搜档网
当前位置:搜档网 › 谈谈项目中常用的MySQL优化方法

谈谈项目中常用的MySQL优化方法

谈谈项目中常用的MySQL优化方法

谈谈项目中常用的MySQL优化方法

本文我们来谈谈项目中常用的MySQL优化方法,共19条,具体如下:

一、EXPLAIN

做MySQL优化,我们要善用EXPLAIN查看SQL执行计划。

下面来个简单的示例,标注(1、2、3、4、5)我们要重点关注的数据:

type列,连接类型。一个好的SQL语句至少要达到range级别。杜绝出现all级别。

key列,使用到的索引名。如果没有选择索引,值是NULL。可以采取强制索引方式

key_len列,索引长度。

rows列,扫描行数。该值是个预估值。

extra列,详细说明。注意,常见的不太友好的值,如下:Using filesort,Using temporary。

二、SQL 语句中IN 包含的值不应过多

MySQL对于IN做了相应的优化,即将IN中的常量全部存储在一个数组里面,而且这个数组是排好序的。但是如果数值较多,产生的消耗也是比较大的。再例如:select id from t where num in(1,2,3) 对于连续的数值,能用between就不要用in了;再或者使用连接来替换。

三、SELECT语句务必指明字段名称

SELECT*增加很多不必要的消耗(CPU、IO、内存、网络带宽);增加了使用覆盖索引的可能性;当表结构发生改变时,前断也需要更新。所以要求直接在select后面接上字段名。

四、当只需要一条数据的时候,使用limit 1

这是为了使EXPLAIN中type列达到const类型

五、如果排序字段没有用到索引,就尽量少排序

六、如果限制条件中其他字段没有索引,尽量少用or

or两边的字段中,如果有一个不是索引字段,而其他条件也不是索引字段,会造成该查询不走索引的情况。很多时候使用union all或者是union(必要的时候)的方式来代替“or”

数据库优化服务(外文翻译)

吉林化工学院理学院 毕业论文外文翻译 阿德里恩.甘卡,伊莫.盖格尔罗马尼亚布加勒斯特迪杜奥列斯库大学德国派尔博登施泰特威廉学校 数据库优化服务Database Optimizing Services 学生学号:******** 学生姓名:*** 专业班级:信息与计算科学0801 指导教师:*** 职称:教授 起止日期:2012.2.27~2012.3.14 吉林化工学院 Jilin Institute of Chemical Technology

数据库优化服务 摘要 几乎每一个组织都存在它的中心数据库。数据库为不同的活动提供支持,无论是生产,销售和市场营销或内部运作。为了获得战略决策的帮助,一个数据库每天都在被访问。要满足这种需求,因此需要与高品质的安全性和可用性。 为实现一些需求所使用的DBMS(数据库管理系统),事实上,是一个数据库软件。从技术上讲,它是软件,它采用了标准的编目,恢复和运行不同的数据查询方法。DBMS 管理输入数据,组织安排这些数据,并提供它的用户或其他程序修改或提取数据的方法。数据库管理就是一种需要定期更新,优化和监测的操作。 关键词 数据库,数据库管理系统(DBMS),索引,优化,成本,优化数据库。

1 引言 该文件的目的是介绍有关数据库的基本优化代表的观念,在不同类型的查询中使用数学估计成本,可以达到性能水平的审查,以及分析在特定查询的例子中不同的物理访问结构的影响。目标群体应该熟悉SQL在关系数据库的基本概念。 通过这种方式,可以执行复杂的查询策略,允许以较低的成本获得信息的使用知识。一个数据库经过一系列转换,直到其最终用途,以数据建模,数据库设计和开发为开始,以维护和优化为结束。 2 数据库建模 2.1 数据建模 数据模型更侧重于数据是必要的,而做出数据的方式应该是一种有组织的和少操作的方式。数据建模阶段涉及结构的完整性,操作和查询。这有多个这方面的事项,如:1。数据定义方式应该是有组织的(分层网络,关系和重点对象)。这需要提供一个规则,来约束实例的定义结构的允许/限制。 2。提供了数据更新协议。 3。提供了数据查询的方法。 一个结构简单的数据通信,能够使得最终用户很容易的理解,是数据建模想要的的实际结果。 2.2 自定义数据库/数据库发展 数据库的开发和自定义答复了顾客的需求。自定义数据库的重要性主要体现在通过它,使向目标客户直接提供服务的产品的商业化成为可能。一个数据库的质量通过定期更新来维护。 2.3 数据库设计 如果数据库有以下任何问题,如故障,不安全或不准确的数据或数据库退化,失去了其灵活性,那么是时候换新数据库了。因此,必须定义具体的数据类型和存储机制以便通过规则和正确地运用操作机制,确保数据的完整性。所有数据库应构建一个客户方面的规范,包括它的用户界面和功能。通过这些可以使运用数据进入一个网站成为可能。

大型ORACLE数据库优化设计方案

大型ORACLE数据库优化设计方案 本文主要从大型数据库ORACLE环境四个不同级别的调整分析入手,分析ORACLE的系统结构和工作机理,从九个不同方面较全面地总结了ORACLE数据库的优化调整方案。 对于ORACLE数据库的数据存取,主要有四个不同的调整级别,第一级调整是操作系统级 包括硬件平台,第二级调整是ORACLE RDBMS级的调整,第三级是数据库设计级的调整,最后一个调整级是SQL级。通常依此四级调整级别对数据库进行调整、优化,数据库的整体性能会得到很大的改善。下面从九个不 同方面介绍ORACLE数据库优化设计方案。 一.数据库优化自由结构OFA(Optimal flexible Architecture) 数据库的逻辑配置对数据库性能有很大的影响,为此,ORACLE公司对表空间设计提出了一种优化结构OFA。使用这种结构进行设计会大大简化物理设计中的数据管理。优化自由结构OFA,简单地讲就是在数据库中可以高效自由地分布逻辑数据对象,因此首先要对数据库中的逻辑对象根据他们的使用方式和物理结构对数据库的影响来进行分类,这种分类包括将系统数据和用户数据分开、一般数据和索引数据分开、低活动表和高活动表分开等等。数据库逻辑设计的结果应当符合下面的准则:(1)把以同样方式使用的段类型存储在一起; (2)按照标准使用来设计系统;(3)存在用于例外的分离区域;(4)最小化表空间冲突;(5)将数 据字典分离。 二、充分利用系统全局区域SGA(SYSTEM GLOBAL AREA) SGA是oracle数据库的心脏。用户的进程对这个内存区发送事务,并且以这里作为高速缓存读取命中的数据,以实现加速的目的。正确的SGA大小对数据库的性能至关重要。SGA 包括以下几个部分: 1、数据块缓冲区(data block buffer cache)是SGA中的一块高速缓存,占整个数据库大小 的1%-2%,用来存储从数据库重读取的数据块(表、索引、簇等),因此采用least recently used (LRU,最近最少使用)的方法进行空间管理。 2、字典缓冲区。该缓冲区内的信息包括用户账号数据、数据文件名、段名、盘区位置、表 说明和权限,它也采用LRU方式管理。 3、重做日志缓冲区。该缓冲区保存为数据库恢复过程中用于前滚操作。 4、SQL共享池。保存执行计划和运行数据库的SQL语句的语法分析树。也采用LRU算法 管理。如果设置过小,语句将被连续不断地再装入到库缓存,影响系统性能。 另外,SGA还包括大池、JAVA池、多缓冲池。但是主要是由上面4种缓冲区构成。对这

OLTP数据库优化方案

OLTP数据库优化方案及案例
ORACLE数据库SQL优化方案、案例
Edgar Liu
? 2015 Huatek CO., LTD. All Rights Reserved.
2015.3.17

目录
1. 优化方案与基础知识
1.1 问题SQL来源(现象) 1.2 数据库性能优化方案及期待效果 1.3 优化方法论及优化分析树 1.4 数据库体系结构 1.5 逻辑读 逻辑写
4.索引设计与查询条件
4.1 4.2 4.3 4.4 索引介绍 索引设计步骤 索引创建原则 索引失效与不足
2. 执行计划分析
2.1 执行计划查看方法 2.2 执行计划示例 2.3 执行计划三部分 2.4 硬解析和软解析
5. 高效SQL
5.1 5.2 5.3 5.4 优化规则30条 关于Hit提示优化 DML语句优化 批量读取游标数据优化
3.最佳表连接方式
3.1 3.2 3.3 3.4 ORACLE表介绍 RDBMS表连接方式介绍 执行计划中表连接方式介绍 执行计划中表连接方式比较
6. 数据模型与SQL
6.1 数据逻辑模型设计 6.2 数据库物理设计 6.3 书集推荐
2/40

1.0 OLTP 与OLAP区别
?对于Oracle数据库的数据存取,主要有四个不同的调整级别, ?第一级调整是操作系统级包括硬件平台, ?第三级是Oracle数据库设计级的调整, 第二级调整是Oracle RDBMS级的调整, 第四级调整级是SQL级。通常依此四级调整级别对数据库进行调
整、优化,数据库的整体性能会得到很大的改善。
3/40

mysql优化笔记

◆Mysql数据库的优化技术<大型网站优化技术> 对mysql优化时一个综合性的技术,主要包括 a: 表的设计合理化(符合3NF) b: 添加适当索引(index) [四种: 普通索引、主键索引、唯一索引unique、全文索引] c: 分表技术(水平分割、垂直分割) d: 读写[写: update/delete/add]分离 e: 存储过程[模块化编程,可以提高速度] 数据库的三层结构: f: 对mysql配置优化[配置最大并发数my.ini, 调整缓存大小] g: mysql服务器硬件升级 h: 定时的去清除不需要的数据,定时进行碎片整理(MyISAM) CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name [USING index_type] ON tbl_name (index_col_name,...) ◆什么样的表才是符合3NF (范式) 表的范式,是首先符合1NF, 才能满足2NF , 进一步满足3NF 1NF: 即表的列的具有原子性,不可再分解,即列的信息,不能分解, 只有数据库是关系型数据库(mysql/oracle/db2/informix/sysbase/sql server),就自动的满足1NF ?数据库的分类 关系型数据库: mysql/oracle/db2/informix/sysbase/sql server 非关系型数据库: (特点: 面向对象或者集合) NoSql数据库: MongoDB(特点是面向文档) 2NF: 表中的记录是唯一的, 就满足2NF, 通常我们设计一个主键来实现id primary key ; 3NF: 即表中不要有冗余数据, 就是说,表的信息,如果能够被推导出来,就不应该单独的设计一个字段来存放. 比如下面的设计就是不满足3NF:显示推导处理

MySQL数据库性能(SQL)优化方案-期末论文

高级数据库技术——期末论文 基于SQL查询的MySQL数据库性能优化研究 :XX 学号:2014XXXXX 学院:计算机学院

摘要: 查询是数据库系统中最基本也是最常用的一种操作,是否具有较快的执行速度,已成为数据库用户和设计者极其关心的问题。在研究开源数据库管理系统MySQL 查询优化技术的基础上,主要结合传统SQL操作优化、深度分析 MySQL 源代码、现代数据库发展几方面进行诸如参数调优,MySQL关联查询,重写相关规则等容展开优化分析研究。 关键词:查询优化,查询重用,查询重写,计划优化

一、传统SQL查询优化操作 1.选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很好的完成任务了。同样的,如果可以的话,我们应该使用MEDIUMINT而不是BIGIN来定义整型字段。 另外一个提高效率的方法是在可能的情况下,应该尽量把字段设置为NOT NULL,这样在将来执行查询的时候,数据库不用去比较NULL值。 对于某些文本字段,例如“省份”或者“性别”,我们可以将它们定义为ENUM类型。因为在MySQL中,ENUM类型被当作数值型数据来处理,而数值型数据被处理起来的速度要比文本类型快得多。这样,我们又可以提高数据库的性能。 2.使用连接(JOIN)来代替子查询(Sub-Queries) MySQL从4.1开始支持SQL的子查询。这个技术可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中。例如,我们要将客户基本信息表中没有任何订单的客户删除掉,就可以利用子查询先从销售信息表中将所有发出订单的客户ID取出来,然后将结果传递给主查询,如下所示: DELETE FROM customerinfo WHERE CustomerID NOT in (SELECT CustomerID FROM salesinfo ) 使用子查询可以一次性的完成很多逻辑上需要多个步骤才能完成的SQL操作,同时也可以避免事务或者表锁死,并且写起来也很容易。但是,有些情况下,

mysql服务性能优化my_cnf配置说明详解16G内存

mysql服务性能优化—https://www.sodocs.net/doc/2411505582.html,f配置说明详解 (16G内存) MYSQL服务器https://www.sodocs.net/doc/2411505582.html,f配置文档详解 硬件:内存16G [client] port = 3306 socket = /data/3306/mysql.sock [mysql] no-auto-rehash [mysqld] user = mysql port = 3306 socket = /data/3306/mysql.sock basedir = /usr/local/mysql datadir = /data/3306/data open_files_limit = 10240 back_log = 600 #在MYSQL暂时停止响应新请求之前,短时间内的多少个请求可以被存在堆栈中。如果系统在短时间内有很多连接,则需要增大该参数的值,该参数值指定到来的TCP/IP连接的监听队列的大小。默认值50。 max_connections = 3000 #MySQL允许最大的进程连接数,如果经常出现Too Many Connections的错误提示,则需要增大此值。 max_connect_errors = 6000 #设置每个主机的连接请求异常中断的最大次数,当超过该次数,MYSQL服务器将禁止host 的连接请求,直到mysql服务器重启或通过flush hosts命令清空此host的相关信息。 table_cache = 614 #指示表调整缓冲区大小。# table_cache 参数设置表高速缓存的数目。每个连接进来,都会至少打开一个表缓存。#因此, table_cache 的大小应与 max_connections 的设置有关。例如,对于 200 个#并行运行的连接,应该让表的缓存至少有 200 × N ,这里 N 是应用可以执行的查询#的一个联接中表的最大数量。此外,还需要为临时表和文件保留一些额外的文件描述符。 # 当 Mysql 访问一个表时,如果该表在缓存中已经被打开,则可以直接访问缓存;如果#还

大数据库优化(SQLServer)

SQL SERVER性能优化综述 近期因工作需要,希望比较全面的总结下SQL SERVER数据库性能优化相关的注意事项,在 网上搜索了一下,发现很多文章,有的都列出了上百条,但是仔细看发现,有很多似是而非或 者过时(可能对SQL SERVER6.5以前的版本或者ORACLE是适用的)的信息,只好自己根据以 前的经验和测试结果进行总结了。 我始终认为,一个系统的性能的提高,不单单是试运行或者维护阶段的性能调优的任务,也不单单是开发阶段的事情,而是在整个软件生命周期都需要注意,进行有效工作才能达到的。所以我希望按照软件生命周期的不同阶段来总结数据库性能优化相关的注意事项。 一、分析阶段 一般来说,在系统分析阶段往往有太多需要关注的地方,系统各种功能性、可用性、可靠性、安全性需求往往吸引了我们大部分的注意力,但是,我们必须注意,性能是很重要的非功能 性需求,必须根据系统的特点确定其实时性需求、响应时间的需求、硬件的配置等。最好能 有各种需求的量化的指标。 另一方面,在分析阶段应该根据各种需求区分出系统的类型,大的方面,区分是OLTP(联机事务处理系统)和OLAP(联机分析处理系统)。 二、设计阶段 设计阶段可以说是以后系统性能的关键阶段,在这个阶段,有一个关系到以后几乎所有性能 调优的过程—数据库设计。 在数据库设计完成后,可以进行初步的索引设计,好的索引设计可以指导编码阶段写出高效 率的代码,为整个系统的性能打下良好的基础。 以下是性能要求设计阶段需要注意的: 1、数据库逻辑设计的规范化 数据库逻辑设计的规范化就是我们一般所说的范式,我们可以这样来简单理解范式: 第1规范:没有重复的组或多值的列,这是数据库设计的最低要求。 第2规范: 每个非关键字段必须依赖于主关键字,不能依赖于一个组合式主关键字的某些组 成部分。消除部分依赖,大部分情况下,数据库设计都应该达到第二范式。 第3规范: 一个非关键字段不能依赖于另一个非关键字段。消除传递依赖,达到第三范式应该是系统中大部分表的要求,除非一些特殊作用的表。 更高的范式要求这里就不再作介绍了,个人认为,如果全部达到第二范式,大部分达到第三

浅谈数据库系统优化

浅谈数据库系统优化 概要:数据库系统的优化可以有效提高系统的性能,微软的SQL Server数据库的优化是一个系统工程,需要从设计开始就进入优化程序。 数据库的性能的优化成了数据处理的一个很重要环节。系统的性能优化应该贯穿系统工作的整个生命周期,从开发开始直到系统最终下线,都应该不断的动态的优化并不断调整优化过程。基于SQL Server的数据库优化是指对数据库处理、存储、查询等进行调优的过程。 基于SQL Serve数据库的优化,应该从数据库设计的时候就做好优化打算,为后面系统正式投入运行后优化做好准备。其主要策略有: 1)调优数据库。数据库性能的优化基础就是数据库的基本设计,如果设计端出了问题则对数据库的影响很大,也很有可能没有优化的必要。数据库的优化应该从数据库的设计开始,一般要找专业的性能优化专家根据系统的要求,对数据库采取合理的设计方案。数据库的设计主要包含两个部分,一个是数据库存储分配的物理设计,一个是数据流量分配的逻辑设计。物理设计主要包括数据对象在物理介质上存储分布等各个方面,所要注意的问题就是在不同的存储介质上所放的数据块的大小,这个直接关系到数据的存储速度。而逻辑设计主要包括在数据库的索引、数据库模式、视图等。数据库的设计是基础,如果在设计初始出了问题,则不可能通过单纯的优化来完成数据库的正常工作,所以这是数据库调整和优化的保障。 2)优化应用程序。网络中数据的查询和传输速度及效率不仅仅在于服务器,而是和多种因素相关联的,根据网络上的相关统计,对和数据库相关的各个外部因素进行调整,同样可以达到数据库性能优化的目的。相关因素主要包括,网络、操作系统、硬件、数据库参数等各个方面。而这因素大都设计硬件设备,其它软件方面主要是应用程序的优化,包括数据库的SQL语句和系统开发语言的优化。在数据库的应用中,大部分是通过SQL语句来实现的,因此SQL语句的优化对数据系统优化起到很重要的作用。 大多数针对系统应用程序的优化也都集中在查询语句的处理上,而SQL语句的优化则可集中到合理利用临时数据表及索引。充分利用临时数据表,及建立合理的索引、调整优化SQL语句,等可以减少客户访问数据库的次数,减小CPU

谈谈项目中常用的MySQL优化方法

谈谈项目中常用的MySQL优化方法 本文我们来谈谈项目中常用的MySQL优化方法,共19条,具体如下: 一、EXPLAIN 做MySQL优化,我们要善用EXPLAIN查看SQL执行计划。 下面来个简单的示例,标注(1、2、3、4、5)我们要重点关注的数据: type列,连接类型。一个好的SQL语句至少要达到range级别。杜绝出现all级别。 key列,使用到的索引名。如果没有选择索引,值是NULL。可以采取强制索引方式 key_len列,索引长度。 rows列,扫描行数。该值是个预估值。 extra列,详细说明。注意,常见的不太友好的值,如下:Using filesort,Using temporary。 二、SQL 语句中IN 包含的值不应过多 MySQL对于IN做了相应的优化,即将IN中的常量全部存储在一个数组里面,而且这个数组是排好序的。但是如果数值较多,产生的消耗也是比较大的。再例如:select id from t where num in(1,2,3) 对于连续的数值,能用between就不要用in了;再或者使用连接来替换。 三、SELECT语句务必指明字段名称 SELECT*增加很多不必要的消耗(CPU、IO、内存、网络带宽);增加了使用覆盖索引的可能性;当表结构发生改变时,前断也需要更新。所以要求直接在select后面接上字段名。 四、当只需要一条数据的时候,使用limit 1 这是为了使EXPLAIN中type列达到const类型 五、如果排序字段没有用到索引,就尽量少排序 六、如果限制条件中其他字段没有索引,尽量少用or or两边的字段中,如果有一个不是索引字段,而其他条件也不是索引字段,会造成该查询不走索引的情况。很多时候使用union all或者是union(必要的时候)的方式来代替“or”

大型数据库的优化方法及实例

大型数据库的优化方法及实例 尹德明杨富玉杨莹时鹏泉 中国金融电子化公司 E_mail: dm_mis@https://www.sodocs.net/doc/2411505582.html, 1.引言 随着银行业数据集中,作为整个系统核心的数据库,其存放、管理的数据越来越庞大,已经超越GB而到达TB数据量层次,数据库的性能成为整个系统性能的关键。 国库会计核算系统是国库部门用以进行国库业务的会计核算,并通过支付系统、国库内部往来、同城票据交换系统进行资金清算的计算机网络系统。国家金库会计核算系统每天处理的税票数据多达10万笔,税收高峰可能会到100万笔,这样一年累计下来其中历史登记簿中的数据达到2000万条以上,给检索和数据处理带来非常大的困难。 如何对于一个已经上线运行的重要业务系统,通过对数据库的优化和简单的系统流程调整,实现系统性能的大幅提升具有现实、迫切、重要的意义。 2.优化策略 根据Sybase的数据存储机制,在进行一段时期的数据删除、插入和更新等操作后,数据库往往会产生大量的碎片。大量碎片的存在,会严重影响数据库的I/O性能,如果在使用数据库一段时间后,整理碎片,可以提高数据库的性能。由于国家金库会计核算系统在预处理、日间报解、日初始化等步骤,会大批量进行数据删除、插入和更新等操作,因此会产生大量的数据碎片。碎片整理对于国家金库会计核算系统性能优化将会有重要效果。 Sybase Adaptive Server对于按顺序存储和访问的页,在单个I/O中最多读取八个数据页。由于大部分I/O时间都花在磁盘上的物理定位和搜寻上,因此大I/O可极大地减少磁盘访问时间。在大多数情况下,希望在缺省数据高速缓存中配置一个16K缓冲池。为事务日志创建4K缓冲池可极大地减少数据库系统日志写操作的数量。 好的性能同优良的数据库设计及优秀的程序写法关系极大,可以这样说,如果一个数据库没有好的设计及对程序未进行优化的话即使对参数进行调整也不可能有好的性能。 3.数据库碎片整理 由于Sybase是通过OAM页、分配单元和扩展页来管理数据的,所以对OLTP应用的Database Server会十分频繁地进行数据删除、插入和更新等操作,时间一长就会出现以下几种情况: (1)页碎片 即本来可以存放在一个页上的数据却分散地存储在多个页上。如果这些页存储在不同的扩展单元上,Database Server就要访问多个扩展单元,因此降低了系统性能。 (2)扩展单元碎片 在堆表中,当删除数据链中间的记录行时,会出现空页。随着空页的累积,扩展单元的利用率也会下降,从而出现扩展单元碎片。带cluster index的table也有可能出现扩展单元碎片。当有扩展单元碎片存在,会出现以下问题: 对表进行处理时,常常出现死锁;利用较大的I/O操作或增加I/O缓冲区的大小也无法改变较慢的I/O速度;行操作的争用。 (3)扩展单元遍历 带有cluster index的table会由于插入记录而导致页分裂,但当删除记录后,页会获得释放,从而形成跨几个扩展单元和分配单元的数据,而要访问该数据就必须遍历几个扩展单元和分配单元。这将导致访问/查询记录的时间大大延长,开始时数据库的性能虽然较高,

MySQL5.1性能优化方案

MySQL5.1性能优化方案 1.平台数据库 1.1.操作系统 Red Hat Enterprise Linux Server release 5.4 (Tikanga) ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.6.9, dynamically linked (uses shared libs), for GNU/Linux 2.6.9, stripped 32位Linux服务器,单独作为MySQL服务器使用。 1.2.M ySQL 系统使用的是MySQL5.1,最新的MySQL5.5较之老版本有了大幅改进。主要体现在以下几个方面: 1)默认存储引擎更改为InnoDB InnoDB作为成熟、高效的事务引擎,目前已经广泛使用,但MySQL5.1之前的版本默认引擎均为MyISAM,此次MySQL5.5终于将默认数据库存储引擎改为InnoDB,并且引进了Innodb plugin 1.0.7。此次更新对数据库的好处是显而易见的:InnoDB的数据恢复时间从过去的一个甚至几个小时,缩短到几分钟(InnoDB plugin 1.0.7,InnoDB plugin 1.1,恢复时采用红-黑树)。InnoDB Plugin 支持数据压缩存储,节约存储,提高内存命中率,并且支持adaptive flush checkpoint, 可以在某些场合避免数据库出现突发性能瓶颈。 Multi Rollback Segments:原来InnoDB只有一个Segment,同时只支持1023的并发。现已扩充到128个Segments,从而解决了高并发的限制。 2)多核性能提升

SQL数据库优化方法

SQL数据库优化方法

目录 1 系统优化介绍 (1) 2 外围优化 (1) 3 SQL优化 (2) 3.1 注释使用 (2) 3.2 对于事务的使用 (2) 3.3 对于与数据库的交互 (2) 3.4 对于SELECT *这样的语句, (2) 3.5 尽量避免使用游标 (2) 3.6 尽量使用count(1) (3) 3.7 IN和EXISTS (3) 3.8 注意表之间连接的数据类型 (3) 3.9 尽量少用视图 (3) 3.10 没有必要时不要用DISTINCT和ORDER BY (3) 3.11 避免相关子查询 (3) 3.12 代码离数据越近越好 (3) 3.13 插入大的二进制值到Image列 (4) 3.14 Between在某些时候比IN 速度更快 (4) 3.15 对Where条件字段修饰字段移到右边 (4) 3.16 在海量查询时尽量少用格式转换。 (4) 3.17 IS NULL 与IS NOT NULL (4) 3.18 建立临时表, (4) 3.19 Where中索引的使用 (5) 3.20 外键关联的列应该建立索引 (5) 3.21 注意UNion和`UNion all 的区别 (5) 3.22 Insert (5) 3.23 order by语句 (5) 3.24 技巧用例 (6) 3.24.1 Sql语句执行时间测试 (6)

1系统优化介绍 在我们的项目中,由于客户的使用时间较长或客户的数据量大,造成系统运行速度慢,系统性能下降就容易造成数据库阻塞。这是个非常痛苦的事情,用户的查询、新增、修改等需要花很多时间,甚至造成系统死机的现象。速度慢的原因主要是来自于资源不足。 数据库的优化通常可以通过对网络、硬件、操作系统、数据库参数和应用程序的优化来进行。最常见的优化手段就是对硬件的升级。根据统计,对网络、硬件、操作系统、数据库参数进行优化所获得的性能提升,全部加起来最多只占数据库系统性能提升的40%左右(我将此暂时称之为外围优化);其余大部分系统性能提升来自对应用程序的优化,对于应用程序的优化可以分为对源代码的优化及数据库SQL语句的优化。在本文档只介绍外围优化及SQL语句的优化,对于源代码的优化需要相关方面的专家,形成统一的规范。 一个数据库系统的生命周期可以分成:设计、开发和成品三个阶段。在设计阶段进行数据库性能优化的成本最低,收益最大。在成品阶段进行数据库性能优化的成本最高,收益最小。规范的代码和高性能的语句,功在平时,利在千秋。 2外围优化 1、将操作系统与SQL数据库的补丁打到最高版本,WIN2003最高补丁是SP4, SQL SERVER2000最高补丁是SP4(版本号:2039)。 2、在服务器上不要安装与VA程序任何无相关的软件,甚至一些与VA运行 无关的服务都可以停掉。一般只安装SQL数据库、VA服务端服务及杀毒 软件。 3、杀毒软件避免对大文件进行扫描,特别是数据库(MDF和LDF)文件,一 定要从杀毒软件的范围内排除掉。 4、在进行服务器分区时,分区不要太多,两三个分区就可以了。分区最好 都使用NTFS格式。

SQL Server数据库优化方案汇总

SQL Server数据库优化方案汇总 50种方法优化SQL Server 1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷) 2、I/O吞吐量小,形成了瓶颈效应。 3、没有创建计算列导致查询不优化。 4、内存不足 5、网络速度慢 6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量) 7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷) 8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。 9、返回了不必要的行和列 10、查询语句不好,没有优化 可以通过如下方法来优化查询 : 1、把数据、日志、索引放到不同的I/O设备上,增加读取速度,以前可以将Tempdb应放在RAID0上,SQL2000不在支持。数据量(尺寸)越大,提高I/O越重要. 2、纵向、横向分割表,减少表的尺寸(sp_spaceuse) 3、升级硬件 4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量。注意填充因子要适当(最好是使用默认值0)。索引应该尽量小,使 用字节数小的列建索引好(参照索引的创建),不要对有限的几个值的字段建单一索引如性别字段 5、提高网速; 6、扩大服务器的内存,Windows 2000和SQL server 2000能支持4-8G的内存。配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行 配置。运行 Microsoft SQL Server? 2000 时,可考虑将虚拟内存大小设置为计算机中安装的物理内存的 1.5 倍。如果另外安装了全文检索功能,并打算 运行 Microsoft 搜索服务以便执行全文索引和查询,可考虑:将虚拟内存大小配置为至少是计算机中安装的物理内存的 3 倍。将 SQL Server max server memory 服务器配置选项配置为物理内存的 1.5 倍(虚拟内存大小设置的一半)。 7、增加服务器 CPU个数;但是必须明白并行处理串行处理更需要资源例如内存。使用并行还是串行程是MsSQL自动评估选择的。单个任务分解成 多个任务,就可以在处理器上运行。例如耽搁查询的排序、连接、扫描和GROUP BY字句同时执行,SQL SERVER根据系统的负载情况决定最优的并 行等级,复杂的需要消耗大量的CPU的查询最适合并行处理。但是更新操作Update,Insert, Delete还不能并行处理。 8、如果是使用like进行查询的话,简单的使用index是不行的,但是全文索引,耗空间。 like 'a%' 使用索引 like '%a' 不使用索引用 like '%a%' 查询时,查询耗时和字段值总长度成正比,所以不能用CHAR类型,而是VARCHAR。对于字段的值很长的建全文索引。 9、DB Server 和APPLication Server 分离;OLTP和OLAP分离

MySQL优化原则

MySQL优化原则 转载2014年05月20日10:27:13 1113 数据库已成为互联网应用必不可少的底层依赖,其中MySQL作为开源数据库得到了更加广泛的应用。最近一直专注于项目工程的开发,对开发过程中使用到的一些关于数据库的优化原则进行了总结,希望能够帮助更多的应用开发人员更好的使用MySQL数据库。 MySQL的优化主要包括三个方面,首先是SQL语句的优化,其次是表结构的优化,这里主要指索引的优化,最后是服务器配置的优化。第四点代码结构的优化!!! 1.SQL语句的优化 1)查询语句应该尽量避免全表扫描,首先应该考虑在Where子句以及OrderBy子句上建立索引,但是每一条SQL语句最多只会走一条索引,而建立过多的索引会带 来插入和更新时的开销,同时对于区分度不大的字段,应该尽量避免建立索引,可 以在查询语句前使用explain关键字,查看SQL语句的执行计划,判断该查询语 句是否使用了索引; 2)应尽量使用EXIST和NOT EXIST代替 IN和NOT IN,因为后者很有可能导致全表扫描放弃使用索引; 3)应尽量避免在Where子句中对字段进行NULL判断,因为NULL判断会导致全表扫描; 4)应尽量避免在Where子句中使用or作为连接条件,因为同样会导致全表扫描; 5)应尽量避免在Where子句中使用!=或者<>操作符,同样会导致全表扫描; 6)使用like “%abc%”或者like “%abc”同样也会导致全表扫描,而like “abc%”会使用索引。 7)在使用Union操作符时,应该考虑是否可以使用Union ALL来代替,因为Union 操作符在进行结果合并时,会对产生的结果进行排序运算,删除重复记录,对于没

千万级的mysql数据库与优化方法

千万级的mysql数据库与优化方法 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在where 及order by 涉及的列上建立索引。 2.应尽量避免在where 子句中对字段进行null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: Sql代码 可以在num上设置默认值0,确保表中num列没有null值,然后这样查询: Sql代码 3.应尽量避免在where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。 4.应尽量避免在where 子句中使用or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:Sql代码 可以这样查询: Sql代码 5.in 和not in 也要慎用,否则会导致全表扫描,如: 对于连续的数值,能用between 就不要用in 了: 6.下面的查询也将导致全表扫描: Sql代码

若要提高效率,可以考虑全文检索。 7.如果在where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描: Sql代码 可以改为强制查询使用索引: 8.应尽量避免在where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如: 应改为: 9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:Sql代码 应改为: 10.不要在where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。 11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。 12.不要写一些没有意义的查询,如需要生成一个空表结构:

sql优化方案讲解

Sql优化方案 一.数据库优化技术 1.索引(强烈建议使用) 1.1优点 创建索引可以大大提高系统的性能。 第一,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。 第二,可以大大加快数据的检索速度,这也是创建索引的最主要的原因。 第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。 第四,在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。 第五,通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。 1.2 缺点 第一,创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。第二,索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。 第三,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。 1.3 使用准则 索引是建立在数据库表中的某些列的上面。因此,在创建索引的时候,应该仔细考虑在哪些列上可以创建索引,在哪些列上不能创建索引。 一般来说,应该在这些列上创建索引。 第一,在经常需要搜索的列上,可以加快搜索的速度;

第二,在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构; 第三,在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;第四,在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的; 第五,在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间; 第六,在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。 同样,对于有些列不应该创建索引。一般来说,不应该创建索引的的这些列具有下列特点: 第一,对于那些在查询中很少使用或者参考的列不应该创建索引。这是因为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。 第二,对于那些只有很少数据值的列也不应该增加索引。这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。 第三,对于那些定义为text, image和bit数据类型的列不应该增加索引。这是因为,这些列的数据量要么相当大,要么取值很少。 第四,当修改性能远远大于检索性能时,不应该创建索引。这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因此,当修改性能远远大于检索性能时,不应该创建索引。 1.4 总结 1)索引提高了数据库的检索性能,但一定程度上牺牲了修改性能。因此适用于“多查询少修改”(insert,update,delete)的表。 2)对此类表中的外键,需要分组,排序或作为检索条件的字段建立索引 3)对此类表中查询使用少,字段取值少,字段数据量大的不应创建索引

数据库优化设计方案

数据库优化方案设计 XX信息管理平台从大型数据库环境四个不同级别的调整分析入手,分析数据库平台的系统结构和工作机理,从九个不同方面设计数据库的优化方案。 对于数据库的数据优化,主要有四个不同的调整级别,第一级调整是操作系统级包括硬件平台,第二级调整是RDBMS级的调整,第三级是数据库设计级的调整,最后一个调整级是SQL级。通常依此四级调整级别对数据库进行调整、优化,数据库的整体性能会得到很大的改善。下面从九个不同方面介绍数据库优化设计方案。 一、数据库优化自由结构 数据库的逻辑配置对数据库性能有很大的影响。为此,数据库平台一般对表空间设计提出有相应的优化结构,如ORACLE公司的OFA(Optimal flexible Architecture),使用这种结构进行设计会大大简化物理设计中的数据管理。优化自由结构,简单地讲就是在数据库中可以高效自由地分布逻辑数据对象,因此首先要对数据库中的逻辑对象根据他们的使用方式和物理结构对数据库的影响来进行分类,这种分类包括将系统数据和用户数据分开、一般数据和索引数据分开、低活动表和高活动表分开等等。 数据库逻辑设计的结果应当符合下面的准则: (1)把以同样方式使用的段类型存储在一起; (2)按照标准使用来设计系统; (3)存在用于例外的分离区域; (4)最小化表空间冲突; (5)将数据字典分离。 二、充分利用系统全局区域 系统全局区域是数据库平台的心脏,如Oracle数据库的SGA(SYSTEM GLOBAL AREA) 。用户的进程对这个内存区发送事务,并且以这里作为高速缓存读取命中的数据,以实现加速的目的。正确的SGA大小对数据库的性能至关重要。SGA包括以下几个部分: 1、数据块缓冲区(data block buffer cache)是SGA中的一块高速缓存,占整个数据库大小的1%-2%,用来存储从数据库重读取的数据块(表、索引、簇等),因此采用least recently used (LRU,最近最少使用)的方法进行空间管理。 2、字典缓冲区。该缓冲区内的信息包括用户账号数据、数据文件名、段名、盘区位置、表说明和权限,它也采用LRU方式管理。 3、重做日志缓冲区。该缓冲区保存为数据库恢复过程中用于前滚操作。 4、SQL共享池。保存执行计划和运行数据库的SQL语句的语法分析树。也采用LRU 算法管理。如果设置过小,语句将被连续不断地再装入到库缓存,影响系统性能。 另外,SGA还包括大池、JAVA池、多缓冲池。但是主要是由上面4种缓冲区构成。对这些内存缓冲区的合理设置,可以大大加快数据查询速度,一个足够大的内存区可以把绝大多数数据存储在内存中,只有那些不怎么频繁使用的数据,才从磁盘读取,这样就可以大大提高内存区的命中率。 三、规范与反规范设计数据库

Mysql千万级别数据优化方案总结

Mysql千万级别数据优化方案 目录 目录 (1) 一、目的与意义 (2) 1)说明 (2) 二、解决思路与根据(本测试表中数据在千万级别) (2) 1)建立索引 (2) 2)数据体现(主键非索引,实际测试结果其中fid建立索引) (2) 3)MySQL分页原理 (2) 4)经过实际测试当对表所有列查询时 (2) 三、总结 (3) 1)获得分页数据 (3) 2)获得总页数:创建表记录大数据表中总数通过触发器来维护 (3)

一、目的与意义 1)说明 在MySql单表中数据达到千万级别时数据的分页查询结果时间过长,对此进行优达 到最优效果,也就是时间最短;(此统计利用的jdbc连接,其中fid为该表的主键;) 二、解决思路与根据(本测试表中数据在千万级别) 1)建立索引 优点:当表中有大量记录时,若要对表进行查询,第一种搜索信息方式是全表搜 索,是将所有记录一一取出,和查询条件进行一一对比,然后返回满足条件的记 录,这样做会消耗大量数据库系统时间,并造成大量磁盘I/O操作;第二种就是 在表中建立索引,然后在索引中找到符合查询条件的索引值,最后通过保存在索 引中的ROWID(相当于页码)快速找到表中对应的记录。 缺点:当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,降 低了数据的维护速度。 2)数据体现(主键非索引,实际测试结果其中fid建立索引) 未创建索引:SELECT fid from t_history_data LIMIT 8000000,10结果:13.396s 创建索引:SELECT fid from t_history_data LIMIT 8000000,10结果:2.896s select*fromt_history_datawherefidin (任意十条数据的id )结果:0.141s 首先通过分页得到分页的数据的ID,将ID拼接成字符串利用SQL语句 select * from table where ID in (ID字符串)此语句受数据量大小的影响比较小 (如上测试); 3)MySQL分页原理 MySQL的limit工作原理就是先读取n条记录,然后抛弃前n条,读m条想要 的,所以n越大,性能会越差。 优化前SQL: SELECT * FROM v_history_data LIMIT 5000000, 1010.961s 优化后SQL: SELECT * FROM v_history_data INNER JOIN (SELECT fid FROM t_history_data LIMIT 5000000, 10) a USING (fid)1.943s 分别在于,优化前的SQL需要更多I/O浪费,因为先读索引,再读数据,然后 抛弃无需的行。而优化后的SQL(子查询那条)只读索引(Cover index)就可以了, 然后通过member_id读取需要的列 4)经过实际测试当对表所有列查询时 select * from table 会比select (所有列名)from table 快些(以查询8000000

相关主题