搜档网
当前位置:搜档网 › 光接收机的结构和原理

光接收机的结构和原理

光接收机的结构和原理
光接收机的结构和原理

光接收机的结构和原理

2009-08-31 20:20:03| 分类:电子通信时代| 标签:|字号大中小订阅

在有线电视HFC网络中,光接收机通常位于光纤接点和有线电视的前端位置,它的主要功能是把光信号转变为RF信号,前面已经详细讲述了光探测器、光接收组件的原理及应用。光探测器是实现光/电转换的关键部件,其质量的优劣决定了光接收机的性能指标与档次,光接收组件是光探测器与前置放大器的组合,在光接收机中,无论是分离组件还是一体组件,该部分的成本比重都比较大,与光发射机的激光器一样,不仅决定了光接收机的性能指标,还将决定光接收机的价格。光接收的整机组成主要由光接收组件、功率放大模块及其附属功能电路组成,除光接收组件外,功率放大模块是光接收机的第二大核心元件。即使是采用相同的组件,由于采用不同档次、不同价位的放大模块组合,整机也会有显著不同。有线电视技术发展到今天,光接收机采用分离元件制作放大模块已不多见,基本上全采用集成一体化组件结构。该结构模块大多属于厚膜集成电路,它是用丝网印刷和烧结等工艺在同一陶瓷基片上制作无源网源,并在其上组装分立的半导体芯片或单片集成电路、放大三极管管芯等,另外再外加塑料密封,防止潮气、杂质的进入。

一、光接收机常用的放大模块介绍

能用于光接收机的模块有众多型号,排除品牌命名的差异,根据放大模块的增益划分有14dB、18dB、20dB、22dB、27dB等,用于单模块放大器的34dB的放大模块在光接收机中少有应用,当然也不排除低档光接收机应用的可能。根据放大模块具体放大电路结构的不同划分:有推挽放大模块、功率倍增放大模块两种,而根据放大元件工艺的不同,放大模块又分为硅放大工艺、砷化镓工艺两种,在光接收机中采用的模块的命名,一般以推挽和功率倍增为主要区分,同时附加增益的差异与器件工艺,如果不说是砷化镓工艺模块

则所说的放大模块一般都是指硅工艺。

1.推挽放大模块的原理及结构。在实用的放大电路中,三极管的集电极并非总有电流流过,根据集中极电流导通时间的长短,通常把放大器分成甲类、乙类、丙类等。在输入信号的整个周期中都有电流流过集电极的放大器称为甲类放大器;只有在输入信号的半个周期内有集中极电流的放大器称为乙类放大器;在小于输入信号半个周期内有集中极电流的放大器称为丙类放大器。在许多实用的放大电路中,为了提高放大效率通常都需要把工作点移到截止区,即采用半周导通的乙类工作状态,这时若仍采用一个晶体管,输出信号中将只出现一半波形,将发生严重的截止失真。为了解决这个问题,可采用两只特性完全相同的晶体管,使其中一只晶体管在正半周导通,另一晶体管在负半周导通,最后在负载上合成完整波形,这就是推

挽放大电路。下图是推挽放大电路的结构示意图:

输入信号经过高频传输变压器B1,反相加在晶体管VT1和VT2上,被放大后各自在半个周期内产生半个波,在变压器B2上反相叠加,重新合成完整波形输出,由于输出信号反相叠加,其中的直流分量和非线性失真中的偶次谐波互相抵消。降低了直流工作点,使变压器中流过电流减少,从而体积可以做得较小,进一步提高了放大器的输出功率和效率;更为重要的是,偶次谐波的抵消,减少了放大器的非线性失真,对提高有线电视系统的非线性失真指标具有重要意义。在实际应用中,通常采用两组推挽电路并接的方法,构成桥式结构,则每级推挽电路在负载上的直流电压可抵消,从而简化电路结构。在推挽电路中,两个极性相同晶体管的特性应尽可能一致,两个极性相反晶体管的特性应尽可能互补,才能最大限度的抵消输出信号中的偶次谐波失真,若在电电路中引入负反馈,非线性失真还可进一步减小。

下图是商用化模块常采用的电路结构。

该模块用了共射——共基极放大推挽输出,4个NPN型晶体管两两接成共射—共基极组合放大电路,它们再通过输入、输出变压器接成推挽电路。共射—共基电路的特点是:简单高效,在选定最佳e极电流的情况下,此电路能有效的减小集电极非线性及e—b结非线性。此电路采用低射极电阻和高并联电阻取得高增益,又由于采用了低噪声晶体管使模块的噪声系数降到了尽可能低的程度。总之该电路集中了共射—共基

组合电路和推挽电路的优点,电路的工作频率得到提高,最大带宽目前做到1GHZ,对于14—22dB增益的模块基本上采用一级推挽结构,对于27—34dB的高增益放大模块通常采用两极推挽结构组成,两级推挽的放大电路完全类似,这样第一级推挽的放大增益可达22dB,二级放大增益可达34dB以上。

2.功率倍增放大模块的结构及原理。

功率倍增放大模块在光接收机中有大量应用,主要用于光接收机的输出级,提高整机的带负载的能力。按增益的不同划分,通常有三种功率倍增模块:14dB、18dB、20dB。其中20dB增益功率倍增模块较为常见。功率倍增模块的设计基础是用2个普通的IC放大级并联。其输入端有一个分路器,输出端有一个合成器,理论上其各引入大约3dB的损耗,因而送到每个IC放大级的输入信号比送到这个放大模块的输入信号低3dB,两个并联级各将信号放大,它们的输出再合成起来,因为两个信号是同相位的,是电压相加,因此输出信号电平比用一级的增益提高了6dB,但在合成器中降低了3dB。由于每一个IC级的输入信号因分路器又降低了3dB,因此,所有这些的最终结果是倍功率增益放大器与其中任一个单独的IC放大器的增益完全相同,然而每个IC实际工作在比额定输出低3dB的电平上,失真就降低了6dB。低失真是功率倍增放大技术的优点。但由于采用两个IC放大级并联,功率消耗就加倍了,同增益的功率倍增模块的工作电流是推挽放大模块的2倍,因而功率倍增模块的散热不容忽视,下图是商用化的功率倍增模块常采用的放

大电路,供参考。

3.砷化镓工艺与硅工艺的差别

砷化镓工艺放大模块是近几年才发展起来的,用砷化镓金属场效应管设计的模块具有优良的低噪声特性,同时具有优良的低失真特性,其不足之处是抗冲击能力比较弱,静电就能使之损坏,输出能力有欠缺,主要是在高电平输出时出现硬压缩特性。为便于读者理解Si工艺和GaAs工艺,下表从多项技术指标加以比

较:

关于两种工艺放大模块压缩特性的比较:一个理想的信号经过不同的放大器件,都会有或多或少、不同类

型的失真现象。其压缩波形变化如下图所示:

Si工艺的放大有软压缩,GaAs.MESFET有硬压缩,很显然硬压缩现象对信号本身的影响最明显,即削顶现象,通过傅立叶变换可以看出,这样的波形含有很多失真分量,严重时图像会出现干扰条纹;而对于数字电视信号来讲,误码率会提高,图像会出现马赛克,甚至数据帧丢失。硅的软压缩特性要比GaAs的硬压缩特性好的多,尤其体现在动态幅度较大的数字信号传输中。

鉴于GaAs工艺放大具有优良的低噪声、低失真特性,而同时又有硬压缩的特性,目前GaAs技术在放大模块的应用中,为了克服GaAs技术的弱点,发挥其放大优势,一般都采用GaAs+Si混合技术,并不采用单一的GaAs工艺构建放大模块。当然在光接收组件中的前置放大器由于处于小信号放大状态,可以采用纯GaAs工艺放大。GaAs+Si混合技术通常是在模块的输入级和放大级采用GaAs工艺的管芯或贴片放大管,而在模块的输出级采用Si材料放大管,这种结构的放大模块具有实出的优点:(1)在输入级采用GaAs 放大管可以降低噪声的引入获得理想的噪声系数Nf。(2)在放大级采用GaAs放大管可以保证模块的线性指标和非线性指标。(3)在输出级采用Si材料放大管,可以保证模块的输出能力和抗冲击能力,克服GaAs放大管负载能力比较低、比较脆弱的缺陷。(4)GaAs+Si混合技术可以有效的改善纯GaAs技术的硬压缩特性,使模块的压缩性能比较平缓,减少信号失真,特别对于数字信号的传输可以有效的降低误码率。实验表明GaAs MESFET技术在46dBMV时,就会出现拐点,压缩特性急剧变差,CTB、CSO指标明显下降,采用GaAs+Si混合技术可有效提高模块的输出电平。

二、光接收机的结构及原理。

目前市场上的光接收机主要有两个大的分类:光接收机、光工作站;而光接收机又分为两种:一种是二端口光接收机,另一种是四端口光接收机。在HFC网络光接点的设备中,二端口光接收机占有相当大的比重。因而此处以两端口光接收机为例介绍其功能及原理。针对于二端口光接收机是指有2个主输出端口,可能

还同时具有一个或二个测试端口。不同品牌的二端口光接收机,其内部功能及工艺相差较大,但其基本功能结构是一致的,常见的二端口光接收机的结构如下图所示:

从上图可以看出两端口光接收机主要由:光接收组件、光功率指示、前后级RF功率放大、频响校正器、正反向增益调节与均衡调节器、回传放大、回传发射组件,输出插件等组成,采用同种上述基本结构的光接收机,其主要差别在整机的工艺水平、各功能组件的布局安排的差异,任何一台二端口光接收机都能找到上述各功能组件。鉴于目前HFC网络光点的覆盖范围越来越小,AGC控制已无用武之地,在市场上具有AGC功能的二端口光接收机已很少见。下面分别讲述光接收机各功能组件的原理及功能。

1.光接收组件。前面已经详细讲述了光接收组件的不同种类及特点。鉴于光接收组件已完全实现国产化,在光接收的应用中也只有分离组件与集成一体组件的区别,下面为集成一体组件与分离组件的差异。

从上面的比较可以看出,集成一体化组件具有明显的优势,是有线电视技术发展的趋势,除了一般性指标外,集成一体化组件兼有温度控制功能。单从这一功能来说,在分立组件中由于PIN管距离前置放大相对较远,其受前置放大温度的影响相对较轻,温度对PIN管的影响的矛盾并不十分突出。如果集成一体组件中没有温控电路,由于PIN管与前置放大紧密结合,虽然有模块的底座散热条散热,PIN管的温升仍然比较明显,尤其是组件中配置大电流、高增益的前置放大,温升就越大,目前绝大部分国产组件都没有温控电路,而且有些生产厂家为了寻找卖点,采用大增益的前置放大器,导致组件的工作电流较大,从而使组件的温升变大,影响PIN管的性能。进口的名牌组件目前已有大部分产品采用温控功能电路,保证组件的温升对PIN管的影响最小。带温度补偿电路的光接收模块具有明显的优点:组件性能随温度变化小,噪声系数指标得到较好的改善,相对于指标的优化,成本就非常低。为了说明问题,下面对组件有无温控的性

能作一对比:

目前在高档光接收机中都采用具有温度补偿功能的集成组件,以提高整机的环境适应性。

2、光功率指示

光功率指示是光接收机的附属功能电路,虽然有无该电路并不影响光接收机的性能指标,但光功率指示却有助于光接收机的使用者方便的操作与故障判断。显示准确的光功率指示功能电路起到了光功率计的作用,对于系统维护具有重要的意义,尤其是对于没有光功率计的用户,有光功率指示意义非同一般。目前光功率指示电路有三种不同的档次:(1)用一只发光二极管指示光功率的有无。其显示原理是:光功率指示单元功能电路(一般为集成运放构成的比较器)自动跟踪检测光探测器的工作电流,并将它转换成电压,该电压与基准电压进行比较,一旦检测电压高于基准电压,就说明有光功率指示,即驱动发光二极管点亮,指示有光功率。基准电压的设置各厂家并不一致,有的设置为-5dB,也有的可能设置的更低。针对于-5dB 的情况作一说明,由于输入光功率大,PIN管的工作电流变大,将电流的变化转换成电压的变化,如果光接收机的输入光功率在-5dB时对应的检测电压为0.5V,则基准电压就设置为略低于0.5V的值(如设置为0.48V,设置值低是考虑比较器的精度),一旦检测电压大于基准电压0.48V,比较器就驱动发光二极管发光,表明有光功率输入,如果输入光功率太低(小于-5Db),指示电路将指示无光功率输入。这种光功率指示比较粗糙,如果设置基准光功率为-5dB,只要输入光功率大于-5dB,指示发光二极管就一直点亮,无法判断光功率的真实值,后期维护中光功率是否变化浮动也无从知道。在低档光接收机中都采用这一种光

功率指示。

(2)用多只发光二极管粗略的指示光功率的变化。其显示原理是,采用多只比较器跟踪检测电路检测到的工作电压,驱动各档的发光二极管点亮,以指示光功率的变化,这种功率指示采用的发光二极管越多,指示精度相对就越高。有的产品采用4只发光二极管分别指示-5dB、-2dB、0dB、2dB,也有的产品用8只发光二极管,分别对应指示光功率的值为-5 dB、-4 dB、-3 dB、-2 dB、-1 dB、0 dB、+1 dB、+2 dB,即便是采用多只发光二极管指示光功率也有两种档次。第一种指示是采用简单的比较器构成指示电路,如指

示-5 dB、-2 dB、0 dB、2 dB,当光功率大于-5dBm、小于-2dBm时,只有-5dBm指示亮,如果光功率大于-2dBm,则-5、-2指示二极管全点亮,如果此时光功率在0dBm左右,则-5、-2、0三只发光管全点亮。第二种指示是采用相对复杂的窗口比较器,设定一定的电压范围作为比较的指示范围,针对于8只发光二极管的指示,其设定依据通常是:在光功率值在-4.5—5.5范围时,-5指示二极管点亮,表示此时的光功率在-5dBm左右,在光功率值在-3.5—-2.5范围时,-2指示二极管点亮,表示此时的光功率在-2dBm左右,依次类推;实际使用时,在任意时刻只有一只发光二极点亮,粗略的指示光功率的范围。而前一种指示通常是多只二极管点亮。给人的感觉好像是显示不准确。其实这两种显示虽然原理差不多,但应用于光接收

机整机,效果却大不一样。

(3)用数码管或液晶显示屏精确显示光功率。该种显示的原理是:检测单元电路检测到PIN管的准确工作电流值并把其转换成电压,此电压经过模、数转换集成电路,变成可供数码管或液晶屏显示的数字量(a、b……g七个分量),然后进入驱动电路最后到达数码管或液晶屏精确显示即时的光功率值,该种显示精度相当高,一般显示精度在0.01,显示单位因厂家产品不同而不同,有的以MW为单位,有的以dBm为单位。该种功率显示电路相对于前面用发光二极管指示的两种电路,既有技术含量又有方便实用性。该种显示电路的成本相对较高,一般都应用于高档光接收机中,有些厂家为了吸引用户眼球,在中低档光接收机中也有应用。如果光接收机中采用这种功率指示电路,无论对施工调试还是后期的系统维护都有帮助,相当于预置了一台光功率计在光接收机中。从实用性的角度出发,用户在选择光接收机时,也应对光功率指示有所注重,尤其是对那些无光功率计的用户,数码管指示光功率确有重要意义。

3.光接收机的功率放大

在光接收机中,功率放大都采用集成一体化模块,依据信号的放大流程,前面一级放大通常都采用低噪声、推挽放大模块,后面一级都采用功率倍增模块。在光接收机中,放大模块的质量好坏对光接收机的影响较大,放大模块的选择也决定了光接收机的档次与价位,光接收机的输出电平的设定是由放大模块的增益决定的。由于后级功率倍增模块的增益可选的范围比较小,一般增益为18dB或20dB。因而光接收机的RF 增益主要由前级推挽放大模块决定,其模块增益从18dB到30dB不等。在光接收机模块的选择上有多种方式:可采用硅放大模块、GaAs放大模块、进口模块、国产模块等诸多配置。当光接收机在低电平输出时,放大模块的指标对光接收机的整机指标影响不大,如果光接收机实现高电平输出则放大模块的影响将是主要因素。前面已对各种不同种类的放大模块作了介绍。在选用光接收机时一定对模块的种类与档次有所选择,才能买到即符合系统需要又货真价实的产品。

4.光接收机的增益调节。光接收机的增益调节都是通过衰减器来实现,在实用化的产品中有两种形式的衰减器:固定衰减器、可调衰减器都有应用,还有的产品采用电调衰减器。(1)固定衰减器,固定衰减器是采用不同的固定电阻,通过一定的电路形式实现衰减值的变化,按具体电路的不同有T型衰减器、π 型衰减器、H型衰减器等多种实用产品。最常用的是T型和π 型两种。固定衰减器发展到现在,虽然电路形式没有改变,但从工艺外型上已有了质的飞跃,单从外型上看,不看标志你一定把它当成工艺品而非衰减器,在光接收机中,凡是增益调节采用固定衰减器的,都在衰减器的外型与颜色搭配上下了不少功夫,从整机的效果看起来,令人赏心悦目,任何一款衰减器都以美观大方为主体,但是固定衰减器的接触稳定性也应引起注意,对于光接收机的增益调节来说,功能的实现是主体、接插稳定性不好,再好看的衰减器也是无用的。(2)可调衰减器。可调式衰减器是用可调电阻代替固定电阻,在一定范围内实现无级调节,其良好的随意可调节性使之应用前景一片光明。早期的可调式衰减器从质量上、工艺上比较差,很难做到无级调节,而且调节的稳定性也不高,衰减值经常因接触不良而自动变化,曾几何时,为了解决这个矛盾,大量采用固定衰减器。近几年来无级可调式固定衰减器的质量和工艺水平有了大幅度的提高,为了增加调节的稳定性,不仅有0—20dB变化的大范围可调衰减器,也有更精细稳定的0—10dB的小范围调节衰减器,与固定衰减器的多种多样的亮丽外型不同,可调衰减器从一开始面市到今天,大约几十年的时间,其外型与色彩一直没有变化,改进的只是指标质量,虽然可调衰减有调节方便,接触可靠的优点,但在中高档光接收机中很少见它的影子,主要原因是它没有固定衰减器的“点睛”作用。从应用的角度来看,最好还是采用可调衰减器,毕竟用户买光接收机是为了使用,而不是当花瓶欣赏,这种现状也对可调衰减器生产厂家

敲响了警钟,不能光提高内在质量,表面文章还是要做的。(3)电调衰减器。电调衰减器是通过改变控制电压来控制PIN管阻值的变化,实现衰减量的变化。电调衰减器一般都采用桥T型网络来实现。每个厂家的电调衰减器网络并不完全一致,各有特色,但基本功能的实现都是利用变阻二极管的变阻特性以及无源网络构成各种组态电路。由于电调衰减器需要一稳定的电压,以实现调节的相对稳定性,因此采用电调衰减器的光接收机都采用高精度稳压的开关电源,如果是采用模拟电源,当出现电压波动时,会引起光接收机输出增益的波动,甚至失控。鉴于电衰减器高要求及潜在弱点,所以在普通光接收机中并不多见,有些高档光接收机为了增加整机卖点,通常采用电调衰减器。

5.光接收机的均衡调节。不像放大器非有均衡调节不可,光接收机可以不加均衡器,由于光接收组件解调出来的电信号在整个工作频段内是平坦的,没有斜率,因而也无须调节均衡。设有均衡调节只有一个作用,那就是可以实现光接收机的半倾斜高电平输出,提高光接收机的带负载能力。如果光接收机平坦输出,均衡器就没有用处。鉴于几乎所有的光接收机都加有均衡调节,此处也讲一下均衡器。均衡器是有线电视系统一个必不可少的常用器件,它是由电感、电容和电阻构成一个桥T型四端、高通网络,通过调整电抗元件可以改变幅频特性的倾斜度,即对低频信号衰减大、高频信号衰减依次减小,正好和电缆的衰减特性相反。均衡器按工作频率(即截止频率)可分为550M均衡,750M均衡等多种,按均衡量调节方式分,其又可分为固定衰减器与可调衰减器。在光接收机应用中主要有两种最常用,即固定均衡器、可调均衡器,电调均衡器很少见。(1)固定式均衡器。固定均衡器是由电感、电容和电阻等无源器件组成。固定式均衡器通常是一个桥T型无源四端网络,其克服了可变均衡器桥T型衰减网络的不稳定性,得到了广泛的应用。

其主要优点是电路简单、成本低廉、均衡量固定,靠换用不同均衡量的均衡器实现均衡调节。

(2)可调均衡器。可调均衡器是在固定均衡器的基础上,用可调衰减网络代替固定衰减网络,并增加阻抗匹配元件而成。可调均衡器可以实现连续均衡量的调整,使用非常方便,在光接收机中,固定均衡器,可调均衡器都有应用。固定均衡器靠换用不同的均衡量的均衡器实现均衡调整,为了实现整机的模组化设计,均衡器在光接收机中基本上都采用插件形式,外封装一漂亮外壳,即使是可调均衡也单独做成一个封装插件使用。鉴于均衡器在光接收机中不是为了实现灵活连续可调,以采用固定均衡器的产品占主流,所配的

均衡档位也很少,一般化3DB、5DB、8DB三种。

6.光接收机的频响校正。频响校正单元电路是光接收机的必备电路,由于光接收机中接收组件的阻抗匹配以及光探测器的平坦度差强人意,导致RF输出在工作带宽内平坦度不是很好,为了校正光接收机在整个工作带宽内的幅频特性,每种光接收机都设有或简单或复杂的频响校正器。频响校正器将光接收机整个通带分成3—6个点、段进行补偿,使得光接收机的整个通带特性趋于平坦,此电路的调整必须配有专门的标准光源及测试仪器才能完成,用户在使用中切不可调节频响校正器的可调无件,盲目的调节会导致光接收

机的平坦度恶化。

7.光接收机的双向滤波器。目前市场上的光接收机基本上都是双向光接收机,鉴于目前我国的现状,双向网没有普及,双向光接收机的设计也是有名无实,双向滤波器都采用短路板代替,实现下行信号的直通、回传通道预留功能,虽然双向光接收机的双向功能目前不可用,但双向滤波器作为光接收机中的一个重要组件,也应有所了解。双向滤波器的指标对光接收机的影响较大,其不仅要有良好的平坦度、反射损耗指标,还要有极小的插损,不同厂家的产品,双向滤波器的插损有较大差异,如果插损过大,将浪费光接收

机的增益。

8.光接收机的回传组件。双向光接收机的回传组件一般包括回传功能放大,回传增益均衡调节及回传光发射模块等组成,鉴于商用化的产品中绝大多数是双向预留,回传放大及均衡、增益均留有插件接口,当然回传光发射更是光有几个功能插孔在那里,既然是双向光接收机,虽然是回传预留,双向通道应该能正常工作才对,实际上有许多产品并没有对回传通道进行调试,只是预留位置而已,一旦真正实现双向回传功能,很多产品将无法升级改造,鉴于此,采购回传预留的双向光接收机,一定注意对回传功能提出要求,做到所采购的产品是真正的回传预留。回传光发射组件因回传功率的差异及回传数据或图像的不同,采用不同档次的回传激光器,目前可选的回传激光器主要有FP激光器、DFB激光器两种,FP激光器通常无致

冷功能,输出功率很小;DFB激光器在小4MW时也无致冷功能,而大于4MW时,因工作电流比较大,都有温控电路。为了保证回传光功率的稳定,回传光发射组件都对激光器设有自动功率控制电路。最后讲一个回传功能放大,有的光接收机预留有放大模块插口,在回传功能升级时采用放大模块进行功率放大,而有的产品只留有几个插孔,如果需要回传升级,回传组件将集成功率放大、增益均衡调节、光发射等功能单元,鉴于GaAs器件对数字信号的影响,回传功率放大采用何种器件将是一个难题,尤其是散热,因而采用这种形式的双向光接收机回传组件的质量可靠性是一个大问题。

9.光接收机的电源网络模块。电源作为光接收机的能量供应部分,在整个光接收机电路中起着举足轻重的作用。好的电源能够使光接收机的功能发挥的更出色,光接收机采用的电源主要有两种,一种是模拟电源,另一种是开关电源。(1)模拟电源。模拟电源主要由变压器、整流、滤波、稳压等单元电路组成,模拟电源的稳压部分主要用78系列三端稳压集成电路构成,由于在光接收机中采用功率倍增模块放大,整机的工作电流比较大,加上变压器的功率转换效率比较低,在炎热的夏季,将使光接收机的温升比较严重,如果光接收组件没有温控功能,将使光接收机指标劣化。鉴于模拟电源成本比较低,中低档的光接收机基本上

都采用模拟电源。

(2)开关电源。开关电源采用功率半导体作为开关元件,通过周期性的通断开关,控制开关元件的占空比来调整输出电压,其基本功能电路包括输入电路、功率变换电路、输出电路和控制电路四部分组成。开关电源具有效率高、稳压特性好等诸多优点,由于转换效率高,其发热量较小,特别适合光接收机使用。开关电源技术是成熟的,但各厂家生产的开关电源并不十分稳定,究其原因,选材是根本;为降低成本,在选材上没有做到最好,留有足够的余量,导致开关电源屡屡损坏,给用户带来麻烦。模拟电源虽然发热量大,但稳定性较好,这也是许多光接收机采用模拟电源的原因。在电源网络中,过压、过流保护是光接收机的关键功能电路,在光接收机的各个输出端口一般都加有气体放电管作为过压保护器件,同时在电源输入端口还设有压敏电阻作为辅助过压保护。在电源内部,通常都加有热敏电阻与自复保险丝(或熔断型保险丝)作为过流保护器件。如果是采用开关电源,其控制电路还有过流保护功能电路,即使如此,野外型光接收机的过压保护还是不容忽视,有条件的用户最好给光接收机加上雷电保护器,增加光接收机的抗雷

击能力。

四端口光接收机是指光接收机具有四个独立的输出端口,每个端口的指标及带户能力都是一致的。近年来HFC网络的普及及原有光网络的改造,导致光接点覆盖范围越来越小,每个光接点都通过光接收机直接带户,尽量少用或不用放大器,为了提高光接收机的负载能力,大量的采用四端口光接收机。目前在CATV 网络中,四端口光接收机占有相当大的比重。四端口光接收机的常见结构如下图所示:

光接收组件实现光信号的光电转换及低噪声前置放大,由于四端口光接收机中功能单元较多,为了节省空间,光接收组件一般都采用集成一体化组件,采用分离组件的少之又少。前级放大实现对信号的低噪声放大并补偿后面分配器的分配损耗。由于四端口光接收机一般都是高电平输出,加之后级功率倍增放大模块的功率增益都不是很高,因而前级放大的增益相对较高,一般在22-27dBuv之间,除了对该模块有低噪声要求外,对非线性指标也有较高要求,其非线性指标对整机的非线性贡献是比较大的。后级的功率放大模块基本上都采用功率倍增放大模块,根据输出最高电平的初始设计,可供选择的模块增益一般在20~25dBuv,在高档机型中前后级放大都采用GaAs工艺的模块,以适应高电平输出时对非线性指标的要求。光功率指示电路一般都采用多只发光二极管指示光功率,也有的产品采用数码管指示,鉴于整机空间的要求,光功率指示单元电路占用PCB空间越小越好。前级放大的输出通过一个二分配宽带线圈分成两路,分别放大。对于均衡及增益的设置,各机型并不完全一致,频响校正单元的位置也不相同,相对于整机的使用及调试的灵活性,其位置以上面所处的位置为佳。如果功能电路放在二分配器的前面,虽然会略省整机成本,但无法实现实际系统现场的灵活运用,尤其是频响校正,如果设在二分配器的前面,将无法兼顾四个端口的平坦度调整,如上图,每两端口加一个频响校正器可有效的提高其效能。关于回传单元的功能应该以完备、高性能为准则,因为四端口光接收机代表了HFC网络的最新技术发展方向,通过改造变成双向

网最有现实意义。因而四端口光接收机的应用应注重回传单元的实用性,输出插件是实现各端口灵活调整的重要部件,通常分配插件、分支插件齐备,在实际应用中往往以分配输出为主。

市场上的光接收机品种繁多,每个厂家的产品都各有特色,但其基本结构是一致的,不同的只是各功能电路的布局及生产工艺,还有元器件的点缀效果。总的说来,在质量合格的情况下,光接收机的美观只是表面文章的不同。掌握了光接收机的各功能电路的原理,对任何一款光接收机将不再陌生,相信操作与维护

也没有问题。

电动机的基本结构及工作原理

电动机的基本结构及工作原理 交流电机分异步电机和同步电机两大类。异步电机一般作电动机使用,拖动各种生产机械作功。同步电机分分为同步发电机和同步电动机两类。根据使用电源不同,异步电机可分为三相和单相两种型式。 一、异步电动机的基本结构 三相异步电动机由定子和转子两部分组成。因转子结构不同又可分为三相笼型和绕线式电机。 1、三相异步电动机的定子: 定子主要由定子铁心、定子绕组和机座三部分组成。定子的作用是通入三相对称交流电后产生旋转磁场以驱动转子旋转。定子铁心是电动机磁路的一部分,为减少铁心损耗,一般由0.35~0.5mm厚的导磁性能较好的硅钢片叠成圆筒形状,安装在机座内。定子绕组是电动机的电路部分,安嵌安在定子铁心的内圆槽内。定子绕组分单层和双层两种。一般小型异步电机采用单层绕组。大中型异步电动机采用双层绕组。机座是电动机的外壳和支架,用来固定和支撑定子铁心和端盖。 电机的定子绕组一般采用漆包线绕制而成,分三组分布在定子铁心槽内(每组间隔120O),构成对称的三相绕组。三相绕组有6个出线端,其首尾分别用U1、U2;V1、V2;W1、W2表示,连接在电机机壳上的接线盒中,一般3KW以下的电机采用星形接法(Y接),3KW以上的电机采用三角形接法(△接)。当通入电机定子的三相交流电相序改变后,因定子的旋转磁场方向改变,所以电机的转子旋转方向也改变。

2、三相异步电动机的转子: 转子主要由转子铁心、转子绕组和转轴三部分组成。转子的作用是产生感应电动势和感应电流,形成电磁转矩,实现机电能量的转换,从而带动负载机械转动。转子铁心和定子、气隙一起构成电动机的磁路部分。转子铁心也用硅钢片叠压而成,压装在转轴上。气隙是电动机磁路的一部分,它是决定电动机运行质量的一个重要因素。气隙过大将会使励磁电流增大,功率因数降低,电动机的性能变坏;气隙过小,则会使运行时转子铁心和定子铁心发生碰撞。一般中小型三相异步电动机的气隙为0.2~1.0mm,大型三相异步电动机的气隙为1.0~1.5mm。 三相异步电动机的转子绕组结构型式不同,可分为笼型转子和绕线转子两种。笼型转子绕组由嵌在转子铁心槽内的裸导条(铜条或铝条)组成。导条两端分别焊接在两个短接的端环上,形成一个整体。如去掉转子铁心,整个绕组的外形就像一个笼子,由此而得名。中小型电动机的笼型转子一般都采用铸铝转子,即把熔化了的铝浇铸在转子槽内而形成笼型。大型电动机采用铜导条;绕线转子绕组与定子绕组相似,由嵌放在转子铁心槽内的三相对称绕组构成,绕组作星形形联结,三个绕组的尾端连结在一起,三个首端分别接在固定在转轴上且彼此绝缘的三个铜制集电环上,通过电刷与外电路的可变电阻相连,用于起动或调速。 3、三相异步电动机的铭牌: 每台电动机上都有一块铭牌,上面标注了电动机的额定值和基本技术数据。铭牌上的额定值与有关技术数据是正确选择、使用和检修电动机的依据。下面对铭牌中和各数据加以说明: 型号异步电动机的型号主要包括产品代号、设计序号、规格代号和特

汽轮机润滑油系统工作原理

600MW汽轮机润滑油系统工作原理及调试探讨 东方汽轮机有限公司宫传瑶 摘要本文初步探讨了几种常见的汽轮机润滑油系统,对我公司600MW汽轮机所采用的供油方式进行了初步探讨,比较了与其它方式的优缺点。 关键词主油泵油涡轮调试系统 1 概述 随着机组向着大型化、自动化方面发展。机组故障停机次数将严重影响电站运行的经济性。汽轮机供油系统的故障不但要影响到电站运行的经济性,而且对机组的损害影响也是很大的。由于润滑系统的特殊性,在一般的情况下是不允许在线检修的。这样系统设计及设备运行的可靠性及其前期的调试试验工作显得尤其重要。 2 几种典型系统的比较 常见的电站润滑系统主要有以下几种。一:电动油泵、蓄能装置与调节阀系统;二:汽轮机转子驱动主油泵与注油装置系统;我厂600MW汽轮机采用汽轮机转子驱动主油泵与油涡轮升压泵供油方式。 3 系统安全性分析 对于系统来说除去系统本身的因素外,其可靠性主要取决于系统组成元件的可靠性。对于电动油泵系统其可靠性主要取决于电机及其电源的可靠性,由于电机及其相关电气元件制造水平的限制,其可靠性的高低将直接影响系统的可靠性。但是其优点在于系统简单。 对于汽轮机转子驱动主油泵与注油装置系统,由于大大减少了中间环节,这样对于主油

泵运行的可靠性大大提高。由于主油泵采用高位布置,这样在客观要求在主油泵的入口增设供油装置。我厂采用的注油装置主要有射油器与升压泵两种。 4 600MW汽轮机润滑系可靠性探讨 我厂600MW汽轮机润滑系统是我厂转化日立的系统。在系统中采用升压泵为供油装置。油涡轮升压泵作为系统的主要设备起着给主油泵供油,同时将高压油转化为低压油对汽轮发电机组进行润滑。起着参数匹配的作用。而在我公司300MW汽轮机润滑系统中起到此作用的是供油及润滑射油器。系统设计的好坏及相关部件工作的可靠性直接关系到机组运行的安全性。对于我公司600MW汽轮机润滑系统可靠主要取决于主油泵与油涡轮的可靠性。同时对系统的调试及机组启动过程中的监视至关重要。 5 系统简介 600MW汽轮机润滑系统主要分为以下三个分系统。 供油系统由主油泵、节流阀,滤网、喷嘴隔板、叶轮、升压泵组成。 主要作用维持主油泵正常工作。 润滑系统由主油泵、节流阀,滤网、喷嘴隔板、叶轮、溢流阀、轴承组成。 主要作用供给机组润滑油。 旁路系统由一只节流阀将工作油系统节流阀后与与叶轮后连接起来。 主要作用平衡润滑系统与供油系统。 同时在涡轮排油部分安装有溢流阀。主要作用稳定润滑油路压力。系统工作原理:由油涡轮的排油来润滑机组,同时高压油带动升压泵工作给主油泵供油。 润滑油系统图(图0-1-1所示)

光刻原理

光 刻 工 艺 一、目的: 按照平面晶体管和集成电路的设计要求,在SiO 2或金属蒸发层上面刻蚀出与掩模板完全相对应的几何图形,以实现选择性扩散和金属膜布线的目的。 二、原理: 光刻是一种复印图象与化学腐蚀相结合的综合性技术,它先采用照像复印的方法,将光刻掩模板上的图形精确地复制在涂有光致抗蚀剂的SiO 2层或金属蒸发层上,在适当波长光的照射下,光致抗证剂发生变化,从而提高了强度,不溶于某些有机溶剂中,未受光照射的部分光致抗蚀剂不发生变化,很容易被某些有机溶剂溶解。然后利用光致抗蚀剂的保护作用,对SiO 2层或金属蒸发层进行选择性化学腐蚀,从而在SiO 2层或金属层上得到与光刻掩模板相对应的图形。 (一)光刻原理图 (一)光刻胶的特性: 1.性能,光致抗蚀剂是一种对光敏感的高分子化合物。当它受适当波长的光照射后就能吸收一定波长的光能量,使其发生交联、聚合或分解等光化学反应。由原来的线状结构变成三维的网状结构,从而提高了抗蚀能力,不再溶于有机溶剂,也不再受一般腐蚀剂的腐蚀. 2.组成:以KPR 光刻胶为例: 感光剂--聚乙烯醇肉桂酸酯。 溶 剂--环己酮。 增感剂--5·硝基苊, 3.配制过程: 将一定重量的感光剂溶解于环己酮里搅拌均匀,然后加入一定量的硝基苊,再继续揖拌均匀,静置于暗室中待用。 感光剂聚乙烯醇肉桂酸酯的感光波长为3800?以内,加入5·硝基苊后感光波长范围发生了变化从2600—4700 ?。 (二)光刻设备及工具: 在SiO 2层上涂复光刻胶膜 将掩模板覆盖 在光刻胶膜上 在紫外灯下曝光 显影后经过腐蚀得到光刻窗口

1.曝光机--光刻专用设备。 2.操作箱甩胶盘--涂复光刻胶。 3.烘箱――烤硅片。 4.超级恒温水浴锅--腐蚀SiO2片恒温用。 5.检查显为镜――检查SiO2片质量。 6.镊子――夹持SiO2片。 7.定时钟――定时。 8.培养皿及铝盒――装Si片用。 9.温度计――测量温度。 图(二)受光照时感光树脂分子结构的变化 三、光刻步骤及操作原理 1.涂胶:利用旋转法在SiO2片和金属蒸发层上,涂上一层粘附性好、厚度适当、均匀的光刻胶。 将清洁的SiO2片或金属蒸发片整齐的排列在甩胶盘的边缘上,然后用滴管滴上数滴光刻胶于片子上,利用转动时产生的离心力,将片子上多余的胶液甩掉,在光刻胶表面粘附能力和离心力的共同作用下形成厚度均匀的胶膜。 涂胶时间约为1分钟。 要求:厚度适当(观看胶膜条纹估计厚薄),胶膜层均匀,粘附良好,表面无颗粒无划痕。 图(三)光刻工艺流程示意图

光接收机的结构及原理

第三部分光接收机的结构及原理 在有线电视HFC网络中,光接收机通常位于光纤接点和有线电视的前端位置,它的主要功能是把光信号转变为RF信号,前面已经详细讲述了光探测器、光接收组件的原理及应用。光探测器是实现光/电转换的关键部件,其质量的优劣决定了光接收机的性能指标与档次,光接收组件是光探测器与前置放大器的组合,在光接收机中,无论是分离组件还是一体组件,该部分的成本比重都比较大,与光发射机的激光器一样,不仅决定了光接收机的性能指标,还将决定光接收机的价格。光接收的整机组成主要由光接收组件、功率放大模块及其附属功能电路组成,除光接收组件外,功率放大模块是光接收机的第二大核心元件。即使是采用相同的组件,由于采用不同档次、不同价位的放大模块组合,整机也会有显著不同。有线电视技术发展到今天,光接收机采用分离元件制作放大模块已不多见,基本上全采用集成一体化组件结构。该结构模块大多属于厚膜集成电路,它是用丝网印刷和烧结等工艺在同一陶瓷基片上制作无源网源,并在其上组装分立的半导体芯片或单片集成电路、放大三极管管芯等,另外再外加塑料密封,防止潮气、杂质的进入。 一、光接收机常用的放大模块介绍 能用于光接收机的模块有众多型号,排除品牌命名的差异,根据放大模块的增益划分有14dB、18dB、20dB、22dB、27dB等,用于单模块放大器的34dB的放大模块在光接收机中少有应用,当然也不排除低档光接收机应用的可能。根据放大模块具体放大电路结构的

不同划分:有推挽放大模块、功率倍增放大模块两种,而根据放大元件工艺的不同,放大模块又分为硅放大工艺、砷化镓工艺两种,在光接收机中采用的模块的命名,一般以推挽和功率倍增为主要区分,同时附加增益的差异与器件工艺,如果不说是砷化镓工艺模块则所说的放大模块一般都是指硅工艺。 1.推挽放大模块的原理及结构。在实用的放大电路中,三极管的集电极并非总有电流流过,根据集中极电流导通时间的长短,通常把放大器分成甲类、乙类、丙类等。在输入信号的整个周期中都有电流流过集电极的放大器称为甲类放大器;只有在输入信号的半个周期内有集中极电流的放大器称为乙类放大器;在小于输入信号半个周期内有集中极电流的放大器称为丙类放大器。在许多实用的放大电路中,为了提高放大效率通常都需要把工作点移到截止区,即采用半周导通的乙类工作状态,这时若仍采用一个晶体管,输出信号中将只出现一半波形,将发生严重的截止失真。为了解决这个问题,可采用两只特性完全相同的晶体管,使其中一只晶体管在正半周导通,另一晶体管在负半周导通,最后在负载上合成完整波形,这就是推挽放大电路。下图是推挽放大电路的结构示意图: 输入信号经过高频传输变压器B1,反相加在晶体管VT1和V T2上,被放大后各自在半个周期内产生半个波,在变压器B2上反相叠加,重新合成完整波形输出,由于输出信号反相叠加,其中的直流分量和非线性失真中的偶次谐波互相抵消。降低了直流工作点,使变压器中流过电流减少,从而体积可以做得较小,进一步提高了放大器

无刷直流电机工作原理详解

无刷直流电机工作原理详解 日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 2.1 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图2.1.1。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。

BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图2.1.2和图 2.1.3所示。

汽轮发电机结构与原理

第四节汽轮发电机 汽轮发电机是同步发电机的一种,它是由汽轮机作原动机拖动转子旋转,利用电磁感应原理把机械能转换成电能的设备。 汽轮发电机包括发电机本体、励磁系统及其冷却系统等。 一、汽轮发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。汽轮发电机转子与汽轮机转子高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电流后,便建立一个磁场,这个磁场称主磁极,它随着汽轮发电机转子旋转。其磁通自转子的一个极出来,经过空气隙、定子铁芯、空气隙、进入转子另一个极构成回路。 根据电磁感应定律,发电机磁极旋转一周,主磁极的磁力线北装在定子铁芯内的U、V、W三相绕组(导线)依次切割,在定子绕组内感应的电动势正好变化一次,亦即感应电动势每秒钟变化的次数,恰好等于磁极每秒钟的旋转次数。 汽轮发电机转子具有一对磁极(即1个N极、一个S极),转子旋转一周,定子绕组中的感应电动势正好交变一次(假如发电机转子为P对磁极时,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次,这样发电机转子以每秒钟50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。这时若将发电机定子三相绕组引出线的末端(即中性点)连在一起。绕组的首端引出线与用电设备连接,就会有电流流过,这个过程即为汽

轮机转子输入的机械能转换为电能的过程。 二、汽轮发电机的结构 火力发电厂的汽轮机发电机皆采用二极、转速为3000r/min的卧式结构。发电机与汽轮机、励磁机等配套组成同轴运转的汽轮发电机组。 发电机最基本的组成部件是定子和转子。 为监视发电机定子绕组、铁芯、轴承及冷却器等各重要部位的运行温度,在这些部位埋置了多只测温元件,通过导线连接到温度巡检装置,在运行中进行监控,并通过微机进行显示和打印。 在发电机本体醒目的位置装设有铭牌,标出发电机的主要技术参数,作为发电机运行的技术指标。 (一)定子 发电机的定子由定子铁芯、定子绕组、机座、端盖及轴承等部件组成。 1.定子铁芯 定子铁芯是构成磁路并固定定子绕组的重要部件,通常由0.5mm或0.35mm厚,导磁性能良好的冷轧硅钢片叠装而成。大型汽轮发电机的定子铁芯尺寸很大,硅钢片冲成扇形,再用多片拼装成圆形。 2.定子绕组 定子绕组嵌放在定子铁芯内圆的定子槽中,分三相布置,互成120°电角度,以保证转子旋转时在三相定子绕组中产生互成120°相位差的电动势。每个槽内放有上下两组绝缘导体(亦称线棒),每个线棒分为直线部分(置于铁芯槽内)和两个端接部分。直线部分是切割磁力线并产生感应电动势的有效边,端接部分起连接作用,把各线棒按一定的规律连接起来,构成发电机的定子绕

光工作站的结构及原理

光工作站地结构及原理 第四部分光工作站地结构及原理 传统地广播分配网,随网络地改造,向通信式地双向交互网发展,光纤网络和无源电缆分配网将是网络架构地主导模式.网络地目标就是成为一个能为本地区(城市)提供多种信息业务服务地宽带多媒本通信平台;从目前地网络发展态势看起具有明显地特点:光纤向用户逐步延伸,光接点地服务半径越来越小,双向用户逐渐增多,放大器地应用越来越少,光接点以后地网络可靠性得到大幅度提高.随着用户对服务质量要求地提高,光接点最终将是无源分配网络,即不采用放大器,只由光接收设备提供高电平信号,覆盖结点周围用户.普通地光接收机将无法再胜任作为光接点接收设备地高要求,为适应这一发展,解决双向用户共享带宽地制约,提高网络服务质量,可升级地通信型光站应运而生,其将是宽带用户接入网地主导设备. 各个生产厂家推出地光工作站地具体结构及功能并不一致,作为光工作站其与光接收机有明显地区别.()按功能结构区分.光工作站一般具有多于个独立地高电平输出端口,每端输出电平一般要求大于,以适应直接用于用户分配,增加覆盖地要求.而光接收机地输出电平一般不高,既使是高电平输出光接收机,其最大输出也一般低于;光工作站具有完备地功能模块(或预留插口),而光接收机由于采用小外壳,功能模块单元相对很小,主要功能仅是实现光电转换,即使有回传发射模块,也相当简单,无法适应未来双向光接点地较高要求.()按可靠性区分.光工作站一般都采用高冗余度,通常都对关键地功能模块实现备份,常见地功能备份有如下几种:、电源备份,通常光工作站可插入两个高效开关电源,在一个电源出现故障时,内部控制单元可自动切换到另一个电源.、光备份,光备份有光接收备份、光发射备份.光接收备份:光工作站可插入个以上地光接收功能模块,分别接收不同路由地光信号,当一路出现故障时,控制单元将及时切换到另一路;光发射备份:光工作站可插入个以上地回传发射模块,

《汽轮机原理》习题及答案_

第一章绪论 一、单项选择题 1.新蒸汽参数为13.5MPa的汽轮机为(b) A.高压汽轮机B.超高压汽轮机 C.亚临界汽轮机D.超临界汽轮机 2.型号为N300-16.7/538/538的汽轮机是( B )。 A.一次调整抽汽式汽轮机 B.凝汽式汽轮机 C.背压式汽轮机 D.工业用汽轮机 第一章汽轮机级的工作原理 一、单项选择题 3.在反动级中,下列哪种说法正确?( C ) A.蒸汽在喷嘴中的理想焓降为零 B.蒸汽在动叶中的理想焓降为零 C.蒸汽在喷嘴与动叶中的理想焓降相等 D.蒸汽在喷嘴中的理想焓降小于动叶中的理想焓降 4.下列哪个措施可以减小叶高损失?( A ) A.加长叶片 B.缩短叶片 C.加厚叶片 D.减薄叶片 5.下列哪种措施可以减小级的扇形损失?( C ) A.采用部分进汽 B.采用去湿槽 C.采用扭叶片 D.采用复速级 6.纯冲动级动叶入口压力为P1,出口压力为P2,则P1和P2的关系为(C)A.P1P2 C.P1=P2 D.P1≥P2 7.当选定喷嘴和动叶叶型后,影响汽轮机级轮周效率的主要因素( A ) A.余速损失 B.喷嘴能量损失 C.动叶能量损失 D.部分进汽度损失 8.下列哪项损失不属于汽轮机级内损失( A ) A.机械损失 B.鼓风损失 C.叶高损失 D.扇形损失 9.反动级的结构特点是动叶叶型( B )。 A. 与静叶叶型相同 B. 完全对称弯曲 C. 近似对称弯曲 D. 横截面沿汽流方向不发生变化 10.当汽轮机的级在( B )情况下工作时,能使余速损失为最小。

A. 最大流量 B. 最佳速度比 C. 部发进汽 D. 全周进汽 1.汽轮机的级是由______组成的。【 C 】 A. 隔板+喷嘴 B. 汽缸+转子 C. 喷嘴+动叶 D. 主轴+叶轮 2.当喷嘴的压力比εn大于临界压力比εcr时,则喷嘴的出口蒸汽流速C 1 【 A 】 A. C 1C cr D. C 1 ≤C cr 3.当渐缩喷嘴出口压力p 1小于临界压力p cr 时,蒸汽在喷嘴斜切部分发生膨胀, 下列哪个说法是正确的?【 B 】 A. 只要降低p 1 ,即可获得更大的超音速汽流 B. 可以获得超音速汽流,但蒸汽在喷嘴中的膨胀是有限的 C. 蒸汽在渐缩喷嘴出口的汽流流速等于临界速度C cr D. 蒸汽在渐缩喷嘴出口的汽流流速小于临界速度C cr 4.汽轮机的轴向位置是依靠______确定的?【 D 】 A. 靠背轮 B. 轴封 C. 支持轴承 D. 推力轴承 5.蒸汽流动过程中,能够推动叶轮旋转对外做功的有效力是______。【 C 】 A. 轴向力 B. 径向力 C. 周向力 D. 蒸汽压差 6.在其他条件不变的情况下,余速利用系数增加,级的轮周效率η u 【 A 】 A. 增大 B. 降低 C. 不变 D. 无法确定 7.工作在湿蒸汽区的汽轮机的级,受水珠冲刷腐蚀最严重的部位是:【 A 】 A. 动叶顶部背弧处 B. 动叶顶部内弧处 C. 动叶根部背弧处 D. 喷嘴背弧处 8.降低部分进汽损失,可以采取下列哪个措施?【 D 】 A. 加隔板汽封

投影光刻机对准系统功能原理

投影光刻机对准系统功能原理 投影光刻机对准系统功能原理 1 对准系统简介 对准系统的主要功能就是将工件台上硅片的标记与掩膜版上的标记对准,其标记的对准精度能达到±0.4μm(正态分布曲线的3σ值)。因为一片硅片在一个工艺流程中的曝光次数可能达到30次,而对准精度直接影响硅片的套刻精度,所以硅片的对准精度非常的关键。 由于对准系统对硅片标记的搜索扫描有一定的范围,它在X方向和Y方向都只能扫描 ±44μm,所以硅片被传送到工件台上进行对准之前,需要在预对准工件台上先后完成两次对准,即机械预对准和光学预对准,以便满足精细对准的捕捉范围。注意:本文所提到的对准都是所谓的精细对准。 PAS2500/10投影光刻机对准系统主要由三个单位部分构成:照明(对准光源)部分,双折射单元和对准单元。这三个单元与掩膜版、硅片、以及投影透镜的相对位置如图1所示,在图中可以看出,对准系统中用了两个完全相同的光路,这是为了满足对准功能的需要。 1.1 对准系统的光学结构和功能 由于对准系统中的两条完全相同,所以在下面的介绍中只详细地阐述了其中的一条光路。在对准系统中,照明部分的主要部件就是激光发射器,它产生波长为633nm的线性极化光,避免在硅片对准的过程中使硅片被曝光(硅片曝光用的光为紫外光)。然后对准激光将通过一系列的棱镜和透镜进入双折射单元,该激光将从双折射单元底部射出,通过曝光的投影透镜照到硅片的标记上;而经过硅片表面的反射后由原路返回,第二次经过双折射单元,由双折射单元的顶部射出,再经过聚焦后对准到掩膜版的标记上。 在对准单元内,硅片的标记图象和掩膜版标记的图象同时通过一个调制器后,将被聚焦到一个Q-CELL光电检测器上。此调制器是用来交替传送两个极化方向的硅片标记图象,Q-CELL 光电检测器将对硅片的标记的每个极化方向图象分别产生一个电信号,由此产生的电信号的振幅取决于该极化方向硅片标记的图象与掩膜版标记图象在Q-CELL的显示比例。 硅片上的对准标记如图2所示,标记分为四个象限,每个象限有8μm或8.8μm的对准条,其中有两个象限的对准条用来对准X向,另外两个象限用来对准Y向。而Q-CELL光电检测器的每一个单元对应标记的一个象限,当在Q-CELL检测器的每一个单元中,两个极化方向的标记图象的能量都相等的时候,就表明硅片与掩膜版的标记完全对准了。从图1中可以看到对准光束在经过对准单元的时候被分成了两束,一束激光将通过调制器到达Q-CELL 光电检测器,而另一束激光则以视频的形式反馈到操作台。通过操作台上的视频监视器可以直观的看到标记的移动和对准不同标记时位置的相对变化。虽然是两个不同极化方向的硅片标记与掩膜版标记同时对准,但是由于它们是同步的,彼此之间几乎看不到有何不同,所以只有一个极化图象被显示。 1.2 对准系统的电路部分 对准系统的电路部分主要的功能是: 1、产生一个信号去驱动光学调制器。 2、处理Q-CELL光电检测器产生的信号。 光学调制器的驱动:该调制器信号要求频率为50Hz的正弦信号,其振幅要求能满足对最大的Q-CELL检测信号起调制作用。 Q-CELL检测信号的处理:在对准的时候,工件台将首先沿X轴向缓慢地带动E-CHUCK上的硅片移动,进行X轴向对准,当硅片标记上X向光栅与对应的掩膜版上X向光栅对准时,

电动机结构与工作原理

电动机结构与工作原理 三相异步电动机 实现电能与机械能相互转换的电工设备总称为电机。电机是利用电磁感应原理实现电能与机械能的相互转换。把机械能转换成电能的设备称为发电机,而把电能转换成机械能的设备叫做电动机。 在生产上主要用的是交流电动机,特别三相异步电动机,因为它具有结构简单、坚固耐用、运行可靠、价格低廉、维护方便等优点。它被广泛地用来驱动各种金属切削机床、起重机、锻压机、传送带、铸造机械、功率不大的通风机及水泵等。对于各种电动机我们应该了解下列几个方面的问题:(1)基本构造;(2)工作原理;(3)表示转速与转矩之间关系的机械特性;(4)起动、调速及制动的基本原理和基本方法;(5)应用场合和如何正确使用。 三相异步电动机的结构与工作原理 1.三相异步电动机的构造 三相异步电动机的两个基本组成部分为定子(固定部分)和转子(旋转部分)。此外还有端盖、风扇等附属部分,如图5-1所示。 1).定子 三相异步电动机的定子由三部分组成:

2).转子 三相异步电动机的转子由三部分组成: 鼠笼式电动机由于构造简单,价格低廉,工作可靠,使用方便,成为了生产上应用得最广泛的一种电动机。 为了保证转子能够自由旋转,在定子与转子之间必须留有一定的空气隙,中小型电动机的空气隙约在0.2~1.0mm之间。 2.三相异步电动机的转动原理 1).基本原理 为了说明三相异步电动机的工作原理,我们做如下演示实验,如图5-2所示。

(1).演示实验:在装有手柄的蹄形磁铁的两极间放置一个闭合导体,当转动手柄带动蹄形磁铁旋转时,将发现导体也跟着旋;若改变磁铁的转向,则导体的转向也跟着改变。 (2).现象解释:当磁铁旋转时,磁铁与闭合的导体发生相对运动,鼠笼式导体切割磁力线而在其内部产生感应电动势和感应电流。感应电流又使导体受到一个电磁力的作用,于是导体就沿磁铁的旋转方向转动起来,这就是异步电动机的基本原理。 转子转动的方向和磁极旋转的方向相同。 (3).结论:欲使异步电动机旋转,必须有旋转的磁场和闭合的转子绕组。

光刻机和光掩膜版

十三章 光刻II 光刻机和光掩膜版 前几章讲述了光刻胶材料的性质和工艺技术。在这一章里,我们介绍如何将图形转移到硅片表面上,包括以下内容:a)将图形投影到硅片表面的装置(即光刻对准仪或光刻翻版机),由此使得所需图形区域的光刻胶曝光。 b)将图形转移到涂有光刻胶的硅片上的工具(即光掩模版和中间掩模版)。在介绍光刻机或掩模版之前,把用以设计和描述操作光刻机的光学原理简要地说明一下。它们是讲明光掩模板和中间掩模版的基础。 在讨论光学原理之前,有必要介绍一下微光刻硬件的关键。那就是把图形投影到硅表面的机器和掩模版的最重要的特征:a)分辨率、b)图形套准精度、c)尺寸控制、d)产出率。 通常,分辨律是指一个光学系统精确区分目标的能力。特别的,我们所说的微图形加工的最小分辨率是指最小线宽尺寸或机器能充分打印出的区域。然而,和光刻机的分辨率一样,最小尺寸也依赖于光刻胶和刻蚀的技术。关于分辨率的问题将在微光刻光学一章中更彻底的讲解,但要重点强调的是高分辨率通常是光刻机最重要的特性。 图形套准精度是衡量被印刷的图形能“匹配”前面印刷图形的一种尺度。由于微光刻应用的特征尺寸非常小,且各层都需正确匹配,所以需要配合紧密。

微光刻尺寸控制的要求是以高准度和高精度在完整硅片表面产生器件特征尺寸。为此,首先要在图形转移工具〔光刻掩模版〕上正确地再造出特征图形,然后再准确地在硅片表面印刷出〔翻印或刻蚀〕。 加工产率是重要但 不是最重要加工特征。例 如,如果一个器件只能在 低生产率但高分辨率的 光刻机制版,这样也许仍 然是经济的。不过,在大 部分生产应用中,加工和 机器的产率是很重要的, 也许是选择机器的重要因素之一。 1.微光刻光学 在大规模集成电路的制造中。光刻系统的分辨率是相当重要的,因为它是微器件尺寸的主要限制。在现代化投影光刻机中光学配件的质量是相当高的,所以图形的特征尺寸因衍射的影响而受限制,而不会是因为镜头的原因(它们被叫做衍射限制系统)。因为分辨率是由衍射限度而决定的,那就必须弄明白围绕衍射限度光学的几个概念,包括一致性、衍射、数值孔径、调频和许多重要调节转换性能。下几节的目的就是要简要和基本地介绍这些内容。参考资料1·2讲得更详细。 衍射·一致性·数值孔径和分辨率 图(1):一束空间连续光线经过直的边缘时的光强 a)依据几何光学b)散射

汽轮机原理试题与答案

绪论 1.确定CB25-8.83/1.47/0.49型号的汽轮机属于下列哪种型式?【 D 】 A. 凝汽式 B. 调整抽汽式 C. 背压式 D. 抽气背压式 2.型号为N300-16.7/538/538的汽轮机是【B 】 A. 一次调整抽汽式汽轮机 B. 凝汽式汽轮机 C. 背压式汽轮机 D. 工业用汽轮机 3.新蒸汽压力为15.69MPa~17.65MPa的汽轮机属于【C 】 A. 高压汽轮机 B. 超高压汽轮机 C. 亚临界汽轮机 D. 超临界汽轮机 4.根据汽轮机的型号CB25-8.83/1.47/0.49可知,该汽轮机主汽压力为8.83 ,1.47表示汽轮机的抽汽压 力。 第一章 1.汽轮机的级是由______组成的。【C 】 A. 隔板+喷嘴 B. 汽缸+转子 C. 喷嘴+动叶 D. 主轴+叶轮 2.当喷嘴的压力比εn大于临界压力比εcr时,则喷嘴的出口蒸汽流速C1【A 】 A. C1 C cr D. C1≤C cr 3.当渐缩喷嘴出口压力p1小于临界压力p cr时,蒸汽在喷嘴斜切部分发生膨胀,下列哪个说法是正确的? 【B 】 A. 只要降低p1,即可获得更大的超音速汽流 B. 可以获得超音速汽流,但蒸汽在喷嘴中的膨胀是有限的 C. 蒸汽在渐缩喷嘴出口的汽流流速等于临界速度C cr D. 蒸汽在渐缩喷嘴出口的汽流流速小于临界速度C cr 4.汽轮机的轴向位置是依靠______确定的?【D 】 A. 靠背轮 B. 轴封 C. 支持轴承 D. 推力轴承 5.蒸汽流动过程中,能够推动叶轮旋转对外做功的有效力是______。【C 】 A. 轴向力 B. 径向力 C. 周向力 D. 蒸汽压差 6.在其他条件不变的情况下,余速利用系数增加,级的轮周效率ηu【A 】 A. 增大 B. 降低 C. 不变 D. 无法确定 7.工作在湿蒸汽区的汽轮机的级,受水珠冲刷腐蚀最严重的部位是:【A 】 A. 动叶顶部背弧处 B. 动叶顶部内弧处 C. 动叶根部背弧处 D. 喷嘴背弧处 8.降低部分进汽损失,可以采取下列哪个措施?【D 】 A. 加隔板汽封 B. 减小轴向间隙 C. 选择合适的反动度 D. 在非工作段的动叶两侧加装护罩装置 9.火力发电厂汽轮机的主要任务是:【B 】 A. 将热能转化成电能 B. 将热能转化成机械能

光接收机的结构和原理

光接收机的结构和原理 2009-08-31 20:20:03| 分类:电子通信时代| 标签:|字号大中小订阅 在有线电视HFC网络中,光接收机通常位于光纤接点和有线电视的前端位置,它的主要功能是把光信号转变为RF信号,前面已经详细讲述了光探测器、光接收组件的原理及应用。光探测器是实现光/电转换的关键部件,其质量的优劣决定了光接收机的性能指标与档次,光接收组件是光探测器与前置放大器的组合,在光接收机中,无论是分离组件还是一体组件,该部分的成本比重都比较大,与光发射机的激光器一样,不仅决定了光接收机的性能指标,还将决定光接收机的价格。光接收的整机组成主要由光接收组件、功率放大模块及其附属功能电路组成,除光接收组件外,功率放大模块是光接收机的第二大核心元件。即使是采用相同的组件,由于采用不同档次、不同价位的放大模块组合,整机也会有显著不同。有线电视技术发展到今天,光接收机采用分离元件制作放大模块已不多见,基本上全采用集成一体化组件结构。该结构模块大多属于厚膜集成电路,它是用丝网印刷和烧结等工艺在同一陶瓷基片上制作无源网源,并在其上组装分立的半导体芯片或单片集成电路、放大三极管管芯等,另外再外加塑料密封,防止潮气、杂质的进入。 一、光接收机常用的放大模块介绍 能用于光接收机的模块有众多型号,排除品牌命名的差异,根据放大模块的增益划分有14dB、18dB、20dB、22dB、27dB等,用于单模块放大器的34dB的放大模块在光接收机中少有应用,当然也不排除低档光接收机应用的可能。根据放大模块具体放大电路结构的不同划分:有推挽放大模块、功率倍增放大模块两种,而根据放大元件工艺的不同,放大模块又分为硅放大工艺、砷化镓工艺两种,在光接收机中采用的模块的命名,一般以推挽和功率倍增为主要区分,同时附加增益的差异与器件工艺,如果不说是砷化镓工艺模块 则所说的放大模块一般都是指硅工艺。 1.推挽放大模块的原理及结构。在实用的放大电路中,三极管的集电极并非总有电流流过,根据集中极电流导通时间的长短,通常把放大器分成甲类、乙类、丙类等。在输入信号的整个周期中都有电流流过集电极的放大器称为甲类放大器;只有在输入信号的半个周期内有集中极电流的放大器称为乙类放大器;在小于输入信号半个周期内有集中极电流的放大器称为丙类放大器。在许多实用的放大电路中,为了提高放大效率通常都需要把工作点移到截止区,即采用半周导通的乙类工作状态,这时若仍采用一个晶体管,输出信号中将只出现一半波形,将发生严重的截止失真。为了解决这个问题,可采用两只特性完全相同的晶体管,使其中一只晶体管在正半周导通,另一晶体管在负半周导通,最后在负载上合成完整波形,这就是推 挽放大电路。下图是推挽放大电路的结构示意图: 输入信号经过高频传输变压器B1,反相加在晶体管VT1和VT2上,被放大后各自在半个周期内产生半个波,在变压器B2上反相叠加,重新合成完整波形输出,由于输出信号反相叠加,其中的直流分量和非线性失真中的偶次谐波互相抵消。降低了直流工作点,使变压器中流过电流减少,从而体积可以做得较小,进一步提高了放大器的输出功率和效率;更为重要的是,偶次谐波的抵消,减少了放大器的非线性失真,对提高有线电视系统的非线性失真指标具有重要意义。在实际应用中,通常采用两组推挽电路并接的方法,构成桥式结构,则每级推挽电路在负载上的直流电压可抵消,从而简化电路结构。在推挽电路中,两个极性相同晶体管的特性应尽可能一致,两个极性相反晶体管的特性应尽可能互补,才能最大限度的抵消输出信号中的偶次谐波失真,若在电电路中引入负反馈,非线性失真还可进一步减小。 下图是商用化模块常采用的电路结构。 该模块用了共射——共基极放大推挽输出,4个NPN型晶体管两两接成共射—共基极组合放大电路,它们再通过输入、输出变压器接成推挽电路。共射—共基电路的特点是:简单高效,在选定最佳e极电流的情况下,此电路能有效的减小集电极非线性及e—b结非线性。此电路采用低射极电阻和高并联电阻取得高增益,又由于采用了低噪声晶体管使模块的噪声系数降到了尽可能低的程度。总之该电路集中了共射—共基

Nikon光刻机对准系统功能原理

Nikon光刻机对准系统功能原理 投影光刻机对准系统功能原理 1 对准系统简介 对准系统的主要功能就是将工件台上硅片的标记与掩膜版上的标记对准,其标记的对准精度能达到±0.4μm (正态分布曲线的3σ值)。因为一片硅片在一个工艺流程中的曝光次数可能达到30次,而对准精度直接影响硅片的套刻精度,所以硅片的对准精度非常的关键。 由于对准系统对硅片标记的搜索扫描有一定的范围,它在X方向和Y方向都只能扫描±44μm,所以硅片被传送到工件台上进行对准之前,需要在预对准工件台上先后完成两次对准,即机械预对准和光学预对准,以便满足精细对准的捕捉范围。注意:本文所提到的对准都是所谓的精细对准。 PAS2500/10投影光刻机对准系统主要由三个单位部分构成:照明(对准光源)部分,双折射单元和对准单元。这三个单元与掩膜版、硅片、以及投影透镜的相对位置如图1所示,在图中可以看出,对准系统中用了两个完全相同的光路,这是为了满足对准功能的需要。 1.1 对准系统的光学结构和功能 由于对准系统中的两条完全相同,所以在下面的介绍中只详细地阐述了其中的一条光路。在对准系统中,照明部分的主要部件就是激光发射器,它产生波长为633nm的线性极化光,避免在硅片对准的过程中使硅片被曝光(硅片曝光用的光为紫外光)。然后对准激光将通过一系列的棱镜和透镜进入双折射单元,该激光将从双折射单元底部射出,通过曝光的投影透镜照到硅片的标记上;而经过硅片表面的反射后由原路返回,第二次经过双折射单元,由双折射单元的顶部射出,再经过聚焦后对准到掩膜版的标记上。 在对准单元内,硅片的标记图象和掩膜版标记的图象同时通过一个调制器后,将被聚焦到一个Q-CELL光电检测器上。此调制器是用来交替传送两个极化方向的硅片标记图象,Q-CELL光电检测器将对硅片的标记的每个极化方向图象分别产生一个电信号,由此产生的电信号的振幅取决于该极化方向硅片标记的图象与掩膜版标记图象在Q-CELL的显示比例。 硅片上的对准标记如图2所示,标记分为四个象限,每个象限有8μm或8.8μm的对准条,其中有两个象限的对准条用来对准X向,另外两个象限用来对准Y向。而Q-CELL光电检测器的每一个单元对应标记的一个象限,当在Q-CELL检测器的每一个单元中,两个极化方向的标记图象的能量都相等的时候,就表明硅片与掩膜版的标记完全对准了。从图1中可以看到对准光束在经过对准单元的时候被分成了两束,一束激光将通过调制器到达Q-CELL光电检测器,而另一束激光则以视频的形式反馈到操作台。通过操作台上的视频监视器可以直观的看到标记的移动和对准不同标记时位置的相对变化。虽然是两个不同极化方向的硅片标记与掩膜版标记同时对准,但是由于它们是同步的,彼此之间几乎看不到有何不同,所以只有一个极化图象被显示。 1.2 对准系统的电路部分 对准系统的电路部分主要的功能是: 1、产生一个信号去驱动光学调制器。 2、处理Q-CELL光电检测器产生的信号。 光学调制器的驱动:该调制器信号要求频率为50Hz的正弦信号,其振幅要求能满足对最大的Q-CELL检测信号起调制作用。 Q-CELL检测信号的处理:在对准的时候,工件台将首先沿X轴向缓慢地带动E-CHUCK上的硅片移动,进行X轴向对准,当硅片标记上X向光栅与对应的掩膜版上X向光栅对准时,将产生一个对准电信号,该信号以中断信号的形式输入计算机,X向对准的两个象限光栅都将产生其各自的中断信号。当产生中断信号的同时,计算机将记录下此时工件台的位置。在X向对准的时候,一个标记中两个象限的光栅同时参与,在每个象限中光栅条纹之间的间距是一个恒定的常数,但是这两个象限的光栅条纹间距并不相同,如图2所示。在对准扫描的过程中,每一个象限中的每一条光栅条纹都将会产生各自的一个中断信号,由于两个象限的光栅条纹间距不同,所以在扫描的时候只能有一个点将同时产生两个中断信号,而这个点就是在X

光刻机的技术原理和发展趋势

光刻机的技术原理和发展趋势 王平0930******* 摘要: 本文首先简要介绍了光刻技术的基本原理。现代科技瞬息万变,传统的光刻技术已经无法满足集成电路生产的要求。本文又介绍了提高光刻机性能的关键技术和下一代光刻技术的研究进展情况。 关键字:光刻;原理;提高性能;浸没式光刻;下一代光刻 引言: 光刻工艺直接决定了大规模集成电路的特征尺寸,是大规模集成电路制造的关键工艺。作为光刻工艺中最重要设备之一,光刻机一次次革命性的突破,使大模集成电路制造技术飞速向前发展。因此,了解光刻技术的基本原理,了解提高光刻机性能的关键技术以及了解下一代光刻技术的发展情况是十分重要的。本文就以上几点进行了简要的介绍。 光刻技术的基本原理: 光刻工艺通过曝光的方法将掩模上的图形转移到涂覆于硅片表面的光刻胶上,然后通过显影、刻蚀等工艺将图形转移到硅片上。 1、涂胶 要制备光刻图形,首先就得在芯片表面制备一层均匀的光刻胶。截止至2000年5月23日,已经申请的涂胶方面的美国专利就达118项。在涂胶之前,对芯片表面进行清洗和干燥是必不可少的。目前涂胶的主要方法有:甩胶、喷胶和气相沉积,但应用最广泛的还是甩胶。甩胶是利用芯片的高速旋转,将多余的胶甩出去,而在芯片上留下一层均匀的胶层,通常这种方法可以获得优于+2%的均匀性(边缘除外)。胶层的厚度由下式决定: 式中:F T为胶层厚度,ω为角速度,η为平衡时的粘度,ρ为胶的密度,t为时间。由该式可见,胶层厚度和转速、时间、胶的特性都有关系,此外旋转时产生的气流也会有一定的影响。甩胶的主要缺陷有:气泡、彗星(胶层上存在的一些颗粒)、条纹、边缘效应等,其中边缘效应对于小片和不规则片尤为明显。

无刷电机工作及控制原理(图解)

无刷电机工作及控制原理(图解) 左手定则,这个是电机转动受力分析的基础,简单说就是磁场中的载流导体,会受到力的作用。 让磁感线穿过手掌正面,手指方向为电流方向,大拇指方向为产生磁力的方向,我相信喜欢玩模型的人都还有一定物理基础的哈哈。

让磁感线穿过掌心,大拇指方向为运动方向,手指方向为产生的电动势方向。为什么要讲感生电动势呢?不知道大家有没有类似的经历,把电机的三相线合在一起,用手去转动电机会发现阻力非常大,这就是因为在转动电机过程中产生了感生电动势,从而产生电流,磁场中电流流过导体又会产生和转动方向相反的力,大家就会感觉转动有很大的阻力。不信可以试试。 三相线分开,电机可以轻松转动 三相线合并,电机转动阻力非常大 右手螺旋定则,用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端就是通电螺旋管的N极。

状态1 当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B(如粗箭头方向所示),而中间的转子会尽量使自己内部的磁感线方向与外磁感线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。 当转子磁场方向与外部磁场方向垂直时,转子所受的转动力矩最大。注意这里说的是“力矩”最大,而不是“力”最大。诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。补充一句,力矩是力与力臂的乘积。其中一个为零,乘积就为零了。 当转子转到水平位置时,虽然不再受到转动力矩的作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管的电流方向,如下图所示,转子就会继续顺时针向前转动,

光接收机的结构及原理(精)

第三部分光接收机的结构及原理 在有线电视 HFC 网络中, 光接收机通常位于光纤接点和有线电视的前端位置,它的主要功能是把光信号转变为 RF 信号,前面已经详细讲述了光探测器、光接收组件的原理及应用。光探测器是实现光 /电转换的关键部件,其质量的优劣决定了光接收机的性能指标与档次,光接收组件是光探测器与前置放大器的组合,在光接收机中, 无论是分离组件还是一体组件, 该部分的成本比重都比较大, 与光发射机的激光器一样, 不仅决定了光接收机的性能指标, 还将决定光接收机的价格。光接收的整机组成主要由光接收组件、功率放大模块及其附属功能电路组成, 除光接收组件外, 功率放大模块是光接收机的第二大核心元件。即使是采用相同的组件,由于采用不同档次、不同价位的放大模块组合, 整机也会有显著不同。有线电视技术发展到今天, 光接收机采用分离元件制作放大模块已不多见, 基本上全采用集成一体化组件结构。该结构模块大多属于厚膜集成电路, 它是用丝网印刷和烧结等工艺在同一陶瓷基片上制作无源网源, 并在其上组装分立的半导体芯片或单片集成电路、放大三极管管芯等, 另外再外加塑料密封,防止潮气、杂质的进入。 一、光接收机常用的放大模块介绍 能用于光接收机的模块有众多型号,排除品牌命名的差异,根据放大模块的增益划分有 14dB 、 18dB 、 20dB 、 22dB 、 27dB 等,用于单模块放大器的 34dB 的放大模块在光接收机中少有应用,当然也不排除低档光接收机应用的可能。根据放大模块具体放大电路结构的 不同划分:有推挽放大模块、功率倍增放大模块两种,而根据放大元件工艺的不同,放大模块又分为硅放大工艺、砷化镓工艺两种,在光接收机中采用的模块的命名, 一般以推挽和功率倍增为主要区分, 同时附加增益的差异与器件工艺, 如果不说是砷化镓工艺模块则所说的放大模块一般都是指硅工艺。 1.推挽放大模块的原理及结构。在实用的放大电路中,三极管的集电极并非总有电流流过, 根据集中极电流导通时间的长短, 通常把放大器分成甲类、乙类、丙类等。在输入信号的整个周期中都有电流流过集电极的放大器称为甲类放大器; 只

相关主题