搜档网
当前位置:搜档网 › 中微子的振荡实验和理论

中微子的振荡实验和理论

中微子的振荡实验和理论
中微子的振荡实验和理论

中微子的振荡实验和理论

华南师范大学物理与电信工程学院物理学勷勤创新班

作者:黄慧敏蔡莹邱小欢麦展风

摘要:,本文主要通过对中微子振荡实验及其理论的阐述,加深对中微子以及中微子振荡的认识,以及阐述对中微子振动实验发展的展望

关键词:中微子振荡 MSN效应质量差

Abstract:This article states the theory and the experiment of neutrino oscillation for illustrating the current situation and expectation of development of the nertrino oscillation’s experiment .

Key word:neutrino oscillation .MSN reaction.mess diffirence.

1、引言

大亚湾中微子实验宣布发现了一种新的中微子振荡,并测量到其振荡几率,这一实验结果不仅使我们更深入了解了中微子的基本特性,更为未来进行中微子实验破解“反物质消失之谜”奠定科学基础。

1998年在日本Takayama召开的的世界中微子大会上,日本物理学家宣布他们的超神冈国际合作组发现了大气中微子震荡,成为了物理学界的头号新闻。

粒子物理学经典模型认为,中微子的质量为零,在相互作用中轻子数守恒,中微子不会从一种类型转变成另外一种类型。现在超神冈实验组发现了中微子振荡,这表明了中微子具有质量,中微子可以从μ中微子转变成其他类型的中微子,轻子数也随之不守恒,这推动了物理学的进一步发展。

1930年,为了解释核的β衰变中电子的能力是一个连续谱,泡利引入了中微子这种新型粒子,但人们一直没能从实验中验证中微子的存在。1941年,我国著名物理学家王淦昌先生建议利用原子核的K电子俘获测原子核的反冲能量来证明中微子的存在。历经10年,于1952年此实验获得成功,证明了中微子是一个客观存在的粒子。

中微子,顾名思义,是固有质量极其微小的中性粒子。由于难以探测,我们对中微子的了解非常有限,至今还存在大量未解之谜。中微子有3种类型:电子中微子、μ子中微子、τ子中微子,这三种中微子两两之间转换,可以有三种振荡模式。其中太阳中微子振荡称之为theta12振荡,大气中微子为theta23振荡。

第三种振荡就是大亚湾实验寻找的theta13振荡。

随着对中微子研究的加深,人们对中微子的了解也越来越多。然而对于中微子振荡的实验研究,至今仍是一个具有挑战性的问题,也是物理学界的重大研究课题。

2、中微子振荡理论

(1)真空中的中微子振荡

中微子在真空中通过味态产生,传播过程则是质量态,最后再以味态进行探测,中微子混合味中的组成成分就发生改变,这种中微子味转移的现象称为中微子振荡。中微子分成三种味态,分别为e 味态,μ味态,τ味态。中微子的味态是中微子质量态的线性叠加,

具体符合式子

()()1,2,3aa a x U x αανν==∑

其中α为中微子味态,a ν为中微子质量态,aa U 为中微子混合矩阵

在这里,我们给出前人所做的在真空中的中微子振荡实验所作出的近似条件所推出的中微子振荡实验公式,再去谈及比较复杂的太阳中微子振荡实验

近似条件1:中微子是确定能量和动量的平面波

近似条件2:中微子是相对论性粒子

近似条件3:中微子的传播方向沿着一个确定的轴方向,假设为x 轴方向。 最后可以得到振荡几率的表达式

()2*22**;||||2R e[exp()]

2ab a a a a b b a a b m p t U U U U U U i t p α

βαβαβαβ≠?→=+-∑∑

其中,αβ为中微子的味态,t 为质量本征态的时间演化,i 是x 轴的单位向量,*U 为混合矩阵,ab m ?为中微子的质量差,p 为中微子的存活几率。

由振荡几率公式可以看出中微子振荡发生需要满足两个条件:

1) 中微子必须要有质量差;

2) 混合矩阵必须存在非零的非对角元素,即中微子必须是混合的。

要想振荡的幅度比较明显,根据二味中微子混合矩阵

*cos sin sin cos U U θθθθ??== ?-??

带入振荡公式可得

22221()1sin (2)sin ()4e e m L p E

ννθ?→=-

22221()sin (2)sin (

)4e e m L p E ννθ?→=

定义振荡波长 2214osc E L

m π=? 由此可得 当2()osc E m L L L ≈? 时,振荡项才能产生最大精度。因此,在中微子振荡实验中,要想精确的确定不同的中微子的质量差和混合角,实验设置要选择对应的不同中微子振荡参数合适的距离,使得振荡项最大。

不仅真空中存在中微子振荡,均匀物质中存在中微子振荡,绝热条件下存在中微子振荡,下面我们通过太阳中微子的MSN 效应来引入太阳中微子振荡实验。

(2)太阳中微子的MSW 效应

在两代中微子条件下,当物质中产生一个电子味中微子e ν,有12cos sin e ν?ν?ν=+。在达到r A A ≈(r 为太阳中心到所在位置的距离)区域

后,中微子变为一半e ν一半u ν,类似于真空中45o 混合情况一样,振荡得到极大增强。当中微子传播到物质表面的时候,变为2cos sin u e ν?ν?ν=+。这种情

况对很多发生在共振区域的振荡过程成立,在物质中振荡加强称为MSN 效应。

MSN 效应在太阳中微子振荡的过程中扮演很重要的角色。从太阳的核心到太阳的表面,太阳的密度逐渐减小,在小于0.9个半径范围内,我们认为其按指数形式减少。中微子在太阳内部的振荡过程影响因素的条件为002f e A E G N =(中微子产生电的有效势)和0cos 2r A θ=?

1) 若0r A A ,质量效应可以忽略,接近于真空振荡状态,由于中微子

传播到地球的距离很长,振荡效应被平均。在这种情况下,从太阳到

地球的存活几率为

2011()1sin 222ee r P A A θ>=-

2) 若0r A A ≥,中微子不通过共振区域,但是混合受到物质影响。最后得

到太阳中微子的存活几率为

01[1cos 2cos 2]2ee m P θθ=+

其中m0为中微子产生点的物质混合角

3) 若0r A A <,中微子传播将通过共振区域,在这种情况下产生点的e ν是

1ν和2ν的混合态,其中2ν的成分较大。我们进一步考虑情况0r A A ,

从太阳到地球的表面存活几率为

2

01[1cos 2cos 2]sin 2ee m P θθθ=+= 这种情况下中微子的存活几率小于0.5

在2001年,SNO 最终显示了太阳产生的太阳中微子电子中微子在到达地球之后转移到其他味中微子,对太阳中微子的味转移最合理的解释就是物质效应增强的中微子振荡,即前面所提到的MSW 效应。

(3)大气中微子丢失和中微子振荡

大气中的中微子由最初的宇宙线中的高能质子与大气上中部的原子核相互作用产生的K 介子和π介子产生的。但这两种粒子随后便会发生衰变成μ子,由于K 介子以及π介子均具有反粒子,所以衰变方程有四条,均为:

K

μμυ++→+,K μμυ--→+ ,μπμυ++→+,μπμυ--→+ μ子随后发生衰变:

e e μμυυ++→++ , e e μμυυ--→++

因此可推出,大气中高能中微子的成分中,μ中微子的数量应为电子中微子数的两倍。

从80年代开始,各国物理学家便开始探测大气中的高能中微子。Kamiokande 合作组,IMB 合作组和Soudan 合作组均探测到了大气中μ中微子的丢失现象,他们测量到的大气中μ中微子的数量和电子中微子的数量的比值大约0.6,说明了大气中μ中微子丢失了。而中微子振荡理论是解释大气中μ中微子丢失现象最好的工具。

3、中微子振荡实验

(1)Chlorine, Homestake 实验

这个实验是第一个进行的关于太阳中微子的实验,实验装置包含了大约615吨的24C C l ,太阳中微子的俘获反应为

3737e C l Ar e ν-

+→+ 让24C C l 被太阳中微子照射一段时间之后,用化学提纯的方法把37*Ar 的放射

性,就可以测得太阳中微子的通量。

理论预言,装置可以探测到的太阳中微子的通量为:

(7.9 2.6)I SUN ν≈±

但是实际测量出来的结果却有很大的出入,实验测量到的太阳中微子通量只有理论预言值的三分之一,丢失了三分之二的太阳中微子。形成了著名的太阳中微子丢失之谜。

(2)水切连科夫实验

日本神冈核子实验的实验探测装置为一个盛有2l40吨的水的容器,用大约1000只光电倍增管组成的探测器装置,测量衰变粒子在水中发出的切连科夫光。由于太阳中微子能量明显小于质子衰变释放的强大能量,这套以纯水作靶、以光电倍增管为探测器的切连科夫装置必须降低探测系统的能阈才能适合太阳中微子能量。它的优点是能实时进行,并能确定人射中微子的方向。

实验首次给出了太阳发射中微子的确凿证据,同时也确认了CI-Ar 实验所得的中微子通量低于太阳模型计算值的结果。实验观察到的与理论计算出的中微子流量之比为0.46±13±0.08。

(3)日本的KamLAND 实验

日本的KamLAND探测器是一个装有1000吨超纯液体闪烁体的装置,它的周围有53个用于核动力发电的反应堆,这些核反应堆会放出电子反中微子.KamLAND探测器主要探测来源于这些核反应堆的以及更远的核反应堆的电子反中微子的流强及能谱。用模拟计算的方法获得核反应堆放出的电子反中微子的流强和能谱,再与实验测量到的电子反中微子的流强和能谱进行比较,从电子反中微子流强的丢失以及能谱的变化,可以获得中微子振荡的结果。

从实验中观察到能量大于3.4MeV的电子反中微子事例远远小于理论所推出的事例个数。从实验结果可知,反应堆电子反中微子消失的可信度是99.999%,而从电子反中微子能谱的变化,获得中微子振荡的可信度为99.9%。KamLAND把他们获得的结果与太阳中微子实验获得的结果联合进行分析,假设电荷共轭一宇称一时间守恒以及只存在两味中微子振荡,给出的中微子振荡的实验结果是:

Δm2 = (8.2+0.6-0.5)×5

10- ev2

tan2θ≈0.40+0.09-0.07

(4)大亚湾反应堆中微子实验

大亚湾反应堆中微子实验是目前国内最大的中微子实验。该实验的测量结果对中微子实验物理下步的发展方向,对理解宇宙中物质与反物质的不对称性,以及对超越粒子物理标准模型的新物理现象的探索均有重要意义。

大亚湾反应堆中微子实验的物理目标是将中微子振荡混合角参数2

sin2θ

13

sin2θ有两种不同的解释,其中一种解释是θ13为电测量到1%的精度。对于2

13

子中微子和τ中微子之间的相互振荡;另一种理论的解释是:他们发现的是电子反中微子,这是这种电子反中微子消失的现象,这个假设与中微子振荡的预期符合,其能谱畸变也与中微子振荡的预期符合,这才意味着发现了一种新的中微子

sin2θ为0.092。

振荡模式,实验测得其振幅2

13

下图中D1,D2,L1-4是大亚湾核电站的六个反应堆。其中AD1-6是大亚湾中微子实验的六个中微子探测器,分置在三个地下实验大厅内,实验大厅用EH1-3标记,由水平隧道连接。EH1内的两个探测器监测大亚湾核电站D1D2两个反应

堆的中微子流强,EH2内的1个探测器监测来自岭澳和岭澳二期四个反应堆的中微子流强。EH3位于振荡极大值附近,放置3个探测器来测量振荡大小。

大亚湾反应堆中微子实验的物理目标是将中微子振荡混合角参数2

sin2θ测

13

量到1%的精度。对于2

sin2θ有两种不同的解释,其中一种解释是θ13为电子

13

中微子和τ中微子之间的相互振荡;另一种理论的解释是:他们发现的是电子反中微子,这是这种电子反中微子消失的现象,这个假设与中微子振荡的预期符合,其能谱畸变也与中微子振荡的预期符合,这才意味着发现了一种新的中微子振荡模式,实验测得其振幅2

sin2θ为0.092。该实验的测量结果对中微子实验物理

13

下步的发展方向,对理解宇宙中物质与反物质的不对称性,以及对超越粒子物理标准模型的新物理现象的探索均有重要意义。

4、中微子振荡实验方法

现在世界各国大多数高能物理实验合作组都采用长基线实验方法来测量并计算中微子振荡。

长基线中微子的振动实验,首先由高能质子加速器产生强流μ中微子束,并在出口处安装一个近点探测器,而在距离中微子流出口L处安装一个大型远点探测器,而两探测器的结构和探测方法均相同。以近点探测器测量的中微子相互作用作为标准,并于在远点探测器测量到的中微子相互作用做比较,就可以知道判定是否存在中微子振荡,并可知道中微子振动的模式。但由于中微子质量很小,其振荡概率很低,所以L要远达上千公里才有一定的灵敏度,故成为长基线中微子振荡实验。

目前,日本的K2K及距离其250km的超神冈探测装置,美国的费米实验室和距离实验室730km的MINOS实验探测装置,位于日内瓦的欧洲核子研究中心及距离

中心730km的意大利地下的探测装置ICARUS和OPERA均采用长基线中微子振荡实验来计算中微子的振动模式。

然而,以上的国家所做的长基线中微子振荡实验,因远点探测器和近点探测器距离只有几百公里,短于理论要求的上千公里,所以实验的精度以及灵敏度都较低。因此,有人建议在北京地下建一所类似MINOS的远点探测器,并与日本的高能质子加速器连线,完成长基线中微子振荡实验。从日本到北京的直线距离有2100km,而日本新建的高能质子加速器能产生较高能量的中微子束,经过计算,如果东京-北京长基线中微子振荡实验可以实现,其灵敏度是美国MINUS实验装置灵敏度的70倍,能较好地探测并计算中微子振动概率,能极大地推动粒子物理学的发展.

4、中微子振荡理论的发展以及展望

从牛顿、麦克斯韦的经典物理学到爱因斯坦的相对论和薛定谔的量子物理,从量子物理到粒子物理,物理学的发展靠的是人类聪慧的头脑而不是纸上一条条枯燥的数学公式。物理学,作为实验为基础的科学,中微子振荡的实验对人类认识宇宙,尤其是宇宙的暗物质具有划时代的意义。

自从著名的华人物理学家李政道以及杨振宁建立了粒子间弱相互作用宇称不守恒以来,CP破环(即反粒子对称及宇称对称破坏)的测量便成为了各国粒子物理实验组的重头戏。目前,CP破坏只有K介子混合中才被测量到。

中微子振荡理论被提出后,中微子振动中是否存在CP破坏并测量其破坏参数便成为了物理学上一个重大课题。然而,现实中的高能质子加速器只能产生μ中微子,不能产生高能电子中微子。

因此,物理学家们提出建造μ子贮存环,让μ中微子在一条很长很长的管道里进行衰变,从而产生高能电子中微子束。而运用电子中微子束进行中微子实验振动实验具有很多优点:

、一、电子中微子和反电子中微子与物质外层电子的相互作用存在不同,能明确相互作用的不对称性,即反粒子对称破坏。

二、如果贮存环内存在μ+,则会衰变产生高能电子中微子束,如果存在中微子振动,则电子中微子会变成μ中微子,并与探测器产生相互作用生成μ-子。

理论计算得出如果不存在中微子振动,是探测不到μ-流,这就能为中微子振动理论提供坚实的实验证据。

三、贮存环可以测量中微子振动时能否产生CP破坏并测量出破坏参数。

但因为技术原因,μ贮存环也只是理论物理学家们得到一个设想,要实现需要人类的努力和各国的合作。

从上述观点可看出,中微子质量以及中微子振动实验是物理学发展史上一座里程碑。说明了粒子物理学还需要长远的发展以及理论上的完善。同时,中微子与宇宙的暗物质息息相关,弄清中微子振动原理,就能帮助人类更好地认识宇宙。但是,中微子是弱相互作用产生的粒子,与物质几乎不产生相互作用,所以,不断改进实验方法以及装置,研究中微子各样性质对人类具有重大意义。中微子将是21世纪高能粒子物理学的重大课题,我国的物理学家应把握这次机遇和挑战。参考文献

[1] 何景棠.中微子质量和中微子振荡实验[J].物理学进展,2001,21(2):219. 1000-0542( 2001) 02-0216-9

[2] 葛红林.有关太阳中微子振荡实验和参数三味分析的一些研究[D].中国科学技术大学.2010

[3] 薛涛,龚光华,陈少敏,邵贝贝.大亚湾中微子实验时钟时标广播系统的初步设计[J].核电子学和探测技术,2009,29(6):1253~1256.0258-0934(2009)06—1253-04

[4] 何景棠.日本的KamLand实验给出中微子振荡的新结果[J].物理新闻和动态自CERN快报,2004,44(7):6.

[5] 程怡乐.中微子及中微子实验的最新成就[J].黄山学院

报,2005,7(6):21~23.:1672-447X(2005)06-002t-03

[6]何景棠.中微子振荡实验——超出标准模型的实验检[J]

1995年诺贝尔物理学奖——中微子和重轻子的发现

1995年诺贝尔物理学奖——中微子和重轻子的发现 1995年诺贝尔物理学奖的一半授予美国加州斯坦福大学的佩尔(Martin L.Perl,1927—),奖励他发现了τ轻子①,另一半授予美国加利福尼亚州欧文(Lrvine)加州大学的莱因斯(Frederick Reines,1918—),奖励他检测到了中微子。 佩尔和莱因斯是对轻子物理学作出重大贡献的两位美国物理学家。这是继鲍威尔(1950年发现π介子),张伯伦与西格雷(1959年发现反质子),丁肇中与里克特(1976年发现J/ψ粒子),鲁比亚和范德米尔(1984年发现W±、z0粒子),莱德曼、施瓦茨和斯坦博格(1988年发现中微子有不同属性),夏帕克(1992年发明多丝正比室)等人之后,国际科学界又一次将诺贝尔物理学奖这一殊荣授予实验高能粒子物理学领域的科学家,人数占本世纪后半叶的总领奖人数的12%。 从这一统计数字可以看出,50年代以来,实验高能粒子物理学的成就非常突出,是物理学界引以为豪的领域之一。 提到中微子的发现,应该先讲讲几件先驱的贡献。中微子的概念是1930年泡利首先提出的。当时摆在物理学家面前的疑难问题中有一个涉及β衰变。β衰变和α衰变及γ衰变不一样,放射性元素发出的β电子能量是连续分布的,不像α和γ射线具有明确的分立谱。而原子核的能态差是确定的,显然β衰变的连续谱是一种反常现象,不符合能量守恒定律的要求。是某种未知的过程在起作用,把能量带走了,还是能量守恒定律不适用于β衰变?在这个疑难问题面前,玻尔甚至都准备放弃能量守恒定律的普适性,他提出也许能量守恒定律只适用于统计性的过程。泡利是一位思想极为活跃的理论家,他在一封给同行的公开信中提出:“原子核中可能存在一种自旋为1/2,服从不相容原理的电中性粒子”。β衰变中失踪的能量也许就是这一察觉不到的中性粒子——中微子带走的。 费米支持泡利的设想,他在1934年正式提出β衰变理论,很好地解释了β能谱的连续性问题,不久这一理论得到了正电子衰变实验的肯定。然而,由于这种微小的中性粒子既不荷电,又不参与强相互作用,质量微不足道,它的存在一直未能得到实验验证。人们只能从能量和角动量的分析,论证这一幽灵式的基本粒子的存在和所起的作用。 在众多的探讨中微子的实验方案中,中国物理学家王淦昌提出的方案格外引人注意。他在40年代初从中国的抗战大后方向美国《物理评论》杂志提交了一篇简短的论文,建议把普通β衰变末态的三体,变为K俘获的二体,就有可能间接观测到中微子的存在。他还特别指出,可取Be→Li作为实验对象。这一建议立即受到实验物理学家的重视。1952年美国的戴维斯果然用这一方法取得了与理论预期值相符的实验结果,初步肯定了中微子的客观存在。 就在这个时候,直接捕捉中微子的工作也开始了。1953年美国洛斯阿拉莫斯(Los Alamos)科学实验室的莱因斯和考恩(ClydeL.Cowan,Jr)领导的实验小组按下列方案探测到反中微子:

RLC串联电路的谐振特性研究 实验报告

大学物理实验设计性实验 实验报告 实验题目:RLC串联电路谐振 特性的研究 班级: 姓名:学号: 指导教师:

一.目的 1.研究LRC 串联电路的幅频特性; 2.通过实验认识LRC 串联电路的谐振特性. 二.仪器及用具 DH4503RLC 电路实验仪 电阻箱 数字储存示波器 导线 三.实验原理 LRC 串联电路如图3.12-1所示.若交流电源U S 的电压为U ,角频率为ω,各元件的阻抗分别为 则串联电路的总阻抗为 串联电路的电流为 式中电流有效值为 电流与电压间的位相差为 它是频率的函数,随频率的变化关系如图3.12-2所示. 电路中各元件电压有效值分别为 C j Z L j Z R Z C L R ωω1= ==) 112.3()1 (-- +=C L j R Z ωω) 212.3() 1 (-=- += = ? ? ? ωωj Ie C L j R Z I U U ) 312.3() 1 (2 2 -- += = C L R U Z U I ωω) 412.3(1 arctan -- =R C L ωω?) 512.3() 1 (2 2 -- += =C L R R RI U R ωω) 612.3() 1 (2 2 -- += =U C L R L LI U L ωωωω) 712.3() 1 (1 1 2 2 -- += = U C L R C I C U C ωωωω 图3.12-1 /π-/π(b) 图3.12-2

(3.12-5)和(3.12-6),(3.12-7) 式可知,U R ,U L 和U C 随频率变化关系如图3.12-3所示. (3.12-5),(3.12-6)和(3.12-7)式反映元件R 、L 和C 的幅频特性,当 时,?=0,即电流与电压同位相,这种情况称为串联谐振,此时的角频率称为谐振角频率,并以ω0表示,则有 从图3.12-2和图3.12-3可见,当发生谐振时,U R 和I 有极大值,而U L 和U C 的极大值都不 出现在谐振点,它们极大值U LM 和U CM 对应的角频率分别为 (3.1211)C ωω= =- 式中Q 为谐振回路的品质因数.如果满足2 1> Q ,可得相应的极大值分别为 电流随频率变化的曲线即电流频率响应曲线(如图3.12-5所示)也称谐振曲线.为了分析电路的频率特性.将(3.12-3)式作如下变换 ) 912.3(1 0-=LC ω) 1012.3(21 11 2202 2 2--=-=ωωQ C R LC L )1312.3(4111 422 2 2 LM -- = -=Q QL Q U Q U ) 1412.3(4112 CM -- = Q QU U 2 2 ) 1 ()I(C L R U ωωω- += ) 812.3(1 -=L C ωω (a) 图3.12-3

中微子的振荡实验和理论

中微子的振荡实验和理论 华南师范大学物理与电信工程学院物理学勷勤创新班 作者:黄慧敏蔡莹邱小欢麦展风 摘要:,本文主要通过对中微子振荡实验及其理论的阐述,加深对中微子以及中微子振荡的认识,以及阐述对中微子振动实验发展的展望 关键词:中微子振荡 MSN效应质量差 Abstract:This article states the theory and the experiment of neutrino oscillation for illustrating the current situation and expectation of development of the nertrino oscillation’s experiment . Key word:neutrino oscillation .MSN reaction.mess diffirence. 1、引言 大亚湾中微子实验宣布发现了一种新的中微子振荡,并测量到其振荡几率,这一实验结果不仅使我们更深入了解了中微子的基本特性,更为未来进行中微子实验破解“反物质消失之谜”奠定科学基础。 1998年在日本Takayama召开的的世界中微子大会上,日本物理学家宣布他们的超神冈国际合作组发现了大气中微子震荡,成为了物理学界的头号新闻。 粒子物理学经典模型认为,中微子的质量为零,在相互作用中轻子数守恒,中微子不会从一种类型转变成另外一种类型。现在超神冈实验组发现了中微子振荡,这表明了中微子具有质量,中微子可以从μ中微子转变成其他类型的中微子,轻子数也随之不守恒,这推动了物理学的进一步发展。 1930年,为了解释核的β衰变中电子的能力是一个连续谱,泡利引入了中微子这种新型粒子,但人们一直没能从实验中验证中微子的存在。1941年,我国著名物理学家王淦昌先生建议利用原子核的K电子俘获测原子核的反冲能量来证明中微子的存在。历经10年,于1952年此实验获得成功,证明了中微子是一个客观存在的粒子。 中微子,顾名思义,是固有质量极其微小的中性粒子。由于难以探测,我们对中微子的了解非常有限,至今还存在大量未解之谜。中微子有3种类型:电子中微子、μ子中微子、τ子中微子,这三种中微子两两之间转换,可以有三种振荡模式。其中太阳中微子振荡称之为theta12振荡,大气中微子为theta23振荡。

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

说明文阅读专项训练110:《中微子,关乎宇宙起源之谜》

中微子,关乎宇宙起源之谜 ①日本“顶级神冈”中微子探测器项目已正式启动,计划于2027年开始收集数据。该项目由日本主导、英国和加拿大等国参与,目的是阐明物质的起源及基本粒子的“大统一理论”,揭开宇宙起源之谜。 ②中微子是宇宙中数量最多的基本粒子之一。基本粒子是已知的最小粒子,它们不能像原子那样被分成更小的粒子,是构造宇宙中一切的基本元素。而中微子又是最轻的物质粒子,迄今还未能测出它的确切质量,但至少比电子还要轻100万倍。它们无处不在,如太阳发光、核反应堆发电、岩石的天然放射性衰变等核物理过程中都会产生,就连我们每个人也会因体内的钾-40衰变而每天发射约4亿个中微子。 ③中微子的最大特点就是几乎不与任何物质反应。不管是人体还是地球,在它看来,都是极为空旷、可以自由穿梭的空间。我们感觉不到它的存在,科学上探测也极为困难。因此,中微子的发现和研究过程,饱含着几代科研人员的心血。 ④1930年,奥地利科学家泡利为了解释原子核衰变中能量似乎不守恒的现象,预言了中微子的存在,认为就是这种“永远找不到的粒子”偷偷带走了能量。经过20多年的寻找,美国科学家科万和莱因斯终于在核反应堆旁探测到中微子,证明了它的存在。莱因斯因此获得了1995年诺贝尔物理学奖。 ⑤1968年,美国科学家戴维斯在地下1500米深的废弃金矿中进行实验,首次探测到了来自太阳的中微子,证实太阳无穷无尽的能量来自氢核聚变。1987年,日本科学家小柴昌俊在第一代神冈实验中,探测到了来自超新星的中微子。他们二人因此都获得了2002年诺贝尔物理学奖。此后,戴维斯进一步提高测量精度,却发现太阳中微子的数量比理论预言的要少得多,被称为“太阳中微子失踪之谜”。此后,小柴昌俊的学生梶田隆章发现,宇宙射线在大气层中产生的中微子也比预期少,称为“大气中微子丢失之谜”。 ⑥中微子为什么比预计的少?1998年,梶田隆章在升级后的第二代神冈实验中发现,大气中微子比预期少,是因为在飞行过程中自发变成了其他种类的中微子,这一现象就是中微子振荡。他也因此获得了2015年诺贝尔物理学奖。 ⑦中微子振荡现象证明了中微子有质量,尽管质量极其小,但会影响宇宙的起源和演化。根据已知的物理规律,在宇宙早期,正反物质应该成对产生,数量是一样的。但在现在的宇宙中,并没有发现大量反物质存在的迹象。为什么宇宙只由正物质构成?反物质到哪里去了?这是宇宙起源必须回答的关键问题。中微子振荡会带来一个意外的结果,即正反粒子的行为可以不一样,很有可能造成反物质消失。因此,全面了解中微子振荡,是破解“反物质消失之谜”的重要一环。 ⑧由于中微子难以探测,解决这些谜团需要巨大的探测器,获取更精确的数据。日本前两代神冈实验坚持自己的优势方向,掌握核心技术,持之以恒地探索,取得了巨大突破。此次启动的第三代实验“顶级神冈”将建造一个26万吨的水探测器,造价约8亿美元。此前,中国的江门中微子实验和美国的深层地下中微子实验也已开始建设。三个实验间既竞争又互补,联合分析能显著提高发现能力。新一代的中微子实验,也许有一天可以揭开宇宙起源的谜题。 11.(3分)①-③段,概括中微子的三个特点。 12.(3分)判断下列句子使用的说明方法,每空只填一项。 (1)但至少比电子还要轻100万倍。()()(2)它们无处不在,如太阳发光、核反应堆发电、岩石的天然放射性衰变等。() 13.(3分)莱因斯、戴维斯和小柴昌俊获得诺贝尔物理学奖的原因分别是什么? 14.(2分)中微子和揭开宇宙起源谜题有何关系?根据文章内容概括提炼。

大学物理实验报告系列之RLC电路的谐振

【实验名称】 RLC 电路的谐振 【实验目的】 1、研究和测量RLC 串、并联电路的幅频特性; 2、掌握幅频特性的测量方法; 3、进一步理解回路Q 值的物理意义。 【实验仪器】 音频信号发生器、交流毫伏表、标准电阻箱、标准电感、标准电容箱。 【实验原理】 一、RLC 串联电路 1.回路中的电流与频率的关系(幅频特性) RLC 交流回路中阻抗Z 的大小为: () 2 2 '1??? ? ? -++= ωωC L R R Z (32-1) ???? ? ??????? +-=R R C L arctg '1ωω? (32-3) 回路中电流I 为: )1()'(2ω ωC L R R U Z U I - ++== (32-4) 当01 =- ω ωC L 时, = 0,电流I 最大。 令即振频率并称为谐振角频率与谐的角频率与频率分别表示与,,000=?ωf : LC f LC πω21100= = (32-5) 如果取横坐标为ω,纵坐标为I ,可得图32-2所示电流频率特性曲线。 2.串联谐振电路的品质因数Q C R R L Q 2)'(+= (32-7) QU U U C L == (32-8) Q 称为串联谐振电路的品质因数。当Q >>1时,U L 和U C 都远大于信号源输出电 压,这种现象称为LRC 串联电路的电压谐振。 Q 的第一个意义是:电压谐振时,纯电感和理想电容器两端电压均为信号源电 压的Q 倍。 1 20 1 20f f f Q -= -= ωωω (32-12) 显然(f 2-f 1)越小,曲线就越尖锐。 Q 的第二个意义是:它标志曲线尖锐程度,即电路对频率的选择性,称 f (= f 0 / Q )为通频带宽度。 3.Q 值的测量法

中微子的发现

中微子的发现 背景 从运动学理论可以知道,当一个粒子衰变为两个粒子时,动量和动能守恒,末态粒子的能量应为确定值。而1914年,查德威克在实验中发现β衰变中放出的电子的能谱为连续谱,这意味着电子有各种不同的能量。这是什么原因呢? 对查德威克发现的现象,梅特纳认为:原子发射的电子能量都具有观察到的最大值,最终观察到的是电子经过别的过程损失一定能量后的次级电子。艾利斯(C.D.Ellis)和伍斯特(W.A.Wooster)设计了一个实验,运用一个量能器把所有产生的粒子收集起来,即使初级电子的能量被次级过程重新分配,也能从收集到的总能量算出每次β衰变放出的平均能量,它应当等于观察到的电子能谱极大值。可是,1927年他们的实验结果表明,量能器得到的只是最后射出的电子能量,其平均值与连续谱相符,而看不到次级发射的其它能量。由此可见并没有什么次级过程起作用的迹象。 面对这种困惑形势,玻尔对能量守恒理论提出了质疑。玻尔的主张遭到激烈的反对,狄拉克表示:“我宁可不惜任何代价来保持能量的严格守恒。”泡利也不同意玻尔的观点,1930年,他提出:β衰变中,可能存在一种电中性的粒子带走了电子一部分能量。他把这一电中性的粒子称为中微子。泡利的这一建议是很大胆的,因为这样的粒子是很难直接探测出来的,但这一假设可以使人们摆脱有关核结构理论及β衰变所遇到的困境。 1933年10月的索尔维会议对中微子概念的发展具有重大意义。泡利在会上再次介绍了他对这个新粒子的看法。尽管海森伯还持有怀疑态度,费米却对它做了肯定,并且已经认识到它与中子的区别。那届索尔维会议后仅两个月,费米即在核的质子-中子模型的基础上,发表了有关β衰变的理论。他用相对论量子力学描述费米子,又利用狄拉克辐射理论的产生与湮灭算符及遵从二次量子化的方法导出了寿命公式和β衰变的连续能谱公式,成功的完成了他的β衰变理论。费米的β衰变理论,不仅圆满地解释了整个β衰变过程,澄清了有关β衰变的疑难,同时也确立了有关核结构的理论。按照费米的理论,在β衰变里,中微

RLC串联电路暂态特性的研究实验报告

南昌大学物理实验报告课程名称:普通物理实验(2) 实验名称: RLC串联电路暂态特性的研究 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:

一、 实验目的: 1、研究方波电源加于RC 串联电路时产生的暂态放电曲线及用示波器测量电路半衰期的方法,加深对电容充电、放电规律的认识。 2、了解当方波电源加于RLC 电路时产生的阻尼衰减震荡的特性及测量方法。 二、 实验原理: 1、RC 串联电路的暂态过程 在由R 、C 组成的电路中,暂态过程是电容的充放电的过程。图1为RC 串联电路。其中信号源用方波信号。在上半个周期内,方波电源(+E )对电容充电;在下半个周期内,方波电压为零,电容对地放电。充电过程中回路方程为 (1) 由初始条件t=0时,U C =0,得解为 (2) 从U C 、U R 二式可见,U C 是随时间t 按指数函数 规律增长,而电阻电压U R 随时间t 按指数函数规律 衰减,如图2中U-t 、U C -t 及U R -t 曲线所示。 在放电过程中的回路方程为 (3) 由初始条件t=0时,U C =E ,得解为 (4) 物理量RC=τ具有时间量纲,称为时间常数,是表征暂态过程进行得快慢的一个重要物理量。与时间常数τ有关的另一个在实验中较容易测定的特征值,称为半衰期T 1/2,即当U C (t)下降到初值(或上升至终值)一半时所需要的时间,它同样反映了暂态过程的快慢程度,与t 的关系为 T 1/2=τ ln 2=0.693τ (或τ=1.443T 1/2) (5)

3、RC 串联电路的暂态过程 s c c c u t u t t u RC t t u LC =++)()()(22d d d d RLC 串联电路 求解微分方程,可以得出电容上的电压)t (U C 。再根据dt )t (du C )t (i c =,求得)t (i 。改变初始状态和输入激励可以得到不同的二阶时域响应。全响应是零状态响应和零输入响应的叠加。零输入响应的模式完全由其微分方程的特征方程的两个特征根 202222,1)LC 1()L 2R (L 2R p ω-δ±δ-=-±-= 式中:L 2R =δ,LC 10=ω 由于电路的参数不同,响应一般有三种形式: (1)当C L 2R >,特征根1p 和2p 是两个不相等的负实数,电路的瞬态响应为非振荡性的,称为过阻尼情况。 (2)当C L 2R =,特征根1p 和2p 是为两个相等的负实数,电路的瞬态响应仍为非振荡性的,称为临界阻尼情况。

中微子通信技术及应用

题目:核地球物理新技术之中微子通信技术与应用展望

引言 (4) 第一章中微子的发现及特点 (5) 1.1 中微子的发现 (5) 1.2 宇宙的信使 (7) 1.3 中微子种类 (10) 第二章中微子通信的理论基础 (11) 2.1 现行光通信的局限性 (11) 2.1.1 光纤通信的局限性 (11) 2.1.2 无线光通信的局限性 (11) 2.2 中微子通信技术概况 (12) 2.2.1 中微子通信简介 (12) 2.2.2 中微子通信工作原理 (14) 2.2.3 中微子通信分类 (15) 2.3 中微子通信的发展简史 (17) 第三章中微子通信的系统组成及主要性能 (19) 3.2 中微子通信系统的组成与原理框图 (19) 3.3 中微子通信系统的实际实现实例 (20) 第四章中微子通信系统采用的关键技术 (22) 4.1 中微子通信系统采用的中微子波束的产生方法与设施 (22) 4.1.1 中微子通信系统采用的中微子波束的调制/解调技术23 4.1.2 中微子通信系统采用的中微子波束接收 (24) 第五章中微子通信系统的优越性 (24)

5.1 频带宽,容量大可以高速率工作 (25) 5.2 有足够强的穿透能力 (26) 5.3 抗干扰性强,不受无线电频段电磁波等的干扰 (26) 5.4 安全可靠,有良好的传输保密性能 (27) 5.5 有极高的有效性,可全天候工作 (28) 5.6 特别适于宇宙空间的通信 (28) 第六章中微子通信技术在地球范围内外的应用 (29) 6.1 中微子通信技术在地球范围之外的应用 (29) 6.2 中微子通信技术在地球范围内的应用 (31) 6.2.1 各类陆地中微子通信网络 (31) 6.2.2 在上空、水下和地下岩层中间的中微子通信网络 .. 31 参考文献 (32)

石墨烯介绍

获奖者2010年10月5日,2010年诺贝尔物理学奖被授予英国曼彻斯特大学的安德烈·海姆和康斯坦丁·诺沃肖洛夫,以表彰他们在石墨烯材料方面的研究。 PPT1安德烈·海姆,1958年10月出生于俄罗斯,拥有荷兰国籍,父母为德国人。1987 年在俄罗斯科学院固体物理学研究院获得博士学位。他于2001年加入曼彻斯特大学,现任物理学 教授和纳米科技中心主任。之前拥有此荣誉头衔的人包括卢瑟福爵士,卢瑟福于1907-1919年在曼 彻斯特大学工作。 他至今发表了超过150篇的文章,其中有发表在自然和科学杂志上的。他获得的奖项包括2007 年的Mott Prize和2008年的Europhysics Prize。2010年成为皇家学会350周年纪念荣誉研究教授。 在2000年他还获得“搞笑诺贝尔奖”——通过磁性克服重力,让一只青蛙悬浮在半空中。10年 后的2010年他获得诺贝尔物理学奖。 2010年医学奖:荷兰的两位科学家发现哮喘症可用过山车治疗。 和平奖:英国研究人员证实诅咒可以减轻疼痛。 PPT2康斯坦丁·诺沃肖洛夫,1974年出生于俄罗斯,具有英国和俄罗斯双重国籍。2004年在荷兰奈梅亨大学获得博士学位。是安德烈·海姆的博士生。 曼彻斯特大学目前任教的诺贝尔奖得主人数增加到4名,获得诺贝尔奖的历史总人数为25位。发现 石墨属于混晶,为片层结构,层内由共价键相连,层间由分子间作用力相连。共价键是比较牢固的,但分子间作用力(范德华力)小得多。因此,石墨的单层是牢固的,而层间作用力很小,极易脱落。 2004年,他们发现了一种简单易行的新途径。他们强行将石墨分离成较小的碎片,从碎片中剥离出较薄的石墨薄片,然后用一种特殊的塑料胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二。不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成——他们制得了石墨烯。 结构

中微子的第三种振荡模式

核电站旁掘地三千米 科学家捕“幽灵粒子” 2014年1月18日 导读:大亚湾国际合作实验首次发现了中微子的第三种振荡模式,并获得了精确的测量数值。大亚湾中微子实验的新发现不仅令全世界科技工作者为之振奋。 据国外媒体报道,不久前,我国刚刚诞生了一项重大物理成果。大亚湾国际合作实验首次发现了中微子的第三种振荡模式,并获得了精确的测量数值。大亚湾中微子实验的新发现不仅令全世界科技工作者为之振奋。 最“热”中微子 中微子,是构成物质世界的基本粒子。恒星内部的核反应,超新星的爆发,宇宙射线与地球大气层的撞击,核反应堆的运行,以至于地球上岩石等各种物质的衰变,都能产生中微子。每秒钟,都有几万亿个中微子自由地穿过人体。 虽然中微子无所不在,但是由于穿透力极强,而且几乎不与其它物质发生相互作用,很难被探测到,因此它也是基本粒子中人类所知最少的一种。提出中微子存在假设的奥地利物理学家泡利甚至说:“天啊!我预言了一种永远找不到的粒子。”所以有人称之为“幽灵粒子”。它像一只看不见的手,控制着微观世界的基本规律。 小小的中微子在微观物理粒子规律和宏观的宇宙演化中都有着重要地位,甚至可能与宇宙中的反物质消失之谜有关。因此,对它的研究远远超出了粒子物理的范畴,是粒子物理、天体物理、宇宙学、地球科学的

交叉与热点学科。 经过六十多年的科研探索,中微子研究取得了巨大进步,先后有三次重大进展获得了诺贝尔物理学奖。尽管如此,至今仍有许多关于中微子的谜团尚未解开。其中,首要亟需解决的问题就是精确测定中微子混合参数θ13. 由于这个数值的不确定性,中微子物理研究目前已经走到了一个岔路口,如果这个值很小或者没有,那么全世界研究中微子的科学家们将共同面临一个尴尬局面:不知道未来中微子研究该向何方发展。可以说,θ13数值的大小决定了未来中微子物理研究的发展方向。 大亚湾实验便是瞄准了θ13的精确测量。因此,在大亚湾地下100米进行的中微子实验,受到全世界粒子物理学家的热切关注。 这个难以捉摸的参数首次被精确测量,极大地振奋了国际高能物理界。实验成功后,多个国际顶尖机构纷纷发来贺电。 美国Arogonne国家实验室物理部主任Harry Weetrs教授表示,“现在,我们终于可以更精确的部署未来的中微子研究计划了”. 日本T2K大型粒子探测实验的发言人表示,中微子震荡实验带来的光明前景令人激动不已,“或许在我们有生之年就可以揭开物质层次的奥秘。” 基础研究就是这样,或许现阶段看似“不实用”,但却可能成为千百年后各种重大发现诞生的摇篮。

谐振电路实验报告

rlc串联谐振电路的实验研究 一、摘要: 从rlc 串联谐振电路的方程分析出发,推导了电路在谐振状态下的谐振频率、品质因 数和输入阻抗,并且基于multisim仿真软件创建rlc 串联谐振电路,利用其虚拟仪表和 仿真分析,分别用测量及仿真分析的方法验证它的理论根据。其结果表明了仿真与理论分析 的一致性,为仿真分析在电子电路设计中的运用提供了一种可行的研究方法。 二、关键词:rlc;串联;谐振电路;三、引言 谐振现象是正弦稳态电路的一种特定的工作状态。通常,谐振电路由电容、电感和电阻 组成,按照其原件的连接形式可分为串联谐振电路、并联谐振电路和耦合谐振电路等。 由于谐振电路具有良好的选择性,在通信与电子技术中得到了广泛的应用。比如,串联 谐振时电感电压或电容电压大于激励电压的现象,在无线电通信技术领域获得了有效的应用, 例如当无线电广播或电视接收机调谐在某个频率或频带上时,就可使该频率或频带内的信号 特别增强,而把其他频率或频带内的信号滤去,这种性能即称为谐振电路的选择性。所以研 究串联谐振有重要的意义。 在含有电感l 、电容c 和电阻r 的串联谐振电路中,需要研究在不同频率正弦激励下 响应随频率变化的情况,即频率特性。multisim 仿真软件可以实现原理图的捕获、电路分 析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、 直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人 员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。 四、正文 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数的物理意义和其测定方法。 4.测定rlc串联谐振电路的频率特性曲线。 (2)实验原理: rlc串联电路如图所示,改变电路参数l、c或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率ω的函数:z=r+j(ωl-1/ωc) 当ωl-1/ωc=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω 0 =1/lc ,谐振频率f0=1/2π lc 。 谐振频率仅与原件l、c的数值有关,而与电阻r和激励电源的角频率ω无关,当ω< ω0时,电路呈容性,阻抗角φ<0;当ω>ω0时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗z0=r,| z0|为最小值,整个回路相当于一个纯电阻电路。(2)、回路 电流i0的数值最大,i0=us/r。(3)、电阻上的电压ur的数值最大,ur =us。 (4)、电感上的电压ul与电容上的电压uc数值相等,相位相差180°,ul=uc=qus。 2、电路的品质因数q 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因 数q,即: q=ul(ω0)/ us= uc(ω0)/ us=ω0l/r=1/r*l/c (3)谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲 线,也称谐振曲线。 在us、r、l、c固定的条件下,有

中微子的发现的过程及其在现代物理学中的意义

中微子的发现的过程及其在现代物理学中的意义 (1)中微子的提出 要追溯中微子发现的经过,还要从19世纪末20世纪初对放射性的研究谈起.当时科学家们发现,在量子世界中能量的吸收和发射是不连续的.不仅原子的光谱是不连续的,而且原子核中放出的阿尔法射线和伽马射线也是不连续的.这是由于原子核在不同能级间跃迁时释放的,是符合量子世界的规律的.奇怪的是,物质在β衰变过程中释放出的由电子组成的β射线的能谱却是连续的,而且电子只带走了它应该带走的能量的一部分,还有一部分能量失踪了. 瑞士物理学家泡利在1931年最先假设有种新粒子“窃走了”能量.在1931年,泡利在美国物理学会的一场讨论会中提出,这种粒子不是原来就存在于原子核中,而是衰变产生的.1932年真正的中子被发现后,意大利物理学家费米将泡利的“中子”正名为“中微子”. 1933年意大利物理学家费米提出了β衰变的定量理论,指出自然界中除了已知的引力和电磁力以外,还有第三种相互作用——弱相互作用.β衰变就是核内一个中子通过弱相互作用衰变成一个电子、一个质子和一个中微子.他的理论定量地描述了β射线能谱连续和β衰变半衰期的规律,β能谱连续之谜终于解开了.如果中微子有引力质量,那么根据Einstein 的质能方程,必须把能量E*的一部分用来产生中微子,这样留给电子的能量就比E*小.泡利推算出中微子是没有质量的观点是错误的,由于中微子的引力质量非常小,因此在埃利斯的实验中发现电子也偶尔确实会有能量为E*的情况.泡利的中微子假说和费米的β衰变理论虽然逐渐被人们接受,但终究还蒙上了一层迷雾:谁也没有见到中微子.就连泡利本人也曾说过,中微子是永远测不到的. (2)中微子的发现 在泡利提出中微子假说的时候,我国物理学家王淦昌正在德国柏林大学读研究生,直到回国,他还一直关心着β衰变和检验中微子的实验.1941年王淦昌写了一篇题为《关于探测中微子的一个建议》的文章,发表在次年美国的《物理评论》杂志上.1942年6月,该刊发表了美国物理学家艾伦根据王淦昌方案作的实验结果,证实了中微子的存在,这是当年世界物理学界的一件大事.但当时的实验不是非常成功,直到1952年艾伦与罗德巴克合作,才

中微子的质量问题

中微子的质量问题《自然杂志》19卷4期的‘探索物理学难题的科学意义'的97个悬而未决的难题:65.中微子有无静止质量?66.有无中微子振荡? 在微观世界中,中微子一直是一个无所不在、而又不可捉摸的过客.中微子产生的途径很多, 如恒星内部的核反应,超新星的爆发,宇宙射线与地球大气层的撞击,以至于地球上岩石等各种物质的衰变等.尽管大多数科学家承认它可能是构成我们所在宇宙中最常见的粒子之一,但由于它穿透力极强,而且几乎不与其它物质发生相互作用,因此它是基本粒子中人类所知最少的一种.被誉为中微子之父的泡利与费密曾假设它没有静止质量.根据物理学的传统理论,稳定、不带电的基本粒子中微子的静止质量应为零,然而美国科学家的研究从另一个角度有可能推翻这一结论. 据俄《知识就是力量》月刊报道,美国斯坦福大学的科研人员对最近24年来人类探测中微子所获数据进行分析后发现,从太阳飞向地球的中微子流运动具有某种周期性,每28天为一个循环,这几乎与太阳绕自己的轴心自转的周期相重合.美国科学家认为,这种周期性是由于太阳不均等的磁场作用造成的.磁场强度的变化,使部分中微子流严重偏移,致使探测器难以捕捉到.对此似可得出结论:中微子流有着自己的磁矩,既然有磁矩,就应有静止质量.在上世纪90年代以前,国际主流科学家们也认为中微子是没有质量的,因为这是标准模型的需要.然而近年包括我国在内的世界上的中微子振荡实验、观察,都探知到中微子有质量.令人惊讶的是,1938年意大利理论物理学家埃托雷·马约拉纳(Ettore Majorana)早就认为微中子有质量,并提出马约拉纳方程式. 1998年6月12日,东京大学的一个国际研究小组在美国《科学》杂志上发表报告说,他们利用一个巨大的地下水槽,证实了中微子有静止质量.这一论断在世界科学界引起广泛关注.由日、美、韩三国科学家组成的科研小组日前在此间宣布,他们在实验中观测到了250公里远处的质子加速器发出的中微子.这是人类首次在如此远的距离内观测到人造粒子. 日本文部省的高能加速器机构位于筑波科学城,东京大学宇宙射线研究所设在岐阜县的神冈,两地相距250公里.6月19日下午,科学家在高能加速器研究机构使用质子加速器向宇宙射线研究所的神冈地下检测槽发射中微子,并通过检测槽检测到了中微子.由于这批中微子来自筑波科学城方向,并且是在发射之后大约0.00083秒时检测到的,科学家因而断定,它们就是质子加速器发出的那批中微子. 这项实验是为了证实中微子有静止质量而设计的.1998年6月,日、美两国科学家宣布探测到中微子有静止质量.如果这一点被证实,现有的理论物理体系将受到巨大冲击.为了验

RLC串联谐振电路的实验报告

RLC串联谐振电路的实验报告 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.测定RLC串联谐振电路的频率特性曲线。 (2)实验原理: RLC串联电路如图所示,改变电路参数L、C或电源频率时,都可能使电路发生谐振。该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ωC)当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω0 =1/LC,谐振频率f =1/2πLC。谐振频率仅与原件L、C的数值有关,而与电阻R 和激励电源的角频率ω无关,当ω<ω 0时,电路呈容性,阻抗角φ<0;当ω>ω 时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗Z 0=R,| Z |为最小值,整个回路相当于一个纯电阻电路。 (2)、回路电流I 0的数值最大,I =U S /R。 (3)、电阻上的电压U R 的数值最大,U R =U S 。 (4)、电感上的电压U L 与电容上的电压U C 数值相等,相位相差180°,U L =U C =QU S 。 2、电路的品质因数Q 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q,即: Q=U L (ω )/ U S = U C (ω )/ U S =ω L/R=1/R* (3)谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。 在U S 、R、L、C固定的条件下,有

I=U S / U R =RI=RU S / U C =I/ωC=U S /ωC U L =ωLI=ωLU S / 改变电源角频率ω,可得到响应电压随电源角频率ω变化的谐振曲线,回路 电流与电阻电压成正比。从图中可以看到,U R 的最大值在谐振角频率ω 处,此 时,U L =U C =QU S 。U C 的最大值在ω<ω 处,U L 的最大值在ω>ω 处。 图表示经过归一化处理后不同Q值时的电流频率特性曲线。从图中(Q 11/2时,U C 和U L 曲线才出现最大值,否则U C 将单调下降趋于0,U L 将单调上升趋于U S 。 仿真RLC电路响应的谐振曲线的测量 五、结论

魅力科学答案

1.1、原子的基本构成 1 19 世纪末物理学上的三大发现是() 。 X 射线 放射性 电子 以上均是 正确答案: D 2 每个化学元素都有不同特征的现状光谱。 正确答案:V 3 原子中的基本粒子包括电子和电子核,其中占主要质量的是电子。 正确答案:X 4 卢瑟福著名的a 粒子穿透金属箔试验中, a 粒子穿透金属箔后的运动轨迹不包括() 。 立刻停止 反射回来 发生旋转 直线运动 正确答案: 1.2、核外电子运动理论模型 1 下列说法不正确的是()。 不确定原理适用于宏观运动 电子的半径是十的负八次方厘米 光具有波粒二象性 氢元素光谱的波长具有不连续性 正确答案: A 2 波尔假说的成功之处,其中一点就是验证了里德堡公式的正确性。 正确答案:V 3 海森堡的不确定原理表明能测量出电子准确的位置和准确的动量。 A B 、 C 、 D A 、 B 、 C 、 D 、 5 20 世纪初, 卢瑟福 巴尔 麦 里德堡 普朗克 正确答 案: A 、 B 、 C 、 D 、 对氢原子光谱进行深入研究并找到了对应公式的人是() A 、 B 、 C 、 D 、

1.3、原子核外电子的运动状态及薛定谔方程 1 波函数e 的变量有()。 A 、 B 、 C 、 2 建立迄今最为成功的原子结构模型 -波动力学模型的是()。 德布罗意 爱因斯坦 海森堡 薛定 谔 正确答案: D 正确答案: B 5 电子在半径 r=53pm 球壳上出现的概率最大。这个最大値正是波尔半径。 4 提出电子具有波粒二象性假设的学者德布罗意来自() 德国 美国 法国 波兰 A 、 B 、 C 、 D 、 正确答案: C 5 首次把量子化的概念运用到化学上的人是() 。 卢瑟福 波尔 普朗克 巴尔麦 正确答案: B A 、 B 、 C 、 D 、 ① 以上均是 正确答案: D D 、 A 、 B 、 C 、 D 、 3 薛定谔方程实质上是一个二阶偏微分方程,解得的 正确答案:X 4 根据不同的目的和角度考察波函数 e 和概率密度?e ?2的性质,不包括()。 径向分布图 时间分布图 角度分布图 空间分布图 A 、 B 、 C 、 D 、 e 是一个具体的数值。()

实验三 RLC串联电路的暂态过程实验报告

实验三RLC串联电路的暂态过程实验报告 14级软件工程班 候梅洁14047021

【实验目的】 1.用存储示波器观察RC,RL电路的暂态过程,理解电容,电感特性及电路时间常数τ的物理意义。 2.用示波器观察RLC串联电路的暂态过程,理解阻尼振动规律。 3.进一步熟悉使用示波器。 【实验仪器】 电感箱、电容箱、电阻箱、函数信号发生器、示波器、导线等。【实验原理】 在阶跃电压作用下,RLC串联电路由一个平衡态跳变到另一平衡态的转变过程,这一转变过程称为暂态过程。暂态过程期间,电路中的电流及电容,电感上的电压呈现出规律性的变化,称为暂态特性。 1.RC电路的暂态过程。 电路如图所示:

【实验结果与分析】 1.观测U c波形时:方波信号500Hz输出;分别取:第一组R=1000?,C=0.5uF,第二组R=500?,C=0.2uF; 用示波器观测波形后,我们在坐标纸上绘制了U、U c、U R 的 波形图,从图中可以看到:U、U R 、U c三者周期、相位均相同。且 U R =U-U c。U、U c都是呈指数型变化的,然而U比U c变化的缓一些。在阶跃电压的作用,U c是渐变接近新的平衡值,而不是跃变, 这是由于电筒C储能元件,在暂态过程中不能跃变。而U R 变化幅度 很大,理论上,U R 的峰值应该是是U的峰值的两倍,因为开关接1时,给电容正向充电时,R两端的电压为E,当反向电容放时,R两 端电压为-E,两者之差为2E,就是U R 的峰值。而事实上,我们看到 的波形图中U R 的峰值小于2U,这可能是由于: (1)电阻内部有损耗、欠阻尼振荡状态下的电感和电容存在着附加损耗电阻,并且其阻值随着振荡频率的升高而增大.故实际上电路中的等效阻值大于R与用万用表测出的电感阻值之和. (2)数字示波器记录的数据精确度有限造成误差。 (3)数字示波器系统存在内部系统误差。 (4)外界扰动信号会对示波器产生影响。 (5)电器元件使用时间过长,可能造成相应的参数有误差。 (6)电源电压不稳定. 2.测量RC串联电路的时间常数:我们取一个峰值处为t 1 ,取与其最 近的一个零点处为t 2,调节示波器将t 1 和t 2 时间段的波形放大到合适

相关主题