搜档网
当前位置:搜档网 › PUSHOVER分析

PUSHOVER分析

PUSHOVER分析
PUSHOVER分析

提要:本文首先介绍采用Midas/Gen进行Pushover分析的主要方法及使用心得,然后结合工程实例进行具体说明,其结果反映出此类结构在大震下表现的一些特点,可供类似设计参考。

关键词:Pushover 剪力墙结构超限高层 Midas/Gen

静力弹塑性分析(Pushover)方法是对结构在罕遇地震作用下进行弹塑性变形分析的一种简化方法,本质上是一种静力分析方法。具体地说,就是在结构计算模型上施加按某种规则分布的水平侧向力,单调加荷载并逐级加大;一旦有构件开裂(或屈服)即修改其刚度(或使其退出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到结构达到预定的状态(成为机构、位移超限或达到目标位移),得到结构能力曲线,并判断是否出现性能点,从而判断是否达到相应的抗震性能目标[1]。

Pushover方法可分为两个部分,第一步建立结构能力谱曲线,第二步评估结构的抗震性能。

对剪力墙结构体系的超限高层而言,选取Pushover计算程序的关键是程序对墙单元的设定。SAP2000、ETABS软件没有提供剪力墙塑性铰,对框-剪结构可将剪力墙人工转换为模拟支撑框架进行分析;对剪力墙结构来说,进行转换不可行。而Midas/Gen程序提供了剪力墙Pushover单元(类似薄壁柱单元,详见用户手册),对剪力墙能够设置轴力-弯矩铰以及剪切铰。下面将详细介绍如何在Midas/Gen中进行Pushover分析的步骤(以Midas/Gen 6.9.1为例):

一 Pushover分析步骤

1. 结构建模并完成静力分析和构件设计直接在Midas/Gen中建模比较繁琐,可以用接口转换程序从SATWE(或其他程序如SAP2000)中导入。SATWE转换程序由Midas/Gen提供,会根据PKPM的升级而更新。转换仅需要SATWE中的Stru.sat 和Load.sat文件。转换时需要注意的是,用转换程序导入SATWE的模型文件后,形成的是Midas/Gen的Stru.mgt文件,是模型的文本文件形式,需要在Midas/Gen中导入此文件,导入后还应该注意以下几个问题:

1) 风荷载及反应谱荷载没有导进来,需要在Midas/Gen中重新定义;

2) 需要定义自重、质量;

3) 需要定义层信息,以及墙编号;

此外,还应注意比较SATWE的质量与Midas/Gen的质量,并比较两者计算的周期结果实否一致。

2. 输入Pushover分析控制用数据

荷载最大增幅次数用于定义达到设定的目标位移(或荷载)的分步数,一般来说,分步越多,每次的增幅越小,最终得到的能力谱曲线越平滑。但是分步过多带来计算时间上的大大增加,所以取值应该由少至多进行试算,直到取得满意的曲线结果为止。

图1 10分步,每步最大10次迭代结果

图2 20分步,每步最大10次迭代结果

最大迭代/增幅步骤数用于定义每一分步中的迭代/增幅次数,每进行一次迭代则对结果进行判断,收敛值若小于设定值就完成此分步,进入下一步。如果迭代次数达到设定值还未收敛,则停止迭代进入下一步。计算过程在“工程名.puh”文件中可以查看,输出结果包括每一步的迭代结果及收敛误差。如下图所示。

表1 Pushover过程的文本输出(工程名.puh)

3. 输入Pushover荷载工况

静力弹塑性分析的荷载工况

荷载控制即每步增加的侧向荷载是相同的,直至达到最终设定预估倒塌荷载。当定义的塑性铰为FEMA类型时,不能用此种方法。

位移控制即将设定的目标位移按步数均分,每步增加侧向荷载至满足该步的位移增量,每步的荷载增量不一定相同。

在每步计算中以结构某一节点的最大平动位移达到该步目标位移为控制条件。应该注意的是,每步产生最大位移的节点可能不相同,且每次所取的平动位移是在XYZ三个方向中取的大值。所以一般情况下采用主节点控制。

主节点号的选择和主位移方向相关,设定主位移方向后,可取相应于侧向荷载模式的实际荷载条件下,求得的主位移方向上最大位移点的节点号。例如:采用模态振型1的侧向荷载模式(假设振型1主要在X 方向产生位移),主方向为Dx,节点号就根据结构在振型1下X方向最大位移点来选择。而采用静力荷载工况,如Wy时,主方向为Dy,节点号就根据结构在Wy下Y方向的最大位移点来选择。

最大位移初始值可取结构高度与弹塑性层间位移角限值的乘积,当得到能力谱曲线后可根据得到的性能点处位移调整最大位移限值,只要能够使需求谱与能力谱曲线得到交点即可。

初始荷载即竖向静力荷载,该荷载条件下的弹性内力结果将作为Pushover的初应力来处理。一般是取“1.0恒+0.5活”(相当于重力荷载代表值)。

Midas/Gen提供了三类侧向荷载模式,分别为模态、静力荷载工况、加速度常量,每一类下面还有细分选项。

1) 模态可选静力分析得到的所有振型中任意一项。常用的模态为第1、2平动振型,对矩形平面结构而言,分别对应于X或Y方向;对主轴与X或Y轴成一定角度的结构而言,如L 型平面,则对应于结构平面的主轴或主轴垂直方向。对后一类结构,采用模态分布的荷载进行Pushover分析,得到的是地震作用最大的方向的结果,反映了结构最不利方向的抗震性能。高阶平动振型也可作为侧向分布荷载进行分析,用于需要考虑高阶振型影响的结构。

2) 静力荷载工况下包括了所有定义过的静力荷载工况,侧向荷载模式可选择X或Y向风

荷载模式;

3) 加速度常量可选择X、Y或Z三个方向,是将荷载以惯性力的方式加到每层上,作用力的大小仅与楼层质量有关。如果各标准层质量基本相同,这种模式可看作均匀分布的侧向荷载。

在进行Pushover分析时很重要的一点就是要确定结构侧向荷载的加载模式,分析时所选模式应既能反映地震作用下结构各层惯性力的分布特征,又能体现地震作用下结构的位移形状[2]。由于在一种固定荷载分布方式作用下不可能预测结构构件的各种变形情况,应此建议最少用两种侧向荷载分布方式进行分析。根据有关文献,对于层数较低的结构,不同侧向加载方式下,其Pushover曲线、塑性铰分布、屈服机制、结构层间位移等指标差别不大,薄弱层出现的位置大致相同。当层数较高时,结果差异逐渐加大[3]。可先对各种分布方式计算的能力曲线进行分析,然后确定采用何种分布。

4. 定义塑性铰及分配塑性铰一般选用带有性能状态阶段划分的FEMA铰类型,位移结果中可显示不同颜色区分铰的各个阶段,并可在图例中看到各阶段的铰所占比例。

对梁分配弯矩铰,对柱和剪力墙分配轴力-弯矩铰。剪力墙除分配轴力-弯矩铰之外,还须指定剪切铰。考虑剪力墙在罕遇地震下应以弯曲破坏为主,避免出现剪切破坏,以保证结构整体足够的延性。

5. 分析结果 Pushover曲线输出结果如下图所示。

要得到性能点,应该先将结构能力曲线转化成加速度谱-位移谱表示的能力谱曲线。然后定义设计需求谱,设计谱只能在程序内设的各种规范的地震反应谱曲线中选取(注:由于6度区的罕遇地震谱规范没有说明,所以程序中没有预设)。每种侧向力模式下得到的结构能力谱只有一条,反映的是结构自身的抗震能力;而需求谱是可以选择多条,对于不同的地震反应谱,得到的性能点不同。程序提供了两种求性能点的方式,Procedure-A或B,具体计算方法可参见文献[1]。如果能力谱和需求谱有交点,程序会自动给出此时交点的参数,如Sd(谱位移)、Sa(谱加速度);及相应的D(位移)、V(底部剪力)、Teff(等效周期)、Deff (等效阻尼比)。在找到性能点以后,点下方的重画按钮,可以自动添加性能点的输出步骤。在“添加层间位移输出的Pushover步骤”里可以看到性能控制点的结果。

另外,可以在结果>变形>变形形状中查看结构在整个Pushover过程中的变形以及铰生成情况。打开图例选项,能够看到各分步中,处于各个阶段(界限点为B、IO、LS、CP、CD、E)的铰的比例。如下图所示:

塑性铰分布图

在MIDAS/Gen中采用与FEMA-273或ATC-40中推荐的方法类似的方法评价构件的性能。如图所示性能铰状态分为下列阶段。

图 1 构件的性能评价

A点:未加载状态。

AB段:弹性阶段,具有初始刚度。

B点:公称屈服强度状态。

BC段:强度硬化阶段,刚度一般为初始刚度的5-10%,对相邻构件间的内力重分配有较大影响。

对BC段做了更细致的划分:

IO = 直接居住极限状态(Immediate Occupancy)

LS = 安全极限状态(Life Safety)

CP = 坍塌防止极限状态(Collapse Prevention)

C点:由公称强度开始,构件抵抗能力下降。

CD段:构件的初始破坏状态,钢筋混凝土构件的主筋断裂或混凝土压碎状态,钢构件抗剪能力急剧下降区段。

DE段:残余抵抗状态,公称强度的20%左右。

E点:最大变形能力位置,无法继续承受重力荷载的状态。

对构件层面而言,性能铰的状态与性能水准的对应如下:

1) 构件完好、无损伤:构件性能铰处于AB段,此时构件完全处于弹性阶段;

2) 构件轻微损坏,出现轻微裂缝:构件性能铰处于B~IO阶段,此时构件刚进入塑性,塑性程度较浅;

3) 构件中等损坏,出现明显裂缝:构件性能铰处于IO~LS阶段,此时构件已进入屈服阶段;

4) 构件严重损坏,但不发生局部倒塌:构件性能铰处于LS~CP、CP~C阶段,此时构件塑性承载力充分发挥,接近破坏。

二工程实例: 1 项目概况单元为地上56层的高层建筑,平面呈“T”形,建筑物长度(L) 32.85 m、最大宽度(Bmax) 19.50m、高度(H)为179.60m,平面在128.35m标高处沿长度方向收进后的长度(L1)为27.25m,高宽比H/Bmax为9.21。结构类型为钢筋混凝土全部落地剪力墙结构。总高度和高宽比均超过规范B级高度钢筋混凝土高层建筑结构的限值,为超B级高度钢筋混凝土高层建筑。属超限高层建筑工程,根据相关文件要求,须进行基于性能的抗震设计。

2 结构抗震性能设计结构抗震性能目标确定为性能目标“D”,即满足小、中、大震各阶段下的性能水准。具体内容详见参考文献[1]。

性能设计时,先按现行规范进行小震阶段的结构设计,再通过Pushover分析校核中、大震性能水准。根据校核结果调整结构设计进行第二次设计。

3 Pushover分析过程水平推覆力分布采用模态分布、风荷载分布、常量加速度分布三种形式,通过Pushover法建立结构的能力谱,由规范反应谱变换为结构中、大震作用下的需求谱,找出结构性能点。

根据性能点时的结构变形,对以下两个方面进行评价:

a)层间位移角:是否满足抗震规范规定的弹塑性层间位移角限值;

b)结构变形:由结构塑性铰的分布,判定结构薄弱位置。根据塑性铰所处的状态,检验结构构件是否满足大震作用性能水准的要求。

3.1 Pushover参数

1) Pushover分析控制

荷载最大增幅次数 10。

最大迭代/增幅步骤数 10。

收敛值 0.001。

2) Pushover工况定义

本工程采用三种类型的荷载分布模式进行Pushover分析,即模态分布模式、风荷载分布模式、加速度常量分布模式。考虑到结构的非对称性,每种荷载分别按X、Y两个主方向加载,每个方向分别考虑正负不同情况。对上述共12个荷载工况进行了Pushover分析,得到各个工况的能力谱曲线。

表2

名称侧向荷载模式类型荷载

选择荷载

乘数控制

方式控制

位移

(米)主节点主方

是否使用初始荷载考虑P-Delta效应

模态2

(正)

模态振型21位移

(Push_M

2+)

控制0.5该工况

DX是是

下顶层

最大位

移点

模态2

(负)

模态振型2-1位移

(Push_M

2-)

控制-0.5"DX""

模态1

(正)

模态振型11位移

(Push_M

1+)

控制0.5"DY""

模态1

(负)

模态振型1-1位移

(Push_M

1-)

控制-0.5"DY""

风载(正)

X向

静力

(Push_Wx

+)

荷载风荷载

Wx1位移

控制0.5"DX""风载(负)

静力

-X向

(Push_Wx

-)

荷载风荷载

Wx-1位移

控制-0.5"DX""风载(正)

Y向

(Push_Wy

静力

+)

荷载风荷载

Wy1位移

控制0.5"DY""风载(负)

静力

-Y向

(Push_Wy

-)

荷载风荷载

Wy-1位移

控制-0.5"DY""加速度

加速度常量方向

(正)X

(Push_Ax

+)

DX1位移

控制0.5"DX""加速度

加速度常量方向

(负)-X

(Push_Ax

-)

DX-1位移

控制-0.5"DX""加速度

(正)Y加速度常量方向

(Push_Ay

+)

DY1位移

控制0.5"DY""

加速度

加速度常量方向

(负)-Y

(Push_Ay

-)

DY-1位移

控制-0.5"DY""

初始荷载采用“1.0恒载标准值+0.5活载标准值”。

3)定义及分配铰特性值

表3

分类名称铰功能铰类型分配位置

FEMA梁端I,J

梁铰LJ弯矩

-y,z

墙铰QJ P-My-Mz FEMA墙上下端I,J

QVJ V FEMA墙中部

墙剪切

4)需求谱的设定

需求谱即不同设防阶段对应的地震作用反应谱,6度中震反应谱以7度半小震反应谱代替;6度大震反应谱以8度半小震反应谱代替。

表4

6度小震6度中6度大

αmax

0.04

0.11 0.23 αmax 替代值

— 0.12

0.24

3.2 Pushover 结果(部分) 结果曲线

3.3 Pushover结果特点:

1)能力谱曲线前段较为平滑,显示结构处于弹性阶段,位移与基底剪力呈线性递增;曲线后半部分出现波动,显示结构进入塑性阶段。根据设定位移得到的能力谱曲线,在中震与大震需求谱下均能得到性能点,性能点参数合理。

2)X、Y两个主方向的能力谱曲线存在明显差异。X方向的曲线平滑段较Y方向短,从得到的能力谱与需求谱交点来看,Y方向基本在弹性阶段而X方向有部分进入塑性,显示结构

在Y向的抗侧力性能优于X方向。

3)三种侧向加载形式得到的性能点有较大差别。

4)考虑剪力墙体系刚度大,变形能力较差的特点,设定目标位移为0.5米,分10步进行加载(即每步0.05米)。而实际得到性能点时结构顶点位移均在0.15米左右。大震性能点处结构弹塑性层间位移均小于规范限值1/120,且底部各层(1~10层)层间位移小于1/300,满足性能目标设定要求。

5)在进入塑性后,墙体塑性铰主要分布于较短的墙肢,或长短墙肢都出铰但短墙肢上铰的塑性程度较深,表明短墙肢为抗震薄弱部位,有必要加强构造。

6)结构在第40层收进,导致此部位刚度突变。在中震作用下,加速度常量分布(-X向)加载时出现塑性铰,主要分布于收进部位上下楼层(33~41层)局部墙肢,塑性铰的程度较浅(均在B-IO阶段)。表明此部位为抗震薄弱部位,须作构造加强。大震作用下,X向各工况出现一定数量的塑性铰,塑性程度较深的铰分布主要位于较短墙肢处;而Y方向大震作用下表现为弹性。大震弹塑层间位移角满足规范限值及性能水准3设定要求。

4 弹塑性分析结论:

1)弹塑性分析结果满足结构抗震性能目标,其中结构竖向收进处;剪力墙连梁处及剪力墙小墙肢处,出铰较多,为结构较薄弱部位,应加强抗震构造措施。

2)根据相应性能水准下的构件延性要求,以大震下达到性能水准3确定本工程所需满足延性为“高延性”,相当于一级抗震等级构造要求。因此结构抗震等级定为一级。其中在结构竖向收进处上下几层的抗震等级定为特一级。

三结论首先,对剪力墙体系的结构而言,采用Midas进行静力弹塑性分析省去了人工代换的繁琐过程,便于设计中操作。其次,根据超高层剪力墙结构体系工程实例的分析可见,其结果反映了结构在罕遇地震下的薄弱部位和结构变形状况,能说明结构抗震性能特点,得到的分析结果是有价值的。

但不能忽视的是,由于理论研究和软件开发滞后于实际设计应用的要求,虽然有多种改进后的Pushover方法能够提高分析精度和扩大适用范围,但是没有便于实际操作设计软件。Midas/Gen内设为最基本的Pushover方法,对于高层剪力墙体系的适用性值得进一步探讨。Midas/Gen程序本身也存在一些不足,比如弹塑性墙单元采用类似薄壁柱的简化方式对剪力墙体系的Pushover结果会带来误差。

致谢:本文得到王小南主任工程师的悉心指导,在此表示感谢。

参考文献

[1]. 徐培福,傅学怡,王翠坤,肖从真编著:《复杂高层建筑结构设计》,中国建筑工业出版社,2005年2月第一版

[2]. 葛家琪,王明珠等:天津云顶花园综合楼结构抗震设计研究,《第十九届全国高层建筑结构学术交流会论文集》,2006年7月

[3]. 薛彦涛,徐培福,肖从真,徐自国:静力弹塑性分析(PUSH-OVER)方法及工程应用,《第十九届全国高层建筑结构学术交流会论文集》,2004年8月

[4]. Midas/Gen用户手册及相关培训资料,北京迈达斯技术有限公司

[5]. 武汉世茂锦绣长江房地产开发有限公司锦绣长江A2地块1号楼超限高层建筑工程抗

震设防可行性论证报告,2007年4月

SAP2000之Pushover分析

SAP2000之Pushover分析 Pushover分析:基本概念 静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。 Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具,得到了重视和发展。这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式;第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应,目前可分为以A TC-40为代表的CSM和以FEMA356为代表的NSP (Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整。两者在理论上是一致的。在一些文献中将第一方面的内容称为Pushover,不包括计算目标位移和结果评价的内容。本文中,将两方面的内容统称为“Pushover 分析”。基于结构行为设计使用Pushover分析包括形成结构近似需求和能力曲线并确定曲线交点。需求曲线基于反应谱曲线,能力谱基于Pushover分析。在Pushover分析中,结构在逐渐增加的荷载作用下,其抗侧能力不断变化(通常用底部剪力-顶部位移曲线来表征结构刚度与延性的变化,这条曲线我们可以看成为表征结构抗侧能力的曲线)。将需求曲线与抗侧能力曲线绘制在一张图表中,如果近似需求曲线与能力曲线的有交点,则称此交点为性能点。利用性能点能够得到结构在用需求曲线表征的地震作用下结构底部剪力和位移。通过比较结构在性能点的行为与预先定义的容许准则,判断设计目标是否满足。在结构产生侧向位移的过程中,结构构件的内力和变形可以计算出来,观察其全过程的变化,判别结构和构件的破坏状态,Pushover分析比一般线性抗震分析提供更为有用的设计信息。在大震作用下,结构处于弹塑性工作状态,目前的承载力设计方法,不能有效估计结构在大震作用下的工作性能。Pushover分析可以估计结构和构件的非线性变形,结果比承载力设计更接近实际。Pushover分析相对于非线性时程分析,可以获得较为稳定的分析结果,减少分析结果的偶然性,同时可以大大节省分析时间和工作量。

高层建筑结构Pushover分析方法的研究现状及改进设想

收稿日期:2008-03-09 作者简介:张志飞(1971—),男,安徽枞阳人,安徽省池州市规划建筑设计院工程师,国家一级注册结构工程师,主要从事建筑设计工作和研究。 目前世界各国在高层建筑结构抗震设计中,广泛采用简便且易于实施的弹性分析方法(包括底部剪力法、振型分解反应谱法及弹性时程分析方法)。然而,现有的结构抗震设计没有也不能保证结构在强震作用下也能完全处于弹性状态。国内外历次震害表明,对高层建筑结构进行大震作用下的弹塑性变形验算是必要的。因为弹性变形分析不可能完全真实地反映高层建筑结构在强震作用下的受力性能。当前,动力弹塑性分析方法的应用尚不普及,通常仅限于理论研究中。Pushover分析方法是近年来较为流行的一种结构抗震弹塑性分析方法,许多国家的建筑抗震设计规范已经或计划将这一分析方法纳入其中(如美国的ATC—40,FE-MA273[1]、274[2]。日本、韩国的抗震设计规范及欧共体抗震设计规范等)。 我国新的建筑抗震设计规范将Pushover方法与动力弹塑性分析方法,并列为罕遇地震作用下高层建筑结构抗震变形验算的基本方法。由于 Pushover方法是我国建筑抗震设计规范指定的结构 抗震变形验算的基本方法,工程设计人员迫切需要知道其适用范围、计算过程及实施步骤,更希望能提高其可靠性、扩展其适应范围。可以说,发展、改进结构Pushover(静力弹塑性)方法是势在必行,是我国工程抗震研究领域面临的重要任务之一。 1高层建筑结构平面Pushover分析方法 目前Pushover(亦称静力弹塑性分析)方法的 研究,一般以平面结构为研究对象,研究的重点集 中在加载模式、目标位移及Pushover方法的可靠性分析等方面。在Pushover方法合理加载模式的选择研究方面,Lawson等[3]以四类抗弯框架(2层、5层、 10层和15层)为研究对象,通过与动力弹塑性分 析的结果进行比较,探讨了3种侧向加载模式(UBS设计加载模式、 均布加载模式、组合振型加载模式)的可靠性;Valles和Reinhorn[4]同样以一个四层建筑为例,比较了均布加载模式、倒三角形加载模式、幂级数加载模式及自适应动态加载模式对 Pushover分析结果的影响;杨溥等[5]、Moghadam[6]等 也作过类似的研究。 事实上,上述研究的各种加载模式均是单调增加的荷载分布,不可能从根本上解决其与实际地震荷载的差别,无法兼顾低阶振型与高阶振型的影响。正是基于上述原因,FEMA—273(1997)在其第 2章第9条第2款对Pushover方法的应用范围作 了限制,规定对于高阶振型影响较大的高层建筑,不宜单独应用Pushover分析;如果应用Pushover分析,必须要对高层建筑进行动力弹性分析,并由此按照有关条款修正Pushover分析结果。若要突破 FEMA—273的规定,使Pushover方法有更广泛的 应用范围,必须采用新的思路。 为此,周锡元等人[7]提出了以反应谱为基础,考虑高阶振型的高层建筑结构的静力弹塑性分析方法,在同一时期,加利福尼亚大学伯克利分校的 Chopra教授[8,14]也提出了计算过程及计算原理完全 相同的振型静力弹塑性分析方法(ModalPushover Analysis,简称MPA)。这种MPA方法适用于包括 高层建筑结构Pushover分析方法的研究现状及改进设想 张志飞 (池州市规划建筑设计院,安徽池州247000) [摘要]Pushover分析方法近年来应用日益广泛,并成为基于性能的设计方法中的最重要工具之一。本文回顾了高层建筑结构pushover分析方法的发展,对该法的研究现状进行了分析与探讨,针对该研究领域现存的一些问题,提出了若干改进的设想,供高层建筑结构研究与设计参考。 [关键词]高层建筑结构;pushover;研究现状[中图分类号]TU31 [文献标识码]A [文章编号]1674-1102(2008)03-0061-03 2008年6月第22卷第3期 Jun.2008Vol.22No.3 JournalofChizhouCollege

实验一多元分析报告方法

班级:信息000 学号:200612030000姓名:实验组别: 实验日期:2015.6 报告日期:2015.7.14 成绩: 报告内容:(目的和要求、原理、步骤、数据、计算、小结等) 实验名称:多元统计分析方法 一、实验目的 统计分布是用来刻画随机变量特征及规律的重要手段,是进行统计分布的基础和提高。多元统计分析方法则是建立在多元统计分布基础上的一类处理多元统计数据方法的总称,是统计学中的具有丰富理论成果和众多应用方法的重要分支。在本文中,我们将对多元统计分析方法做一个大体的描述,并通过一部分实例来进一步了解多元统计分析方法的具体实现过程。 二、多元统计分析方法的研究对象和主要内容 (一)多元统计分析方法的研究对象 由于大量实际问题都涉及到多个变量,这些变量又是随机变量,所以要讨论多个随机变量的统计规律性。多元统计分析就是讨论多个随机变量理论和统计方法的总称。其内容包括一元统计学中某些方法的直接推广,也包括多个随即便量特有的一些问题,多元统计分析是一类范围很广的理论和方法。 (二)多元统计分析方法的主要内容 从形式上,常用多元统计分析方法可划分为两类: 一类属于单变量常用的统计方法在多元随机变量情况下的推广和应用,如多元回归分析,典型相关分析等; 另一类是对多元变量本身进行研究所形成的一些特殊方法。如主成分分析,因子分析,聚类分析,判别分析,对应分析等。 三、各种多元统计分析方法 具体来说,常用的多元统计分析方法主要包括:多元回归分析、聚类分析、判别分析、主成分分析、因子分析、对应分析、典型相关分析等。下面我们对各种多元统计分析方法就行分别描述, (一)回归分析 回归分析是最灵活最常用的统计分析方法之一,它用于分析一个因变量与一个或多个自变量之间的关系。特别是用于:(1)定量的描述和解释相互关系;(2)估测或预测因变量的值。 多元回归分析是研究因变量Y与m个自变量 12··· m x x ,,,x的相关关系,而

PUSHOVER分析

提要:本文首先介绍采用Midas/Gen进行Pushover分析的主要方法及使用心得,然后结合工程实例进行具体说明,其结果反映出此类结构在大震下表现的一些特点,可供类似设计参考。 关键词:Pushover 剪力墙结构超限高层 Midas/Gen 静力弹塑性分析(Pushover)方法是对结构在罕遇地震作用下进行弹塑性变形分析的一种简化方法,本质上是一种静力分析方法。具体地说,就是在结构计算模型上施加按某种规则分布的水平侧向力,单调加荷载并逐级加大;一旦有构件开裂(或屈服)即修改其刚度(或使其退出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到结构达到预定的状态(成为机构、位移超限或达到目标位移),得到结构能力曲线,并判断是否出现性能点,从而判断是否达到相应的抗震性能目标[1]。 Pushover方法可分为两个部分,第一步建立结构能力谱曲线,第二步评估结构的抗震性能。 对剪力墙结构体系的超限高层而言,选取Pushover计算程序的关键是程序对墙单元的设定。SAP2000、ETABS软件没有提供剪力墙塑性铰,对框-剪结构可将剪力墙人工转换为模拟支撑框架进行分析;对剪力墙结构来说,进行转换不可行。而Midas/Gen程序提供了剪力墙Pushover单元(类似薄壁柱单元,详见用户手册),对剪力墙能够设置轴力-弯矩铰以及剪切铰。下面将详细介绍如何在Midas/Gen中进行Pushover分析的步骤(以Midas/Gen 6.9.1为例): 一 Pushover分析步骤 1. 结构建模并完成静力分析和构件设计直接在Midas/Gen中建模比较繁琐,可以用接口转换程序从SATWE(或其他程序如SAP2000)中导入。SATWE转换程序由Midas/Gen提供,会根据PKPM的升级而更新。转换仅需要SATWE中的Stru.sat 和Load.sat文件。转换时需要注意的是,用转换程序导入SATWE的模型文件后,形成的是Midas/Gen的Stru.mgt文件,是模型的文本文件形式,需要在Midas/Gen中导入此文件,导入后还应该注意以下几个问题: 1) 风荷载及反应谱荷载没有导进来,需要在Midas/Gen中重新定义; 2) 需要定义自重、质量; 3) 需要定义层信息,以及墙编号; 此外,还应注意比较SATWE的质量与Midas/Gen的质量,并比较两者计算的周期结果实否一致。 2. 输入Pushover分析控制用数据 荷载最大增幅次数用于定义达到设定的目标位移(或荷载)的分步数,一般来说,分步越多,每次的增幅越小,最终得到的能力谱曲线越平滑。但是分步过多带来计算时间上的大大增加,所以取值应该由少至多进行试算,直到取得满意的曲线结果为止。 图1 10分步,每步最大10次迭代结果

16种常用的大数据分析报告方法汇总情况

一、描述统计 描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。 1)U验使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别; B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;

C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验 非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。 A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。 三、信度分析 检査测量的可信度,例如调查问卷的真实性。 分类: 1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度 2、在信度;每个量表是否测量到单一的概念,同时组成两表的在体项一致性如何,常用方法分半信度。 四、列联表分析 用于分析离散变量或定型变量之间是否存在相关。

SAP2000之Pushover分析

Pushover分析:基本概念静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具,得到了重视和发展。这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式;第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应,目前可分为以ATC-40为代表的CSM和以FEMA356为代表的NSP (Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整。两者在理论上是一致的。在一些文献中将第一方面的内容称为

PUSHOVER方法

PUSHOVER方法 1.介绍 PushOVER计算是属于非线性静力计算,可以考虑多种非线性:材 料非线性(在连接/支座单元内的多种类型的非线性属性;框架单元内 的拉和/或压极限;框架单元内的塑性铰);几何非线性(P-delta 效应;大位移效应);阶段施工(结构改变;龄期、徐变、收缩)。 所有在模型中定义的材料非线性将在非线性静力分析工况中考虑。 用户可选择考虑几何非线性的类型:无 P-delta 效应大位移效应。阶 段施工可作为一个选项。即使独立的阶段是线性的,结构从一个阶段 到下一阶段被考虑为非线性。 2 加载 用户可施加任意荷载工况组合、加速度荷载和模态荷载。其中模态 荷载是用于pushover分析的特定类型的荷载。它是在节点的力的模式,与特定振型形状、圆频率平方(ω2)、分配至节点质量的乘积成正比。 指定的荷载组合同时施加。一般地,荷载从零增加至完全指定的量。对于特殊目的(如 pushover 或 snap-though 屈曲),用户可选择使用监 控结构所产生的位移来控制加载。 当用户知道所施加的荷载量,且期望结构能够承担此荷载时,选择 荷载控制。例如,施加重力荷载。在荷载控制下,所有荷载从零增加 至完全指定的量。 当用户知道所期望的结构位移,但不知道施加多少荷载时,选择位 移控制。这对于在分析过程中可能失去承载力而失稳的结构,是十分 有用的。标准的应用包括静力pushover 或 snap-though 屈曲分析。用户 必须选择一个位移分量来监控,可以是节点的单个自由度,或一个用 户以前定义的广义位移。用户必须指定分析中的目标位移。程序将试 图施加达到此位移的荷载。荷载量在分析中可被增加或减少。确认选 择一个在加载过程中单调增加的位移分量。若这不可能,则用户必须 将分析分割至两个或更多的顺序工况,在不同的工况中改变所监控的 位移。 注意使用位移控制和在结构施加位移荷载是不同的!位移控制只用 来计量从所施加荷载产生的位移,来调整荷载量,以试图达到某种计 量的位移值。 3 铰卸载方法 卸载整个结构;局部卸载;使用割线刚度重新开始。第一种方法通 常使用,效率最高,第三种方法效率最低。 4 PUSHOVER方法 非线性静力pushover分析是一个特定的过程,用于地震荷载的基于 性能的设计。 SAP2000 提供了pushover 分析需要的下列工具:

调研报告的格式及写作方法

什么是调研报告? 对某一情况、某一事件、某一经验或问题,经过在实践中对其客观实际情况的调查了解,将调查了解到的全部情况和材料进行“去粗取精、去伪存真、由此及彼、由表及里”的分析研究,揭示出本质,寻找出规律,总结出经验,最后以书面形式陈述出来,这就是调研报告。 调研报告的核心是实事求是地反映和分析客观事实。调研报告主要包括两个部分:一是调查,二是研究。调查,应该深入实际,准确地反映客观事实,不凭主观想象,按事物的本来面目了解事物,详细地占有材料。研究,即在掌握客观事实的基础上,认真分析,透彻地揭示事物的本质。至于对策,调研报告中可以提出一些看法,但不是主要的。因为,对策的制定是一个深入的、复杂的、综合的研究过程,调研报告提出的对策是否被采纳,能否上升到政策,应该经过政策预评估。 调研报告的格式 标题页 1、标题 2、客户(委托人) 3、调研公司 4、日期 内容目录 1、章节标题和副标题,附页码 2、图表目录 3、附录目录 执行性摘要 1、目标的简要陈述** 2、调研方法的简要陈述 3、主要调研结果的简要陈述*** 4、结论与建议的简要陈述*** 5、其他相关信息(如特殊技术、局限、背景信息) 分析与结果(详细)****

1、调查基础信息 2、一般性的介绍分析类型 3、表格与图形 4、解释性的正文 结论与建议*** 调查方法 1、研究类型、研究意图、总体的界定 2、样本设计与技术规定 a、样本单位的界定 b、设计类型(概率性与非概率性,特殊性) 3、调查问卷 a、一般性描述 b、对使用特殊类型问题的讨论 4、特殊性问题或考虑 5、局限 a、样本规模的局限 b、样本选择的局限 c、其他局限(抽样误差、时机、分析等) 附录 1、调查问卷 2、技术性附录(如统计工具、统计方法) 3、其他必要的附录(如调查地点的地图等) 如何撰写市场调研报告 调查报告是整个调查工作,包括计划、实施、收集、整理等一系列过程的总结,是调查研究人员劳动与智慧的结晶,也是客户需要的最重要的书面结果之一。 它是一种沟通、交流形式,其目的是将调查结果、战略性的建议以及其他结果传递给管理人员或其他担任专门职务的人员。 因此,认真撰写调查报告,准确分析调查结果,明确给出调查结论,是报告撰写者的责任。

静力弹塑性分析(Pushover分析)两种方法剖析

静力弹塑性分析(Pushover 分析) ■ 简介 Pushover 分析是考虑构件的材料非线性特点,分析构件进入弹塑性状态直至到达极限状态时结构响应的方法。Pushover 分析是最近在地震研究及耐震设计中经常采用的基于性能的耐震设计(Performance-Based Seismic Design, PBSD)方法中最具代表性的分析方法。所谓基于性能的耐震设计就是由用户及设计人员设定结构的目标性能(target performance),并使结构设计能满足该目标性能的方法。Pus hover 分析前要经过一般设计方法先进行耐震设计使结构满足小震不坏、中震可修的规范要求,然后再通过pushover 分析评价结构在大震作用下是否能满足预先设定的目标性能。 计算等效地震静力荷载一般采用如图2.24所示的方法。该方法是通过反应修正系数(R)将设计荷载降低并使结构能承受该荷载的方法。在这里使用反应修正系数的原因是为了考虑结构进入弹塑性阶段时吸收地震能量的能力,即考虑结构具有的延性使结构超过弹性极限后还可以承受较大的塑性变形,所以设计时的地震作用就可以比对应的弹性结构折减很多,设计将会更经济。目前我国的抗震规范中的反应谱分析方法中的小震影响系数曲线就是反应了这种设计思想。这样的设计方法可以说是基于荷载的设计(force-based design)方法。一般来说结构刚度越大采用的修正系数R 越大,一般在1~10之间。 但是这种基于荷载与抗力的比较进行的设计无法预测结构实际的地震响应,也无法从各构件的抗力推测出整体结构的耐震能力,设计人员在设计完成后对结构的耐震性能的把握也是模糊的。 基于性能的耐震设计中可由开发商或设计人员预先设定目标性能,即在预想的地震作用下事先设定结构的破坏程度或者耗能能力,并使结构设计满足该性能目标。结构的耗能能力与结构的变形能力相关,所以要预测到结构的变形发展情况。所以基于性能的耐震设计经常通过评价结构的变形来实现,所以也可称为基于位移的设计(displacement-based design)。 Capacity (elastic) Displacement V B a s e S h e a r 图 2.24 基于荷载的设计方法中地震作用的计算

静力弹塑性分析_PushoverAnalysis_的基本原理和计算实例

收稿日期:2003-02-16; 修订日期:2003-05-12 基金项目:华东建筑设计研究院有限公司第2001年度科研项目. 作者简介:汪大绥(1941-),男,江西乐平人,教授级高工,主要从事大型复杂结构设计与研究工作. 文章编号:100726069(2004)0120045209 静力弹塑性分析(Pushover Analysis )的 基本原理和计算实例 汪大绥 贺军利 张凤新 (华东建筑设计研究院有限公司,上海200002) 摘要:阐述了美国两本手册FE M A273/274和AT C -40中关于静力弹塑性分析的基本原理和方法,给出了利用ET ABS 程序进行适合我国地震烈度分析的计算步骤,并用一框剪结构示例予以说明,表明 Pushover 方法是目前对结构进行在罕遇地震作用下弹塑性分析的有效方法。 关键词:静力弹塑性;能力谱;需求谱;性能点中图分类号:P315.6 文献标识码:A The basic principle and a case study of the static elastoplastic analysis (pushover analysis) W ANG Da 2sui HE Jun 2li ZH ANG Feng 2xin (East China Architectural Design &Research Institute C o.,Ltd ,Shanghai 200002,China ) Abstract :This paper reviews the basic principles and methods of the static elasto 2plastic analysis (pushover analysis )in FE MA273/274and in AT C 240.Its main calculation procedures are summarized and a case study is presented for the frame 2shearwall structure designed according to China C ode for Seismic Design by means of ET ABS.It has been proved that pushover analysis is a effective method of structural elastoplastic analysis under the maximum earthquake action.K ey w ords :static elastoplastic ;capacity spectrum ;demand spectrum ;performance point 1 前言 利用静力弹塑性分析(Pushover Analysis )进行结构分析的优点在于:既能对结构在多遇地震下的弹性设 计进行校核,也能够确定结构在罕遇地震下潜在的破坏机制,找到最先破坏的薄弱环节,从而使设计者仅对局部薄弱环节进行修复和加强,不改变整体结构的性能,就能使整体结构达到预定的使用功能;而利用传统的弹性分析,对不能满足使用要求的结构,可能采取增加新的构件或增大原来构件的截面尺寸的办法,结果是增加了结构刚度,造成了一定程度的浪费,也可能存在新的薄弱环节和隐患。 对多遇地震的计算,可以与弹性分析的结果进行验证,看总侧移和层间位移角、各杆件是否满足弹性极限要求,各杆件是否处于弹性状态;对罕遇地震的计算,可以检验总侧移和层间位移角、各个杆件是否超过弹塑性极限状态,是否满足大震不倒的要求。 20卷1期2004年3月 世 界 地 震 工 程 W OR LD E ARTH QUAKE E NGI NEERI NG V ol.20,N o.1 Mar.,2004

非分析方法研究分析报告

?分类法 ?排列法 ?点数法 ?配对比较法 ?点数加权法 ?工资市场调查 分类法 分类法是排列法的改革,又称归级法。它是在岗位分析基础上,采纳一定的科学方法,按岗位的工作性质、特征、繁简难易程度、工作责任大小和人员必须具备的资格条件,对企业全部(或规范范围内)岗位所进行的多层次的划分,即先确定等级结构,然后再依照工作内容对工作岗位进行归类。 这种方法中,最关键的一项工作是确定等级标准。各等级标准应明确反映出实际上各种工作在技能、责任上存在的不同水平。在确定不同等级要求之前,要选择出构成工作差不多内容的基础因素,但如何选择因素或选取多少则依

据工作性质来决定。在实际测评时,应注意不能把岗位分解成各构成要素,而是要作为整体进行评定。岗位分类同企业单位以外的职业分类标准存在紧密的联系。各类职业分类标准是以企业单位、国家机关岗位分类为基础制定的。一旦这类标准建立之后,企业单位在进行岗位分类时,便可依据、参照或执行这类标准。 (一)分类法的具体操作步骤 1、岗位分析。和其他方法一样,岗位分析是基础的预备工作。由企业内专门人员组成的评定小组,收集各种有关的资料、数据,写出调查报告。 2、岗位分类。按照生产经营过程中各类岗位的作用和特征,首先将全部岗位划分为若干个大类。然后在划分大类的基础上,再进一步按每一大类中各种岗位的性质和特征,划分为若干中类。最后,再依照每一种类中反映岗位性质的显著特征,将岗位划分为若干小类。 3、建立等级结构和等级标准。由于等级数量、结构与组织结构有明显的关系,因此这一步骤比较重要和复杂。它包括以下三个方面: (1)确定等级数量。等级的数量取决于工作性质、组织规模、功能的不同和有关人事政策。不同企业依照各自的实际情况,选择一定的等级数量,并没有同一的规定和要求。但不管是对单个的职务依旧对组织整体都要确定等级

考虑竖向地震效应的模态Pushover分析方法

考虑竖向地震效应的模态Pushover 分析方法 3 尹 犟 易伟建 (湖南大学土木工程学院,长沙 410082) 摘 要:传统的Pushover 方法未考虑竖向地震效应对结构水平位移需求的影响,当地面运动中竖向分量所占比例相对较高时,该方法很难对结构最大位移需求作出精确估计。通过对其进行改进,提出首先对结构按一定方式施加竖向地震引起的惯性力,随后进行结构水平向的多模态推覆分析,并按SRSS 方法计算其最大位移需求。最后采用一多层混凝土框架结构对其进行验证,结果表明,该方法所得的楼层位移及层间位移角与非线性时程分析结果十分接近,具有较高的精度。 关键词:竖向地震;Pushover 分析;竖向模态;位移需求 THE MODA L PUSH OVER ANA LYSIS WITH THE CONSI DERATION OF THE VERTICA L SEISMIC EFFECTS Y in Jiang Y i Weijian (C ollege of Civil Engineering ,Hunan University ,Changsha 410082,China ) Abstract :In the traditional Pushover method ,the vertical earthquake effect ,which has an impact on horizontal displacement ,is not taken into consideration.When the seismic intensity in vertical direction takes a high ratio ,it is hard to accurately estimate the maximum displacement demands on structure by the traditional Pushover method.Hence ,the paper aims at making improvement on the traditional one.Firstly ,the inertial force caused by vertical earthquake is en forced on structure according to certain means.Then ,the multi 2m ode Pushover analysis procedures are applied in the horizontal direction of structure ,and the maximum displacement demand is calculated on the ground of SRSS method.A multistory concrete frame is applied to testify this theory.The data shows that ,using the improved method ,the numerical results of floor displacement and story drift ratio are well agreed with the results from nonlinear time 2history analysis ,which dem onstrated that the improved method is of high accuracy. K eyw ords :vertical earthquake ;pushover analysis ;vertical m ode ;displacement demands 3国家自然科学基金(50678064)和湖南省科技厅重点项目 (06F J3003)资助。 第一作者:尹犟,男,1975年10月出生,博士生。 E -mail :yinjiang2001@https://www.sodocs.net/doc/1e760552.html, 收稿日期:2009-01-20 0 引 言 地震工程的传统观点通常认为,竖向地震对结构的影响远小于水平地震。若取地震加速度记录中较大的一个水平分量为基数,其竖向分量峰值PG A 2 v 与水平峰值PG A 2h 之比仅为1Π2~1Π3左右 [1] 。然 而,近几十年来国内外发生的多次强震表明,竖向地震的强度也能达到十分可观的程度 [2-5] 。如:美国 Im perial Valley 1979、Loma Prieta 1989、Northridge1994 及台湾Chichi 1999地震中均曾测得PG A 2v ΠPG A 2h 大于1的地面运动纪录。不仅如此,同期震害调查也显示,某些强震中结构物的破坏的确存在着竖向地震作用的明显痕迹 [6-8] 。如:1985年四川自贡418 级地震,震中区多层砖房破坏严重,震害主要表现为随处可见的水平横缝和环缝,由水平地震引起的典型破坏特征(剪切斜裂缝及X 裂缝)则很少出现; 1995年日本神户地区712级地震中,许多7~8层混 凝土框架结构房屋破坏严重,震害主要表现为3~4 层部位混凝土框架柱纵向钢筋受压屈服,混凝土被压碎,底层柱的破坏程度却相对较轻,以上震害现象均被视为竖向地震作用导致结构破坏的典型案例。 作为一种结构非线性反应的简化分析方法,Pushover Analysis 以其相对较高的精度、简单的工作量及广泛的适用性受到各国学者的普遍关注并得到 广泛应用[10-14] 。目前,Pushover 分析大都仅考虑水平方向的地震作用。然而有研究表明,当竖向分量在地面运动加速度过程中所占比例相对较大时,竖 9 3Industrial C onstruction V ol 139,N o 15,2009 工业建筑 2009年第39卷第5期

PUSHOVER分析

静力非线性(Pushover)分析 静力非线性(包括 pushover)分析是一个强有力的功能,仅提供在ETABS 非线性版本中。除了为基于抗震设计性能执行 Pushover 分析外,此功能还可用于执行常规静力非线性分析和分段式(增加)构造的分析。 执行任何非线性将花费许多时间与耐性。在执行静力非线性分析前,请仔细阅读下列全部信息。要特别注意其中的重要事项。 非线性 静力非线性分析中可以考虑几类非线性特征。 在框架/线单元中不连续的用户定义铰的材料非线性。铰沿着任何框架单元长度指定到任何位置数上(参见线对象的框架非线性铰指定)。非耦合弯矩、扭矩、轴力和剪力铰是有效的。也有根据铰位置上的交互作用轴力和弯矩所屈服的耦合 P-M2-M3 铰。在相同的位置可存在多于一种的铰类型。例如,可以指定一个 M3(弯矩)和一个 V2(剪力)铰到框架单元的相同端部。所提供的默认铰属性是基于 ATC-40 和 FEMA-273 标准的。 在连接单元中材料的非线性。有效非线性特征包括沿任何自由角度的缝隙(仅压力)、hook(仅张力)、单轴塑性,以及两种基本隔震器类型(双轴塑性和双轴磨擦/摆动)(参见线对象的连接属性指定)。连接阻尼属性在静力非线性分析中没有效应。 所有单元中的几何非线性。可以选择仅考虑 P-△ 效应或考虑 P-△ 效应加上大位移(请参见几何非线性效应)。大位移效应考虑变形配置的平衡,并允许用于大平移和旋转。但是,每个单元中的应变被假设保留为小值。 分段(顺序)施工。在每个分析工况中,可按阶段施工顺序添加或删除构件(请参见静力非线性分段施工)。 分析工况 静力非线性分析可由任何数量的工况组成。每个静力非线性工况在结构中可有不同的荷载分布。例如:典型静力非线性分析可由三种工况组成。 第一种为结构应用重力荷载,其次为在结构的高度上应用一个横向荷载分布,第三种将在结构高度上应用另一个横向荷载分布。 静力非线性工况可从零初始状态开始,或从前一工况末的结果开始。 在前一例子中,重力工况将从零初始状态开始,两个横向工况可从重力工况末开始。 每个分析工况可由多个施工阶段组成。例如:这可能在结构逐层施工中被用于重力分析工况。 静力非线性分析工况完全独立于所有 ETABS 中其它的分析类型。尤其是,任何为线性和动态分析执行的初始 P-Δ分析在静力非线性分析工况中没有影响。只有线性模态形状交互作用可在静力非线性工况中用于荷载。 静力非线性分析工况可被用于设计。通常把线性和非线性结果组合起来没有意义,所以可以被用于设计的静力非线性工况应包括所有的荷载、适当的尺度,它们可为设计检查进行组合。 荷载 应用在给定的静力非线性工况结构上的荷载分布,定义为下列的一个或多个项的成比例组合:

对比分析研究课题研究报告

《近五年乌市诊断数学试卷与高考数学课标卷二 的对比分析研究》结题报告 昌吉州玛纳斯县第一中学李庆晖 [摘要] 本课题围绕近五年乌市诊断数学试卷与高考数学课标卷二的对比分析,在调查了老师的研究现状的基础上,运用行动研究方法和分析研究法,形成了相应的分析报告和适合本校老师的研究策略。研究工作立足校本,聚集教学,对提高教育质量有借鉴意义。 [关键词] 数学对比分析策略 一、课题提出的背景 近十几年来,优秀生源大量流失,导致我校的生源整体水平较低。在数学学科上,学生层面表现出基础差,习惯差,学习信心不足,学习欲望不强的特点。教师则因为生源整体水平较低,对专业要求不高的现状。在教学上主要有以下几个方面的突出表现: 1、高考复习71.18%的高三老师都是按照学校征订的复习资料进行复习。 2、69.4%的教师在高考复习时没有认真做过近五年乌市诊断数学试卷和高考数学卷二。就更谈不上对比分析研究了。 3、77.6%教师不知道该如何进行高考研究。 4、迫于学校向高考要成绩的压力61.7%的老师在高三复习时都采用题海战术和用增加课时的办法来提高成绩。 5、70.5%老师迫切的需要高考研究方面的指导和有关数据来指导高考复习,从而达到提高高考复习效率的目的。 以上诸多现象反映目前我校高三复习的数学教学的现状,希望通过本课题的研究能为我校的高考复习开辟新的篇章。 二、研究目的和意义 (1)通过对比分析研究形式对比分析报告,为高考复习准确的把握方向提供有力的依据。 (2)通过对比分析研究提高高考复习的效率最终达到提高高考数学成绩的目的 (3)通过对比分析研究提高老师的高考研究能力,最终达到提高教学研究能力的目的。 (4)通过对比分析研究提高教师对教材的把握能力。 三、研究的基本内容 1、近五年乌市诊断数学试卷与高考大纲和考试说明的对比分析研究。 2、近五年乌市诊断数学试卷的纵向对比分析和当年三次诊断的横向对比分析。 3、近五年高考数学课标卷二与高考大纲和考试说明的对比分析研究。 4、近五年高考数学课标卷二的纵向对比分析研究。 5、近五年乌市诊断数学试卷和高考数学课标卷二的对比分析研究。 6、形成具有我校特色的高考研究策略 四、研究的思路和方法 1、研究思路 以近五年乌市诊断数学试卷和高考课标卷二为载体,依据高中数学人教A版教材、高考大纲和考试说明的要求进行分析研究。形成有指导意义的分析研究报告。通过团队同伴互助、专家引领,实践反思初步形成具有我校特色的高考研究策略,并实施验证. 2、研究方法

静力非线性分析pushover

pushover分析 2011-07-08 20:03:25| 分类:默认分类|举报|字号订阅 SAP2000高级应用: 1.基本概念 静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。 Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具, 得到了重视和发展。 这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。 第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式; 第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应, 目前可分为以ATC-40为代表的CSM和以FEMA356为代表的NSP (Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整。两者在理 论上是一致的。在一些文献中将第一方面的内容称为Pushover,不包括计算目标位移 和结果评价的内容。本文中,将两方面的内容统称为“Pushover分析”。 基于结构行为设计使用Pushover分析可以得到能力曲线,并确定结构近似需 求谱与能力曲线的交点。其中需求曲线是基于反应谱曲线,能力谱是基于Pushover分析。在Pushover分析中,结构在逐渐增加的荷载作用下,其抗侧能力不断变化(通常用底部剪力-顶部位移曲线来表征结构刚度与延性的变化,这条曲线我们可以看成为表 征结构抗侧能力的曲线)。将需求曲线与抗侧能力曲线绘制在一张图表中,如果近似需

SAP2000之Pushover分析教学内容

S A P2000之P u s h o v e r分析

SAP2000之Pushover分析 Pushover分析:基本概念 静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变 形。 Pushover方法的早期形式是“能力谱方法” (Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具,得到了重视和发展。这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式;第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应,目前可分为以ATC-40为代表的CSM和以FEMA356为代表的

相关主题