 1.1 水力失调和水力平衡的概念 在热水供热系统以及空调冷冻水系统中,各热(或冷)用户的实际流量与设计要求流量之间的不一致性称为该用户的水力失调,反之,称为水力平衡。 1.2 静态水力失调和静态水力平衡 由于设计、施工、设备材料等原因导致的系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起系统的水力失调,叫做静态水力失调。静态水力失调是稳态的、根本性的,是系统本身所固有的。通过在管道系统中增设静态水力平衡设备(水力平衡阀)对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计流量,各末端设备流量也均达到设计流量时,系统实现静态水力平衡。 1.3 动态水力失调和动态水力平衡 当用户阀门开度变化引起水流量改变时,其它用户的流量也随之发生改变,偏离要求流量,从而导致的水力失调,叫做动态水力失调。动态水力失调是动态的、变化的,它不是系统本身所固有的,是在系统运行过程中产生的。通过在管道系统中增设动态水力平衡设备(流量调节器或压差调节器),当其它用户阀门开度发生变化时,通过动态水力平衡设备的屏蔽作用,使自身的流量并不随之发生变化,末端设备流量不互相干扰,从而使得系统实现动态水力平衡。 2 定流量系统水力平衡分析 定流量水力平衡系统是暖通空调设计中常见的水系统,在运行过程中系统各处的流量基本保持不变。常用的主要有以下三种形式: 2.1 完全定流量系统 完全定流量系统是指系统中不含任何动态调节阀门,系统在初调试完成后阀门开度无需作任何变动,系统各处流量始终保持恒定。完全定流量系统主要适用于末端设备无需通过流

中南建筑设计院西区供热管网水力平衡计算

中南建筑设计院西区供热管网水力平衡计算 2006年1月5日 15:48 来源:中南建筑设计院作者:雷炳成杨允立网友评论 0 条进入论坛 提要 对中国建筑设计院西区采暖热网进行水力平衡计算及分析,并用水力平衡阀等技术措施对采暖热网进行水力平衡,解决了水力失衡问题,达到较满意的效果,为采暖热网进行水力平衡集累了一定的经验。 关键词采暖热网水力平衡热力平衡平衡阀 1.问题的提出 中南建筑设计院西区(生活区)集中低温热水采暖系统于1991年完成设计及施工,并于当年年底投入运行。系统运行至今已有十年,大大改善了我院职工的生活条件。但该热水采暖系统自运行之初起,就存在着热力失衡问题。后随着用户的增加,管网作用半径的增大,随着燃煤蒸汽锅炉、汽-水换热器、热水循环泵运行效率的降低,也随着采暖系统阀件及沿程管道性能的弱化,采暖系统运行效率降低,热力失衡问题越来越严重,具体表现在管网末端用户的采暖效果越来越差。为配合我院沿街开发的形势,院西区两栋临街多层住宅拆除,由于采暖用户(以下均指单栋或单元建筑)减少采暖外网须相应调整,此举可部分程度缓解采暖系统效果恶化情况,但热力管网水力失衡问题尚未得到解决。 院西区采暖热网布置现状参见"图一"。西区采暖面积约35000m2,冬季总采暖热负荷为2230kw。采暖热源为西区锅炉房及换热站;4t/h燃煤蒸汽锅炉1台;螺旋板式汽-水换热器2台;1000m3/h热水循环泵2台,1有1备,铭牌扬程3.2Mpa;系统由设在"中南海18单元"屋而后高位膨胀水箱定压,换热站内设系统被给水泵。该采暖系统共分3个树状供回水环路。

1#环路为院内中部环路,原负担"1~3单元","4~6单元","幼儿园","29~32单元(50户)","18户"," 33~35单元(36户)"及"23户"采暖负荷,其供加水总管管径为DN125,现增加一个用户"北大板",其负担总热负荷为1219kw。该环路用户多且作用半径长,长期以来热力失衡问题严重,沿途用户供暖冷热不均,最不利用户"23户"室内采暖系统形同虚设,"36户"各单元采暖效果也较差。 2#环路为院内北部环路,负担"7~10单元","11~14单元","北大板"及"40户"采暖负荷,其代回水总管管径为南部环路,原负担"中单公寓"及"40户"拆除,现仅负担"中单公寓",其热负荷为115kw。 2.管网水力计算及平衡分析 基于上述原因,我们对院西区采暖热网进行水力计算及分析,拟采取水力平衡阀等技术措施对该采暖热网进行水力平衡,以期改善西区整体采暖效果。 2.1 计算条件 已知条件 (1)外网各环路管段管径及沿程长度,各单位采暖设计热负荷及总设计热负荷。各环路用户采暖热负荷说"表1

相关主题