搜档网
当前位置:搜档网 › 高考数学指数指数函数

高考数学指数指数函数

高考数学指数指数函数
高考数学指数指数函数

2.9 指数 指数函数

——指数函数、对数函数是高考考查的重点内容之一

一、明确复习目标

1.理解分数指数幂的概念,掌握有理指数幂的运算性质,能正确进行指数式运算;

2.掌握指数函数的概念、图象和性质,并能灵活运用图象和性质去解决有关问题。

二.建构知识网络

1.幂的有关概念

(1)正整数指数幂)(*∈????=N n a a a a a n n

48476Λ个

零指数幂)0(10

≠=a a ; 负整数指数幂()1

0,n

n a

a n N a

-*=

≠∈ (2)正分数指数幂()0,,,1m n

m n

a a a m n N n *=>∈>;

(3)负分数指数幂()10,,,1m

n

m n

m

n

a

a m n N n a a

-*

==

>∈>

(4)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质:

()()10,,r s r s a a a a r s Q +=>∈

()()()20,,s

r rs a a a r s Q =>∈ ()()()30,0,r

r r ab a b a b r Q =>>∈

3.根式

(1)根式的定义:如果a x n

=()1,n n N >∈,那么x 叫做a 的n 次方根,用

n

a 表

示,

n

a 叫做根式,n 叫根指数,a 叫被开方数。

(2)根式的性质: ①当n 是奇数,a a n n =;

当n 是偶数,??

?<-≥==0

0a a

a a

a a n

n

②负数没有偶次方根,③零的任何次方根都是零 4.指数函数:

(1)定义:y=a x (a >0且a ≠1),叫指数函数,x 是自变量,y 是x 的函数。 (2)图象:

(3)性质:

定义域(-∞,+ ∞);值域 (0,+ ∞);

过定点(0,1);

单调性 a > 1时为增函数 0<a <1时为减函数

值分布:x 取何值时,y>1,01和0

三、双基题目练练手

1.3a ·

6

a -等于 ( )

A.-a -

B.-a

C.a -

D.

a

2.当10<

a a

a

a a ,,的大小关系是 ( ) A .a a a

a

a a >> B .a a

a a

a a >>

C .a

a a a a

a

>>

D .a

a a

a

a a

>>

3.下图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,则a 、b 、c 、d 与1的大小关系是

O x

y

1

(1) (2) (3) (4)

A.a <b <1<c <d

B.b <a <1<d <c

C.1<a <b <c <d

D.a <b <1<d <c

4.如果函数f(x)=a x (a x -3a 2-1)(a>0且a ≠1),在区间[0,+∞)上是增函数,那么实数a 的取值范围是 ( )

A.2(0,]3

B.3[

,1) C.(1,3] D.3

[,)2

+∞

5.计算:()0.75

22

3

10.25816--??+- ?

??

=_____________

6.若ln 2ln 3ln 5

,,235

a b c =

==

,则a 、b 、c 的大小顺序是 简答.精讲: 1-4. ABBB; 1. 3

a ·6

a

-=a 31

·(-a )61

=-(-a )61

31+

=-(-a )2

1

;

3. 令x =1,由图知c 1>d 1>a 1>b 1;

4.记u=a x ,则 f(x)=u[u-(3a 2+1)]=g(u)对称轴为u=(3a 2+1)/2,要使f(x)在x ∈[0,+∞)时递增,当0

1a ≤<;当a>1时无解.故选B; 5.12;

6.只须看1113

5

2

2,3,5的大小,把113

2

2,36次乘方, 把115

2

2,510次乘方可知c

四、经典例题做一做

【例1】已知9x -10·3x +9≤0,求函数y =(

41)x -1-4(2

1

)x +2的最大值和最小值. 解:由9x -10·3x +9≤0得(3x -1)(3x -9)≤0,解得1≤3x ≤9.∴0≤x ≤2.令(2

1

x

=t ,则41≤t ≤1,y =4t 2-4t +2=4(t -21)2+1.当t =2

1即x =1时,y min =1;当t =1即x =0时,

y max =2.

方法提炼 1.由不等式求x 的范围;2.换元法转化为地次函数的闭区间上的最值问题..

【例2】已知4

4

2

21)31

)(21(,31

a

a a a a

a a a a

a +++

++

=+

求的值.

解:71

9)1(312=+

?=+

?=+

a

a a

a a

a Θ, 471

49)1(222=+?=+∴a

a a a ,

]

)())[((122

12

12

1221212

12

32

3

a a

a a a a a

a a

a a a +?-+=+=+

∴-

-

-

1863)1

1)(1

(=?=+-+

=a a a

a ,

而512)1(1

24

44

4=+

+=

+=+

a

a a

a a

a ,

52005

50205

)

347()218(=?=

+?+=

∴原式

方法归纳 1.用好2211

a a a a

+

+与的关系.2.根式化分数指数幂再计算. 【例3】(2004全国Ⅲ)解方程4x +|1-2x |=11.

解:当x ≤0时,1-2x ≥0. 原方程?4x -2x -10=0?2x =21±241?2x =21-241<0(无解)或2x =2

1+241>1知x >0(无解).

当x >0时,1-2x <0.

原方程?4x +2x -12=0?2x =-21±2

7

?2x =-4(无解)或2x =3?x =log 23(为原方程的解).

思想方法 1.分类讨论——分段去绝对值;2。换元法。

【例4】设函数()22

1x

x

f x a -=+?-(a 为实数).

⑴若a <0,用函数单调性定义证明:()y f x =在(,)-∞+∞上是增函数;

⑵若a =0,()y g x =的图象与()y f x =的图象关于直线y =x 对称,求函数

()y g x = 的解析式.

解: (1)设任意实数x 1

1122(221)(221)x x x x a a --+?--+?-

=1

2

1

2

(22)(2

2

)x x x x a ---+-=121

2

122(22)2

x x x x x x a

++--?

1212

12,22,220;x

x

x

x x x <∴<∴-Q .

又1

2

20x x +>,∴f(x 1)- f(x 2)<0,所以f(x)是增函数.

(2)当a =0时,y =f(x)=2x -1,∴2x =y +1, ∴x =log 2(y +1), y =g(x)= log 2(x +1).

【研究.欣赏】(2002上海)已知函数2

()(1)1

x

x f x a a x -=+>+ (1)证明f (x)在(-1,+∞)上为增函数; (2)用反证法证明方程f (x )=0没有负数根。 证明(1)设-1

212112121

21212121212122

()()11

2211

3()(1)(1)(1)

x x x x x x x x x f x f x a a x x x x a a x x x x a a x x ----=+--++--=-+

-

++-=-+

++

∵x 2-x 1>0,又a >1, ∴21

1x x a ->,而-1

∴x 1+1>0, x 2+1>0, ∴f (x 2)-f (x 1)>0,f (x )在(-1,+∞)上为增函数。 (2)设

x 0为方程

f (x )=0

的负根,则有0002

01

x

x a x -+

=+即

00000023(1)3

1111

x x x a x x x --+=

==-++++ 显然,01x ≠-,

若000033

01,110,

3,1211

x x x x >>->+>>-+>++则 与

01

1x a a

<<矛盾; 若x 0<-1则,x 0+1<0,

0013

0,1111

x x <-+<-++,而00x a >矛盾,即不存在x 0<-1的解,综上知,不存在负根。

提炼方法: 1.方法:单调性定义,反证法,分类讨论;

2.反证法推矛盾时,体现了明确的目的性和数式变换的技巧和能力.

五.提炼总结以为师

1.根式的运算——根据分数指数幂的意义,转化为分数指数幂的运算;

2.指数函数的定义重在“形式”,像y =2·3x ,1

2,x

y y ==,y =3x +1等都不是指

数函数,是复合函数.

3.指数函数y =a x (a >0,a ≠1)的图象和性质,要分a >1与0<a <1来研究.

4.对于含有字母参数的指数式,必须对字母参数或自变量取值进行分类讨论,用好用活指数函数单调性,还要注意换元的灵活运用。

同步练习 2.9 指数 指数函数

【选择题】 1.若∈n N *

,则=+-+++----12412411n n n n ( )

A .2

B .n

-2

C .n

-12

D .n

22

-

2. ( 2005全国卷III )设17

3x =,则 ( )

(A )-2

3.若函数y =a x +b -1(a >0且a ≠1)的图象经过二、三、四象限,则一定有 ( )

A.0<a <1且b >0

B.a >1且b >0

C.0<a <1且b <0

D.a >1且b <0

4. 已知1

3x x

-+=,A =1

12

2x x -

+,B =332

2

x x -

+,则,A B 的值分别为( )

A .±

B .±

C .

D ,

【填空题】

5.函数y =(

2

1)222+-x x 的递增区间是___________. 6.求值:b

c a c a b c b c a b a x

x 11

x x 11x x 11------++++++++=________ 简答提示: 1-4.AACD; 5. (-∞,1];6. 1;

【解答题】

7. (1)求值

÷(2)若42

12

1=+-a a ,求

2

12

1232

3-

-

--a

a a a 的值

解(1)

21313

424

5555÷-÷

21315534

24

124

5

5

55--=-=-=(2)原式=

1111331222

2

11112

2

2

2

()()

()(1)

a a a a a a a a

a a

--

--

---++=

--

1115a a -=++=

8.函数y=a 2x +2a x -1(a>0,a ≠1)在区间[-1,1]上的最大值为14,求a 的值。 解:设t=a x ,则y=t 2+2t-1,在t ≥-1时递增.而x ∈[-1,1].

若a>1,则a -1≤t ≤a, y max =a 2+2a-1=14, 解得a=3, (-5舍) 若0

9.设f (x )=121

4+-x x -2x +1,已知f (m )=2,求f (-m ).

解:设g(x )= 12

1

4+-x x -2x, 则

g (-x )=1412

x

x --+-+2x=114122

x x

-?+2x =11442x x x -+-?+2x =1142x x +-+2x =-141

2

x x +-+ 2x =-g(x ) g(x )是奇函数,g(m)=

2-1,

∴f (-m )=g(-m)+1=-g(m)+1=2-2.

10.设0a >,()x x e a

f x a e

=

+是R 上的偶函数 (1)求a 的值;(2)证明()f x 在(0,)+∞上为增函数

解:(1)依题意,对一切x R ∈,有()()f x f x -=,即1x x

x x e a ae ae a e

+=

+ ∴11()()x x a e a e --

0=对一切x R

∈成立,则1

0a a -=, ∴1a =±,∵0a >,∴1a =

(2)(定义法)设120x x <<,则1212

1211

()()x x

x x f x f x e e e e

-=-+

- 21

21

121

12

2111()(

1)(1)x x x x x x x x x x x e e e e e

e

e

+-++-=--=-,

由12210,0,0x x x x >>->,得21

120,10x x x x e -+>->,2110x x e +-<,

∴12()()0f x f x -<,

即12()()f x f x <,∴()f x 在(0,)+∞上为增函数 (导数法)∵1a =,(0,)x ∈+∞

∴211()1()()0x x

x

x x x

e f x e e e e e -''=+=-=

> ∴()f x 在(0,)+∞上为增函数

【探索题】定义在R 上的奇函数f(x)满足f(x+2)=f(-x),当x ∈(0,1]时,2()41

x

x f x =+;

(1)求证:f(x)是以4为周期的周期函数; (2)求f(x)在[-1,0]上的解析式;

(3)若x ∈[a,a+4],(a ∈R),求使关于x 的方程f(x)=λ有解的λ的取值范围. 解(1)∵f(x+4)=f[(x+2)+2]=f(-x-2)=-f(x+2)=f(x) ∴f(x)的周期为4.

(2)显然f(0)=0,当x ∈[-1,0)时-x ∈(0,1].

22()()4141

0(0)

()2([1,0))41

x x

x x

x

x

f x f x x f x x --=--=-=-++=??

∴=?-∈-??+ (3)2(0,1],2(1,2],()()1

x

t x t f x g t t ∈=∈=+=记

当时令则 12211212211222

1212,0,1,

(1)()()()0(1)(1)

t t t t t t t t t t g t g t t t <<≤->>---=>++当时 ∴()g t 在(1,2]上是减函数,21

21()[,)()[,)5252

g t f x ∈∈即 由()f x 是奇函数, [1,1],x ∈-

2112

()[,)(,]{0}5225

f x ∈--U U

又f(x+2)=f(-x),∴x=1是f(x)的对称轴.

[1,3]x ∴∈-当时, 2112

()[,)(,]{0}5225

f x ∈--U U

当[,4]x a a ∈+时,()f x Q 的周期为4,

2112

[,)(,]{0}5225

λ∴∈--U U 当时,在[a,a+4]上可使方程()f x λ=有解.

高考数学-指数函数图像和性质及经典例题

高考数学-指数函数图像和性质及经典例题 【基础知识回顾】 一、指数公式部分 有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a a b =)( ),0,0(Q r b a ∈>>. 正数的分数指数幂的意义 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 二、指数函数 1.指数函数的概念:一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 1.在同一坐标系中画出下列函数的图象: (1)x )31(y = (2)x )2 1 (y = (3)x 2y = (4)x 3y = (5)x 5y =

【指数函数性质应用经典例题】 例1.设a 是实数, 2 ()()21 x f x a x R =- ∈+,试证明:对于任意,()a f x 在R 上为增函数. 证明:设1212,,x x R x x ∈<,则 12()()f x f x -12 22()()2121 x x a a =- --++ 21222121 x x = - ++ 121 22(22)(21)(21) x x x x -=++, 由于指数函数2x y =在R 上是增函数, 且12x x <, 所以1222x x < 即1 2220x x -<, 又由20x >, 得1 1 20x +>,2120x +>, ∴12()()0f x f x -< 即12()()f x f x <, 所以,对于任意,()a f x 在R 上为增函数. 例2.已知函数2 ()1 x x f x a x -=+ +(1)a >, 求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根.

2014年高考全国2卷文科数学试题(含解析)

绝密★启用前 2014年高考全国2卷文科数学试题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 评卷人 得分 一、选择题(题型注释) 1.设集合2 {2,0,2},{|20}A B x x x =-=--=,则A B =I ( ) A .? B .{}2 C .{0} D .{2}- 2. 131i i +=-( ) A .12i + B .12i -+ C .12i - D .12i -- 3.函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B .p 是q 的充分条件,但不是q 的必要条件 C .p 是q 的必要条件,但不是q 的充分条件 D .p 既不是q 的充分条件,也不是q 的必要条件 4.设向量b a ρρ,满足10||=+b a ρρ,6||=-b a ρ ρ,则=?b a ρρ( ) A .1 B .2 C .3 D .5 5.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A .(1)n n + B .(1)n n - C . (1)2n n + D .(1) 2 n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件 由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积和原来毛坯体积的比值为( ) A . 2717 B .95 C .2710 D .3 1 7.正三棱柱111ABC A B C -的底面边长为23,D 为BC 中点,则三棱锥11A B DC -的体积为 (A )3 (B ) 3 2 (C )1 (D 3 D 1 1 A B 1 8.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( )

高一指数函数与对数函数经典基础练习题,

指数函数与对数函数 一. 【复习目标】 1. 掌握指数函数与对数函数的函数性质及图象特征. 2. 加深对图象法,比较法等一些常规方法的理解. 3. 体会分类讨论,数形结合等数学思想. 二、【课前热身】 1.设5 .1348.029.0121,8,4-? ? ? ??===y y y ,则 ( ) A. 213y y y >> B 312y y y >> C 321y y y >> D 231y y y >> 2.函数)10(|log |)(≠>=a a x x f a 且的单调递增区间为 ( ) A (]a ,0 B ()+∞,0 C (]1,0 D [)+∞,1 3.若函数)(x f 的图象可由函数()1lg +=x y 的图象绕坐标原点O 逆时针旋转 2 π 得到,=)(x f ( ) A 110 --x B 110-x C x --101 D x 101- 4.若直线y=2a 与函数)且1,0(|1|≠>-=a a a y x 的图象有两个公共点,则a 的取值范围是 . 5..函数)3(log 32x x y -=的递增区间是 . 三. 【例题探究】 例1.设a>0,x x e a a e x f += )(是R 上的偶函数. (1) 求a 的值; (2) 证明:)(x f 在()+∞,0上是增函数 例2.已知()())2(log 2log )(,2 2 log )(222 >-+-=-+=p x p x x g x x x f (1) 求使)(),(x g x f 同时有意义的实数x 的取值范围 (2) 求)()()(x g x f x F +=的值域. 例3.已知函数)1(1 2 )(>+-+ =a x x a x f x (1) 证明:函数)(x f 在()+∞-,1上是增函数;

高考数学指数指数函数

2.9 指数 指数函数 ——指数函数、对数函数是高考考查的重点内容之一 一、明确复习目标 1.理解分数指数幂的概念,掌握有理指数幂的运算性质,能正确进行指数式运算; 2.掌握指数函数的概念、图象和性质,并能灵活运用图象和性质去解决有关问题。 二.建构知识网络 1.幂的有关概念 (1)正整数指数幂)(*∈????=N n a a a a a n n 48476Λ个 零指数幂)0(10 ≠=a a ; 负整数指数幂()1 0,n n a a n N a -*= ≠∈ (2)正分数指数幂()0,,,1m n m n a a a m n N n *=>∈>; (3)负分数指数幂()10,,,1m n m n m n a a m n N n a a -* == >∈> (4)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质: ()()10,,r s r s a a a a r s Q +=>∈ ()()()20,,s r rs a a a r s Q =>∈ ()()()30,0,r r r ab a b a b r Q =>>∈ 3.根式 (1)根式的定义:如果a x n =()1,n n N >∈,那么x 叫做a 的n 次方根,用 n a 表 示, n a 叫做根式,n 叫根指数,a 叫被开方数。 (2)根式的性质: ①当n 是奇数,a a n n =; 当n 是偶数,?? ?<-≥==0 0a a a a a a n n ②负数没有偶次方根,③零的任何次方根都是零 4.指数函数: (1)定义:y=a x (a >0且a ≠1),叫指数函数,x 是自变量,y 是x 的函数。 (2)图象:

高中数学指数函数与对数函数

2020-2021学年高一数学单元知识梳理:指数函数与对数函数 1.指数式、对数式的运算、求值、化简、证明等问题主要依据指数式、对数的运算性质,在进行指数、对数的运算时还要注意相互间的转化. 2.指数函数和对数函数的性质及图象特点是这部分知识的重点,而底数a的不同取值对函数的图象及性质的影响则是重中之重,要熟知a在(0,1)和(1,+∞)两个区间取值时,

函数的单调性及图象特点. 3.比较几个数的大小是指数函数、对数函数性质的应用,在具体比较时,可以首先将它们与零比较,分出正数、负数;再将正数与1比较,分出大于1还是小于1;然后在各类中两两相比较. 4.求含有指数函数和对数函数的复合函数的最值或单调区间时,首先要考虑指数函数、对数函数的定义域,再由复合函数的单调性来确定其单调区间,要注意单调区间是函数定义域的子集.其次要结合函数的图象,观察确定其最值或单调区间. 5.函数图象是高考考查的重点内容,在历年高考中都有涉及.考查形式有知式选图、知图选式、图象变换以及用图象解题.函数图象形象地显示了函数的性质.在解方程或不等式时,特别是非常规的方程或不等式,画出图象,利用数形结合能快速解决问题. 6.方程的解与函数的零点:方程f(x)=0有实数解?函数y=f(x)有零点?函数y=f(x)的图象与x轴有交点. 7.零点判断法:如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解. 注意:由f(a)f(b)<0可判定在(a,b)内至少有一个变号零点c,除此之外,还可能有其他的变号零点或不变号零点.若f(a)f(b)>0,则f(x)在(a,b)内可能有零点,也可能无零点. 8.二分法只能求出其中某一个零点的近似值,另外应注意初始区间的选择. 9.用函数建立数学模型解决实际问题的基本过程如下: 一、指数、对数函数的典型问题及求解策略 指数函数、对数函数的性质主要是指函数的定义域、值域、单调性等,其中单调性是高考考查的重点,并且经常以复合函数的形式考查,求解此类问题时,要以已学函数的单

高中文科数学一轮复习指数函数和对数函数部分

第三章 指数函数和对数函数 第一节 指数函数 A 组 1.(2010年黑龙江哈尔滨模拟)若a >1,b <0,且a b +a -b =22,则a b -a - b 的值等于________. 解析:∵a >1,b <0,∴01.又∵(a b +a -b )2=a 2b +a -2b +2=8,∴a 2b +a - 2b = 6,∴(a b -a -b )2=a 2b +a -2b -2=4,∴a b -a - b =-2.答案:-2 2.已知f (x )=a x +b 的图象如图所示,则f (3)=________. 解析:由图象知f (0)=1+b =-2,∴b =-3.又f (2)=a 2-3=0,∴a =3,则f (3)=(3)3-3=33-3. 答案:33-3 3.函数y =(12 )2x -x 2 的值域是________. 解析:∵2x -x 2=-(x -1)2+1≤1, ∴(12)2x -x 2≥12.答案:[1 2 ,+∞) 4.(2009年高考山东卷)若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________. 解析:函数f (x )的零点的个数就是函数y =a x 与函数y =x +a 交点的个数,由函数的图象可知a >1时两函数图象有两个交点,01. 答案:(1,+∞) 5.(原创题)若函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a 等于________. 解析:由题意知????? 01 a 0-1=0a 2-1=2 ?a = 3.答案: 3 6.已知定义域为R 的函数f (x )=-2x +b 2x +1+a 是奇函数.(1)求a ,b 的值; (2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围. 解:(1)因为f (x )是R 上的奇函数,所以f (0)=0,即-1+b 2+a =0,解得b =1.

高考数学指数指数函数

2.9 指数 指数函数 ——指数函数、对数函数是高考考查的重点内容之一 一、明确复习目标 1.理解分数指数幂的概念,掌握有理指数幂的运算性质,能正确进行指数式运算; 2.掌握指数函数的概念、图象和性质,并能灵活运用图象和性质去解决有关问题。 二.建构知识网络 1.幂的有关概念 (1)正整数指数幂)(*∈????=N n a a a a a n n 个 零指数幂)0(10 ≠=a a ; 负整数指数幂()1 0,n n a a n N a -*= ≠∈ (2)正分数指数幂()0,,,1m n m n a a a m n N n *=>∈>; (3)负分数指数幂()10,,,1m n m n m n a a m n N n a a -* == >∈> (4)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质: ()()10,,r s r s a a a a r s Q +=>∈ ()()()20,,s r rs a a a r s Q =>∈ ()()()30,0,r r r ab a b a b r Q =>>∈ 3.根式 (1)根式的定义:如果a x n =()1,n n N >∈,那么x 叫做a 的n 次方根,用 n a 表示, n a 叫做根式,n 叫根指数,a 叫被开方数。 (2)根式的性质: ①当n 是奇数,a a n n =; 当n 是偶数,?? ?<-≥==0 0a a a a a a n n ②负数没有偶次方根,③零的任何次方根都是零 4.指数函数: (1)定义:y=a x (a >0且a ≠1),叫指数函数,x是自变量,y 是x 的函数。 (2)图象:

2014年高考数学全国卷1(理科)

绝密★启用前 2014 年普通高等学校招生全国统一考试 (新课标 I 卷 ) 数 学(理科 ) 一.选择题:共 12 小题,每小题 5 分,共 60 分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。 1.已知集合 A={ x | x 2 2x 3 0 } , - ≤<=,则A B = B={ x | 2 x 2 A .[-2,-1] B .[-1,2 ) C .[-1,1] D .[1,2) (1 i )3 2. (1 i ) 2 = A .1 i B .1 i C . 1 i D . 1 i 3.设函数 f ( x) , g( x) 的定义域都为 R ,且 f ( x) 时奇函数, g (x) 是偶函数,则下列结论正确的 是 A . f (x) g( x) 是偶函数 B .| f ( x) | g ( x) 是奇函数 C .f (x) | g( x) 是奇函数 D .|f ( x) g ( x) 是奇函数 | | 4.已知 F 是双曲线 C : x 2 my 2 3m(m 0) 的一个焦点,则点 F 到 C 的一条渐近线的距离为 A . 3 B .3 C . 3m D . 3m 5.4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日 都有同学参加公益活动的概率 A . 1 B . 3 C . 5 D . 7 8 8 8 8 6.如图,圆 O 的半径为 1, A 是圆上的定点, P 是圆上的动点,角 x 的始边 为射线 OA ,终边为射线 OP ,过点 P 作直线 OA 的垂线,垂足为 M ,将点 M 到直线 OP 的距 离表示为 x 的函数 f ( x) ,则 y = f ( x) 在 [0, ]上的图像大致为

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

2015高考数学二轮复习热点题型专题九 指数函数

专题九 指数函数 【高频考点解读】 1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算. 3.理解指数幂的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点. 4.知道指数函数是一类重要的函数模型. 【热点题型】 题型一 指数函数性质的考查 例1、求下列函数的定义域和值域. (1)y =????23-|x +1|;(2)y =2 x 2x +1 ;(3)y =. 【提分秘籍】 解决与指数函数的性质问题时应注意 (1)大小比较时,注意构造函数利用单调性去比较,有时需要借助于中间量如0,1判断. (2)与指数函数单调性有关的综合应用问题,要注意分类讨论思想及数形结合思想的应用. 【举一反三】 已知函数f (x )= . (1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.

【热点题型】 题型二指数函数的图象及应用 例2、(1)已知函数f(x)=(x-a)·(x-b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=a x+b的图象是() (2)若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.

【答案】(1)A(2)[-1,1] 【提分秘籍】 1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象. 2.y=a x,y=|a x|,y=a|x|(a>0且a≠1)三者之间的关系: y=a x与y=|a x|是同一函数的不同表现形式. 函数y=a|x|与y=a x不同,前者是一个偶函数,其图象关于y轴对称,当x≥0时两函数图象相同. 【举一反三】 当a≠0时,函数y=ax+b和y=b ax的图象只可能是下图中的( ) 【热点题型】 题型三分类讨论思想在指数函数中的应用 例3、设a>0且a≠1,函数y=a2x+2a x-1在[-1,1]上的最大值是14,求a的值.

2014年高考新课标全国2卷数学(文)

2014年普通高等学校招生全国统一考试(新课标Ⅱ卷) 数学试题卷(文史类) 注意事项 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的、号填写在本试卷和答题卡相应位置上. 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要 求的. (1)已知集合A={2-,0,2},B={x |022 =--x x },则A B= (A )? (B ){}2 (C ){}0 (D ){}2- (2) 131i i +=- (A )12i + (B )12i -+ (C )12i - (D )12i -- (3)函数()f x 在0x x =处导数存在.若p :0'()0f x =;q :0x x =是()f x 的极值点,则 (A )p 是q 的充分必要条件 (B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是q 的充分条件 (D )p 既不是q 的充分条件,也不是q 的必要条件 (4)设向量a ,b 满足||a b +=,||a b -= ,则a b = (A )1 (B )2 (C )3 (D )5 (5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S = (A )()1n n + (B )()1n n - (C ) ()12 n n + (D ) ()12 n n - (6)如图,网格纸上正方形小格的边长为1(表示1cm ), 图中粗线画出的是某零件的三视图,该零件由一个 底面半径为3cm ,高为6c m 的圆柱体毛坯切削得 到,则切削掉部分的体积与原来毛坯体积的比值为 (A ) 1727 (B )59 (C )1027 (D )1 3

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

高考数学:指数函数

指数函数 一、选择题(共17小题;共85分) 1. 已知 a =(?12)?1 ,b =2?12 ,c =(12)?1 2 ,d =2?1,则此四数中最大的是 ( ) A. a B. b C. c D. d 2. 已知 a = √5?1 2 ,函数 f (x )=a x ,若实数 m ,n 满足 f (m )>f (n ) ,则 m ,n 的关系为 ( ) A. m +n <0 B. m +n >0 C. m >n D. m c >b B. a >b >c C. c >a >b D. c >b >a 6. 函数 y =(12) 2x?x 2 的值域为 ( ) A. [1 2,+∞) B. (?∞,1 2] C. (0,1 2] D. (0,2] 7. 若函数 y =a x ?(b +1)(a >0,a ≠1) 的图象在第一、三、四象限,则有 ( ) A. a >1 且 b <1 B. a >1 且 b >0 C. 00 D. 0y 1>y 2 B. y 2>y 1>y 3 C. y 1>y 2>y 3 D. y 1>y 3>y 2 9. 若 x >y >1,0y b B. x a b y 10. 函数 f (x )=a x?1+4(a >0,且 a ≠1)的图象过一个定点,则这个定点坐标是 ( ) A. (5,1) B. (1,5) C. (1,4) D. (4,1) 11. 下列各式比较大小正确的是 ( ) A. 1.72.5>1.73 B. 0.6?1>0.62 C. 0.8?0.1>1.250.2 D. 1.70.3<0.93.1 12. 已知实数 a ,b 满足等式 2017a =2018b ,下列五个关系式:① 00,且 a ≠1)的图象经过点 P (2,1 ),则 f (?1) 等于 ( )

2014年高考理科数学全国卷1有答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页) 绝密★启用前 2014年普通高等学校招生全国统一考试(全国新课标卷1) 理科数学 使用地区:河南、山西、河北 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、考生号填写在答题卡上. 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2{|230}A x x x =--≥,{|22}B x x =-<≤,则A B = ( ) A .[2,1]-- B .[1,2)- C .[1,1]- D .[1,2) 2. 3 2 (1i)(1i)+=- ( ) A .1i + B .1i - C .1i -+ D .1i -- 3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是 ( ) A .()f x ()g x 是偶函数 B .|()|f x ()g x 是奇函数 C .()f x |()|g x 是奇函数 D .|()()|f x g x 是奇函数 4.已知F 为双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 ( ) A B .3 C D .3m 5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为 ( ) A .18 B .38 C . 58 D . 78 6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M .将点M 到直线OP 的距离表示成x 的函数()f x ,则 ()y f x =在[0,π]的图象大致为 ( ) A . B . C . D . 7.执行如图的程序框图,若输入的a ,b ,k 分别为1,2,3.则输出的M = ( ) A . 203 B . 72 C .165 D .158 8.设π(0,)2α∈,π(0,)2 β∈,且1sin tan cos β αβ+=,则 ( ) A .π32αβ-= B .π 32αβ+= C .π22αβ-= D .π 22αβ+= 9.不等式组1, 24x y x y +??-?≥≤的解集记为D ,有下面四个命题: 1p :(,)x y D ?∈,22x y +-≥; 2p :(,)x y D ?∈,22x y +≥; 3p :(,)x y D ?∈,23x y +≤; 4p :(,)x y D ?∈,21x y +-≤. 其中的真命题是 ( ) A .2p ,3p B .1p ,2p C .1p ,4p D .1p ,3p 10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个 交点,若4FP FQ =,则||QF = ( ) A .72 B .3 C .52 D .2 11.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是 ( ) A .(2,)+∞ B .(1,)+∞ C .(,2)-∞- D .(,1)-∞- 12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为 ( ) A .B .6 C .D .4 第Ⅱ卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分. 13.8()()x y x y -+的展开式中27x y 的系数为 (用数字填写答案). 14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市. 由此可判断乙去过的城市为 . 15.已知A ,B ,C 为圆O 上的三点,若1()2 AO AB AC =+,则AB 与AC 的夹角为 . 16.已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,2a =,且(2)(sin b A +- sin )()sin B c b C =-,则ABC △面积的最大值为 . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数. (Ⅰ)证明:2n n a a λ+-=; (Ⅱ)是否存在λ,使得{}n a 为等差数列?并说明理由. 姓名________________ 准考证号_____________ -------------在 --------------------此--------------------卷-------------------- 上-------------------- 答-------------------- 题-------------------- 无-------------------- 效 ----------------

中职数学指数函数与对数函数试卷

精品资料 欢迎下载 第四章《指数函数与对数函数》测试卷 一、填空题 1. ( ) A 、118 4 23? B 、314 4 23? C 、213 4 23? D 、8 4 23? 2. =??4 36482( ) A 、4 B 、8152 C 、2 72 D 、8 3. 函数()f x = ( ) A.(1,3) B. [-∞,3] C. [3,+∞] D. R 4. 3log 81= ( ) A 、2 B 、4 C 、2- D 、-4 5. 指数函数的图象经过点)27,2 3(,则其解析式是 ( ) A 、x y 3= B 、x y )3 1(= C 、x y 9= D 、x y )9 1(= 6. 下列函数在区间(0,+∞)上是减函数的是 ( ) A 、12y x = B 、3 1x y = C 、2y x -= D 、2 y x = 7. 将25628 =写成对数式 ( ) A 、2256log 8= B 、28log 256= C 、8256log 2= D 、2562log 8= 8. 将ln a = b (a >0) 写成指数式 ( ) A 、10 b = a B 、e b = a C 、 a b = e D 、 e a = b 9. 求值2 2ln log 16lg 0.1e +-等于( ) A 、5 B 、6 C 、7 D 、8 10. 如果32log (log )1x =,那么x =( ) A 、8 B 、9 C 、2 D 、3 11. 函数x x f lg 21)(-= 的定义域为( ) A 、(,10) -∞ -(10,)+∞ B 、(-10,10) C 、(0,100) D 、(-100,100) 12. 3 0.7、3log 0.7、0.7 3 的大小关系是( ) A 、30.730.73log 0.7 << B 、30.730.7log 0.73<< C 、 30.7 3log 0.70.73<< D 、 0.73 3log 0.730.7<< 二、填空题: 1.用不等号连接: (1)5log 2 6l o g 2 ,(2)若n m 33>,则m n ;(3)35.0 36.0 2. 若43x =, 3 4 log 4=y ,则x y += ; 3. 方程x x 28 )3 1 (3 2--=的解集为______________; 4. 若x x f 2)2(=,则=)8(f ; 三、解答题 1.. 解下列不等式: (1)0)3(log 3<-x (2)14 3log

高中数学-指数函数对数函数知识点

指数函数、对数函数知识点 知识点内容典型题 整数和有理指数幂的运算 a 0=1(a≠0);a-n= 1 a n (a≠0, n∈N*) a m n=n a m(a>0 , m,n∈N*, 且n>1) (a>0 , m,n∈N*, 且n>1) 当n∈N*时,(n a)n=a 当为奇数时,n a n=a 当为偶数时,n a n=│a│= a (a≥0) -a (a<0) 运算律:a m a n=a m + n (a m)n=a m n (ab)n=a n b n 1.计算: 2-1×6423=. 2. 224282=; 333363= . 3343427=; 393 36 = . 3.? - - + +-45 sin 2 )1 2 ( )1 2 (0 1 4. 指数函数的概念、图象与性质1、解析式:y=a x(a>0,且a≠1) 2、图象: 3、函数y=a x(a>0,且a≠1)的性质: ①定义域:R ,即(-∞,+∞) 值域:R+ , 即(0,+∞) ②图象与y轴相交于点(0,1). ③单调性:在定义域R上 当a>1时,在R上是增函数 当0<a<1时,在R上是减函数 ④极值:在R上无极值(最大、最小值) 当a>1时,图象向左与x轴无限接近; 当0<a<1时,图象向右与x轴无限接 近. ⑤奇偶性:非奇非偶函数. 5.指数函数y=a x(a>0且a≠1)的图象过 点(3,π) , 求f (0)、f (1)、f (-3)的值. 6.求下列函数的定义域: ①2 2x y- =;② 2 4 1 5- = - x y. 7.比较下列各组数的大小: ①1.22.5 1.22.51 , 0.4-0.10.4-0.2 , ②0.30.40.40.3, 233322. ③(2 3 )- 1 2,( 2 3 )- 1 3,( 1 2 )- 1 2 8.求函数 17 6 2 2 1+ - ? ? ? ? ? = x x y的最大值. 9.函数x a y)2 (- =在(-∞,+∞)上是减函数, 则a的取值范围( ) A.a<3 B.c C.a>3 D.2<a<3 10.函数x a y)1 (2- =在(-∞,+∞)上是减函 数,则a适合的条件是( ) A.|a|>1 B.|a|>2 C.a>2 D.1<|a|<2

高三数学复习教案:指数与指数函数教案

第二章 指数函数与对数函数及函数的应用 一、知识网络 二、课标要求和最新考纲要求 1、指数函数 (1)通过具体实例(如细胞的分裂,考古中所用的14 C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景; (2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 (3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点; (4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。 2、对数函数 (1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用; (2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3、知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1)。 4、函数与方程

(1)了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。 (2)理解并掌握连续函数在某个区间上存在零点的判定方法。能利用函数的图象和性质判别函数零点的个数. 5、函数模型及其应用 (1)了解指数函数、对数函数以及幂函数的增长特征。知道直线上升、指数增长、对数增长等不同函数类型增长的含义。 (2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。 (3)能利用给定的函数模型解决简单的实际问题。 三、命题走向 函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题.在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新.以基本函数为模型的应用题和综合题是高考命题的新趋势. 考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性和函数的图象.②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点.③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想. 指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位。从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题。为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。 预测2010年对本节的考查是:1.题型有两个选择题和一个解答题;2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考查函数的性质。同时它们与其它知识点交汇命题,则难度会加大。

2014年全国一卷高考理科数学试卷及答案

2014年普通高等学校招生全国统一考试全国课标I 理科数学 第Ⅰ卷 (选择题 共60分) 一.选择题:共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。 1.已知集合A={x |2 230x x --≥},B={x |-2≤x <2=,则A B ?= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 2.32 (1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i -- 3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数 4.已知F 是双曲线C :2 2 3(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m 5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率 A .18 B .38 C .58 D . 78 6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边 为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为 7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M = A . 203 B .165 C .72 D .158

相关主题