搜档网
当前位置:搜档网 › 国外超超临界机组技术的发展状况

国外超超临界机组技术的发展状况

国外超超临界机组技术的发展状况
国外超超临界机组技术的发展状况

国外超超临界机组技术的发展状况

一、超超临界的定义

水的临界状态点:压力 22.115MPa,温度374.15℃;蒸汽参数超过临界点压力和温度称为超临界。锅炉、汽轮机系列(通常以汽轮机进口蒸汽初压力划分等级):次中压2.5 MPa,中压3.5 MPa,次高压6.5 MPa,高压9.0MPa,超高压13.5 MPa ,亚临界16.7 MPa,超临界24.1 MPa。

超超临界(Ultra Super-critical)(也有称高效超临界High Efficiency Supercritical))的定义:丹麦人认为:蒸汽压力27.5MPa是超临界与超超临界的分界线;日本人认为:压力>24.2MPa,或温度达到593℃(或超过 566℃)以上定义为超超临界;德国西门子公司的观点:从材料的等级来区分超临界和超超临界;我国电力百科全书:通常把蒸汽压力高于27MPa称为超超临界。

结论:其实没有统一的定义,本质上超临界与超超临界无区别。

二、国外超超临界技术发展趋势

(一)超超临界机组的发展历史

超超临界机组发展至今有50年的历史,最早的超超临界机组于1957年投产,建在美国俄亥俄州(Philo

电厂6#机组),容量为125MW,蒸汽进汽压力31MPa,进汽温度621 / 566 / 566 C(二次再热)。汽轮机制造商为美国GE公司,锅炉制造商为美国B&W公司。

世界上超超临界发电技术的发展过程一般划分为三个阶段:

第一阶段(上世纪50-70年代)

以美国为核心,追求高压/双再的超超临界参数。1959年Eddystone 电厂1#机组,容量为325MW,蒸汽压力为34.5MPa,蒸汽温度为 649 / 566 / 566 C(二次再热),热耗为8630kJ/kWh,汽轮机制造商美国WH 公司,锅炉制造商美国CE公司。其打破了最大出力、最高压力、最高温度和最高效率的4项记录。1968

年降参数(32.2MPa/610/560/560 C)运行直至今,但至今仍是世界上蒸汽压力和温度较高的机组。

结果,早期的超超临界机组,更注重提高初压(30MPa或以上),迫使采用二次再热。使结构与系统趋于复杂,运行控制难度更难,并忽视了当时技术水平和材料水平,使机组可用率不高。

第二阶段(上世纪80年代)

以材料技术发展为中心,超超临界机组处于调整期。锅炉和汽轮机材料性能大幅度提高,电厂水化学方面的认识更趋深入,美国对已投运的超临界机组进行大规模的优化和改造,形成了新的结构和新的设计方法,使可靠性和可用率指标达到甚至超过了相应的亚临界机组。其后,美国将超临界技术转让给日本,GE公司转让给东芝和日立公司,西屋公司转让给三菱公司。

第三阶段(上世纪90年代开始)

迎来了超超临界机组新一轮的发展阶段。主要原因是国际上环保要求日趋严格,新材料的开发成功,常规超临界技术的成熟。大规模发展超超临界机组的国家以日本、欧洲(德国、丹麦)为主要代表。日本以川越电厂31 MPa /654℃/566℃/566℃超超临界为代表,开拓了一条从引进到自主开发,有步骤有计划的发展之路,成为当今超超临界技术领先国家。其值得我们认真学习。

三、各国超超临界发电技术情况

1、美国早期只生产了三台超超临界机组之后便停止生产。到80年代,又退回到超临界参数,大力发展常规超临界机组。目前,美国超临界机组在数量上居世界第二位,并拥有9台世界上最大的超临界机组,单机容量为1300MW(见下表)。

美国现役单机容量最大的1300MW火电机组

另外,美国也是采用二次再热超临界机组较多的国家。为了提高机组可用率,美国超临界机组的参数多为:主汽压力为24.1 MPa,主汽温度为538 C,一次再热温度538 C,二次再热时552/565 C。

2、俄罗斯尚无投产的超超临界机组,常规超临界参数压力为24.1MPa, 温度为545/545℃基本形成四个容量等级,300MW(首台投运时间1963年),500MW(首台投运时间1968年),800MW(首台投运时间1968年),1200MW(首台投运时间1981年)。已有近200台(1200MW仅一台)超临界机组运行,占全国35%电力。目前正在设计30~32MPa,580~600/580~600℃超超临界机组。

3、日本在吸收美国技术,成功发展超临界技术的基础上,开发超超临界机组。

下一步目标是采用奥氏体钢和镍基合金材料,参数达到34.5MPa/645~640 ℃。

4、德国也是发展超超临界技术最早的国家之一,其的特点是超超临界机组的压力在(25—28)MPa范围,温度有上升为580℃/600℃及600℃/600℃的趋势,但总的来说温度水平低于日本。

其代表性机组有:

5、丹麦的超超临界机组追求技术上可能达到的最高效率而不太考虑成本。压力接近30MPa,温度为580℃/600℃或580℃/580℃/580℃,倾向于采用二次再热。机组多数为400MW供热机组,由于采用低温海水冷

却循环(背压26kPa)等,其循环效率可达47%。开发了530MW, 30.5MPa/582/600℃一次再热机组循环效率可达49%,成为迄今为止世界上热效率最高的火电机组。

6、各国超超临界机组分布统计

四、超超临界机组技术发展的总结

1、在400MW ~ 1000MW的容量范围内均有成功业绩。已投运的大容量(>700MW)机组的进汽压力均不大于27.5MPa,已应用的超超临界温度的先进水平是580℃~610℃范围内,国外在这一温度下的材料技术已经基本成熟。

2、采用二次再热的超超临界机组,除了早期美国的三台机组外,只有日本川越两台(1989年)和丹麦的机组。采用两次再热可使机组的热效率提高1%~2%,但也造成了调温方式、受热面布置等的复杂性,成本明显提高。因此近五年来新投运机组基本上没有采用二次再热。

3、目前世界上先进的超超临界机组效率已达到47%~49%,背压的降低对机组效率的影响是不可忽视的,配置脱硫、脱硝的超临界燃煤机组是国际上目前应用最广泛的高效、减排CO2和低污染的发电技术。

五、超超临界机组技术发展新的方向和新目标

1、欧洲的“THERMIE”计划

“ADVANCED(“700℃”)PC POWER PLANT”主要二个目标:①使燃烧粉煤(PF)电厂的净效率由47%提高到55%(对于低的海水冷却水温度)或52%左右(对于内陆地区和冷却塔);降低燃煤电站的造价。欧洲各国约有40个单位参加了这个项目的工作,其中有26家是设备制造商(包括汽轮机、锅炉、主要辅机和材料等制造商);其他则分别是有关的研究机构、大学、电力公司等部门。该项目从1998年开始,分为八个阶段,预期在2014年完成目标,届时示范电站建成运行,前后共计将历时17年的时间。

重点内容:Ni基合金材料的研究,700℃时蠕变强度大于100MPa; 700-750℃的条件下进行新材料试验,包括强度、蠕变特性、脆性、抗氧化性能等;锅炉和汽轮机的设计,循环优化;经济分析和评价方面,进行400MW和1000MW两种机型的设计,参数为700/720/720℃;时间预期为2014年完成。

2、美国的“760℃”计划

美国能源部目前也正在组织和支持一项发展高参数超超临界机组的“760℃”计划。美国电力科学研究院为该项计划的技术牵头单位。主要目标:在目前现有材料的基础上,通过不太多的技术改进工作,将超超

临界机组的主蒸汽温度提高到760℃的水平,从而大大提高超超临界机组的效率。使电厂的效率达到

52-55%。重点内容:确定哪些材料影响了燃煤机组的运行温度和效率;定义并实现能使锅炉运行于760℃的合金材料的生产、加工和镀层工艺;参与ASME的认证过程并积累数据为成为ASME规程批准的合金材料做好基础工作;确定影响运行温度为871℃的超超临界机组设计和运行的因素;与合金材料生产商、设备制造商和电力公司一起确定成本目标并提高合金材料和生产工艺的商业化程度。时间为2008年完成。

3、日本在通商产业省的支持下进行了超超临界机组研发计划。第一阶段(1981-1993):第一步铁素体钢达到593℃,应用9-12Cr发展31.4MPa/593℃/593℃/593℃,发电效率达44.2%;

完井技术国内外发展现状分析

完井技术国内外发展现状分析 第1章前言 1.1 现代完井技术发展现状 完井工程是衔接钻井和采油工程而又相对独立的工程,是从钻开油气层开始,到下套管注水泥固井、射孔、下生产管柱、排液,直至投产的一项系统工程。完井设计水平的高低和完井施工质量的优劣,对油气井生产能否达到预期指标和油田开发的经济效益有决定性的影响。 近十多年来,国内外完井均有了较快发展,并已发展成为独立的学科。除常规井完井技术日益完善外,其他特殊井完井也得到了很大发展,如水平井完井、复杂地质条件下的完井、小井眼完井、分支井完井、深井超深井完井、现代智能完井、膨胀管完井等。国内在完井技术方面虽然取得了一些进步,但是与国外相比,完井技术还有很大差距,特别是在不同储层选择合适的完井方式、水平井完井、欠平衡井完井、小井眼完井、分支井完井,从而影响了油气井的产量及经济效益。 1.2 本文的主要研究内容 1.查阅现代完井技术方面的文献,对各种完井技术现状进行综合性分析: (1)射孔完井技术; (2)割缝衬管完井技术; (3)砾石充填完井技术; (4)膨胀管完井技术; (5)封隔器完井技术; (6)智能完井技术。 2. 调研国内外最新完井技术现状,重点分析国内外现代完井技术现状、最新进展、应用成果以及发展趋势等,并对国内完井技术方案实施的可行性和完井技术的研究方向作初步预测和探讨。

第2章常规完井技术 完井方式的选择主要是针对单井而言。虽单井属于同一油藏类型,但是所处构造位置不同,所选定的完井方式也不尽相同,如油藏有气顶、底水,若采用裸眼完成,技术套管则应将气顶封隔住,再钻开油层,而不钻开底水层。若采用射孔完成,则应避射气顶和底水。又如油藏有边水,套管射孔完成时,油田开发要充分利用边水驱动作用,避射开油水过渡带。下面主要介绍常用的几种常规完井方式[1]。 2.1 裸眼完井技术 裸眼完井方式分先期裸眼完井方式、复合型完井方式和后期裸眼完井方式三种。 先期裸眼完井方式(如图2-1)是钻头钻至油层顶界附近后,下套管柱水泥固井。水泥浆上返至预定设计高度后,再从套管中下入直径较小的钻头,钻穿水泥塞,钻开油层至设计井身完井。 复合型完井方式(如图2-2)是指适合于裸眼完井的厚油层,但上部有气顶或顶界邻近又有水层时,可以将技术套管下过油气界面,使其封隔油层的上部,然后裸眼完井,必要时再射开其中的含油段。 后期裸眼完井方式(如图2-3)是不更换钻头,直接钻穿油层至设计井深,然后下套管至油层顶界附近,注水泥固井。固井时,为防止水泥浆损害套管鞋以下的油层,通常在油层段垫砂或者换入低失水、高粘度的钻井液,以防水泥浆下沉。 图2-1 先期裸眼完井示意图 1—表层套管 2—生产套管 3—水泥环 4—裸眼井壁 5—油层

1000MW超超临界机组锅炉启动系统结构与运行特性

1000MW超超临界机组锅炉启动系统结构与运行特性

摘要 介绍了国产1000MW超超临界机组锅炉启动系统结构及运行特性,阐述了启动系统的结构,启动系统的流程以及运行特性,分析了各种启动系统之间的不同(包括安全性,经济性等)以及不同设备运行对于启动系统运行的影响等。 关键词:超超临界启动系统结构特性运行特性 Abstract Introduced domestic 1000MW Supercritical Boiler Start System structure and operating characteristics, described the structure of the boot system, boot the system processes, and operational characteristics of the different promoters, the difference between the systems (including security, economy, etc.) and

start the system running for different devices running on and so on. Keywords:USC;Start System ;operational characteristics;operating characteristics

目录 第一章前言 (3) 第二章 1000MW超超临界锅炉主要系统 (5) 第三章超超临界锅炉启动系统 (9) 第一节超超临界锅炉启动系统的结构 (9) 第二节超超临界锅炉启动系统的分类 (12) 第三节锅炉启动系统的比较 (15) 第四章超超临界锅炉启动系统运行特性分析 (17) 第五章典型超超临界锅炉启动系统 (20) 第六章结束语 (28) 参考文献 (29) 附录 (30)

国内外海洋工程技术的现状及发展趋势

国内外海洋工程技术的现状及发展趋势 海洋工程技术是造船界关注的技术领域之一,世界上现代化的一流船厂都把高新技术船舶与大型海洋工程结构物作为其纲领性产品。海洋工程技术涉及的领域很广,包括海洋发电技术、海洋钻探技术、海水淡化技术、海洋油矿开采技术、海岸风力发电技术、海层探测技术、海洋物质分离技术、海水提炼技术、海洋建筑设计等。海洋发电技术包括:海水发电、海洋风力发电、潮汐发电、温差发电等。海洋钻探技术包括:海洋油井开发、海洋矿石开采等、海水淡化技术包括:太阳能净水、工业净水等。海洋物质分离技术包括:海水金属分离、轻水物质提炼等。能源开发、资源开采等领域海洋工程技术数目众多,未来人类利用和保护海洋是个新新话题。 随着近年来海洋开发“热”的升温,特别是专属经济区资源勘探和开发的实施,海洋工程技术得到了迅猛发展。 ——在潜水器技术方面。目前世界上建造的载人潜水器超过160艘,无人潜水器超过1000艘。日本继1989年建成深海6500 米载人潜水器“SHINKAI6500”以后,于1993年又建成了世界上第一艘潜深10000米的无人潜水器,用于深海矿产资源和海洋生物资源的调查研究。经过“七五”和“八五”的工作,我国的潜水器技术有了很大的发展。在无人潜水器方面,某些项目已经达到国际水平;在载人潜水器方面,潜深600米的“7 1 03”深潜救生艇是我国第一艘载人潜水器,还有300米工作水深的“QSZ—II型双功能单人常压潜水装具系统”、潜深150米的鱼鹰I号和双功能的鱼鹰II。综合国内从事潜水器开发的各院校、研究院和研究所的力量,我国已具有开发深海载人潜水器的技术能力。

——在海底管线埋设、检测和维修技术方面。我国海底电缆的铺设已有几十年的历史,第一条国际通讯电缆于1976年完成,1993年成功研制出MG一1型海缆埋设犁,并于同年成功完成中日光缆的埋设任务。上世纪80年代开始,英国SMD(Soil Machine Dynamics Ltd.)公司和Land& Marine Eng.公司建造了不少拖曳式埋设系统。而美国的海洋系统工程公司为AT&T研制的SCA- B号埋设机是一种ROV型(水中航行型)的埋设机。可在1850米深用喷水的方式埋设电缆至地下0.6米,可以取出埋深在1.2米以内的电缆,埋设电缆直径为300毫米。履带爬行自走式、带有不同功能挖掘机构的埋设机是海底管道及电缆的埋设技术的发展趋势。在这种履带车载体上通过更换不同的挖沟机械,装备各种探测设备后,既能在沙泥底中进行埋设作业,也能在软岩底中进行埋设作业;既能铺设又能跟踪、挖掘、检修、复埋;既能在水下,也能在浅滩或滩涂工作。目前,这种自走式埋设机已有20多台。 作为开发海洋资源的一种活动,海洋空间利用已有相当长的历史,最早利用海面空间是两千多年前的海上交通运输。然而直到20世纪60年代,由于海洋工程等技术的逐步提高,以及城市化、工业化的迅速发展,导致陆上用地日趋紧张,使人们更加重视海洋空间的利用。海洋空间资源的开发利用可分为几个方面。第一、生活和生产空间;第二、海洋交通运输;第三、储藏和倾废空间;第四、海底军事基地。 解决海洋空间利用的工程技术问题也是近年来海洋工程界研究的热点。 国外研究现状 (1)超大型浮式海洋结构的研究。 在这方面,目前进行最广泛和深入的是日本和美国。日本于1999年8月4 日在神奈川县横须贺港海面上建成—个海上浮动机场。这个浮动机场于1995年开始研制,它由6块长380米、

国外超超临界机组技术的发展状况

国外超超临界机组技术的发展状况 一、超超临界的定义 水的临界状态点:压力 22.115MPa,温度374.15℃;蒸汽参数超过临界点压力和温度称为超临界。锅炉、汽轮机系列(通常以汽轮机进口蒸汽初压力划分等级):次中压2.5 MPa,中压3.5 MPa,次高压6.5 MPa,高压9.0MPa,超高压13.5 MPa ,亚临界16.7 MPa,超临界24.1 MPa。 超超临界(Ultra Super-critical)(也有称高效超临界High Efficiency Supercritical))的定义:丹麦人认为:蒸汽压力27.5MPa是超临界与超超临界的分界线;日本人认为:压力>24.2MPa,或温度达到593℃(或超过 566℃)以上定义为超超临界;德国西门子公司的观点:从材料的等级来区分超临界和超超临界;我国电力百科全书:通常把蒸汽压力高于27MPa称为超超临界。 结论:其实没有统一的定义,本质上超临界与超超临界无区别。 二、国外超超临界技术发展趋势 (一)超超临界机组的发展历史 超超临界机组发展至今有50年的历史,最早的超超临界机组于1957年投产,建在美国俄亥俄州(Philo 电厂6#机组),容量为125MW,蒸汽进汽压力31MPa,进汽温度621 / 566 / 566 C(二次再热)。汽轮机制造商为美国GE公司,锅炉制造商为美国B&W公司。 世界上超超临界发电技术的发展过程一般划分为三个阶段: 第一阶段(上世纪50-70年代)

以美国为核心,追求高压/双再的超超临界参数。1959年Eddystone 电厂1#机组,容量为325MW,蒸汽压力为34.5MPa,蒸汽温度为 649 / 566 / 566 C(二次再热),热耗为8630kJ/kWh,汽轮机制造商美国WH 公司,锅炉制造商美国CE公司。其打破了最大出力、最高压力、最高温度和最高效率的4项记录。1968 年降参数(32.2MPa/610/560/560 C)运行直至今,但至今仍是世界上蒸汽压力和温度较高的机组。 结果,早期的超超临界机组,更注重提高初压(30MPa或以上),迫使采用二次再热。使结构与系统趋于复杂,运行控制难度更难,并忽视了当时技术水平和材料水平,使机组可用率不高。 第二阶段(上世纪80年代) 以材料技术发展为中心,超超临界机组处于调整期。锅炉和汽轮机材料性能大幅度提高,电厂水化学方面的认识更趋深入,美国对已投运的超临界机组进行大规模的优化和改造,形成了新的结构和新的设计方法,使可靠性和可用率指标达到甚至超过了相应的亚临界机组。其后,美国将超临界技术转让给日本,GE公司转让给东芝和日立公司,西屋公司转让给三菱公司。 第三阶段(上世纪90年代开始) 迎来了超超临界机组新一轮的发展阶段。主要原因是国际上环保要求日趋严格,新材料的开发成功,常规超临界技术的成熟。大规模发展超超临界机组的国家以日本、欧洲(德国、丹麦)为主要代表。日本以川越电厂31 MPa /654℃/566℃/566℃超超临界为代表,开拓了一条从引进到自主开发,有步骤有计划的发展之路,成为当今超超临界技术领先国家。其值得我们认真学习。 三、各国超超临界发电技术情况

2019华能营口电厂600MW超超临界机组设计特点水利工程

XX电厂600MW超超临界机组设计特点 3.2机组的形式 XX电厂二期工程的2X600MW超超临界机组采用的是日本三菱公司设计的两缸两排汽机组,与备选方案三缸四排汽机型相比,机组的高中压部分设计相同,均为三菱公司的设计技术;两缸机组的低压缸为三菱公司设计技术,而三缸机组的低压缸为哈汽的常规超临界设计技术。两缸两排汽机组长21米,宽10.5米,高7.5米,本体总重770吨;三缸四排汽机组长28米,宽10.5米,高6.2米,本体总重1020吨。两缸机组的外形及重量均远小于三缸机组,制造成本低。从热耗率来看,三缸机组THA工况的设计热耗率比两缸机组低24kJ/kW.h,全年加权平均热耗率比两缸机组低6.4kJ/kW.h,两缸机组的热耗率略高于三缸机组。与两缸机组完全相同的日本广野5#机组,到目前运行的各项指标均达到设计值。尤其是世界上最长的48英寸末级钢制叶片在投运前进行了大量的实验验证,以确保其安全性,并且在广野5#机组上安全运行。综合上述因素,由于两缸机组与三缸机组的经济性基本相当,而两缸机组的制造成本及运行维护成本均低于三缸机组,安全性也得到了相应的验证,因而两缸两排汽机型是比较合理的选择。 3.2机组参数的确定 主蒸汽的温度拟采用580℃或600℃,汽机厂对采用两种不同的主蒸汽温度,从热耗率和制造成本方面进行了计算比较,主蒸汽温度采用580℃,在THA工况下,机组的热耗率比主蒸汽温度采用600℃

高43 kJ/kW.h,全年的运行成本高228万元左右(年运行小时7800h,标准煤价400元/吨,标准煤发热量29300 kJ/kg)。主蒸汽温度从580℃提高到600℃,汽轮机主要部件的材料不变,只是高压进汽部分的壁厚增加20%左右,对汽轮机的制造成本的影响仅20万元左右。综合上述,主蒸汽温度采用600℃比主蒸汽温度采用580℃有较大优势。主蒸汽压力经过优化后,确定锅炉出口为26.25MPa,汽轮机入口为25MPa。 3.3机组的特点 汽轮机为单轴、两缸、两排汽、一次中间再热、凝汽式机组。高中压汽轮机采用合缸结构,汽轮机低压缸采用48英寸末级叶片,这种设计降低了汽轮机总长度,紧缩电厂布局。机组采用超超临界蒸汽参数(25MPa、600℃/600℃),因此具有较高的经济性,设计工况下机组热耗率为7428kj/kwh,发电煤耗274.65g/kwh,供电煤耗294.13g/kwh,处于同功率等级机组领先地位。两台机组分别于2007年8月31日及10月14日移交生产,通过投产后运行实践,机组各项指标达到设计值。 3.4 机组技术经济性比较 与超临界机组的经济性比较 营口600MW超超临界机组与600MW超临界机组经济指标比较 技术经济指标比较

世界火力发电机组的发展历史及现状

世界火力发电机组的发展历史及现状, 论证采用超临界和超超临界参数将是新世纪初火力发电厂主要发展方向之一,近而说明我厂三期建成一台超临界机组符合时代发展的要求。 关键词:火力发电机组;超临界 1 前言 对我厂三期工程建设一台亚临界机组还是超监界机组的问题进行分析论证。并最终得出结论。 2 超临界化发展模式的成功实践 超临界火电机组是常规蒸汽动力火电机组的自然发展和延伸。提高蒸汽初参数一直是提高这类火电厂效率的主要措施。当蒸汽压力提到高于22.1MPa时就称为超临界机组,如果蒸汽初压力超过27MPa,则称为超超临界火电机组。目前一些发达国家中,超临界和超超临界机组巳是火电结构中的主导机组或是占据一个举足轻重的比例,也就是说火电结构巳经"超临界化"了。以超临界化为特点的对火电结构的更新换代早在20世纪的中叶就已开始。超临界化可以说是火电发展的一种模式,一条道路,是被多国实践证明的成功模式。 美国于1957年投运的第一台125MW超临界机组的参数为31MPa/621℃/566℃/560℃,1958年投运的325MW机组的参数为34.4MPa/649℃/566℃/566℃,实质上它们已是迄今最高参数的超超临界机组。到60年代中期,新增机组中有一半采用超临界参数,但到70年代订货台数急剧下降。根据EPRI的一份调查报告认为,这一下降的原因是多方面的,当时美国缺乏超临界机组调峰运行的经验,最重要的是核电站担负起了基本负荷,因而对带基荷的超临界机组的需求量出现了下降,在采用超临界参数方面出现了反复。在日本和欧洲则情况则有所不同。尽管如此,从宏观上看美国在1967年-1976年的10年期间,共安装118台超临界机组,单机最大容量为1300MW,到80年代初,超临界机组仍增至170余台,占燃煤机组的70%以上,占总装机容量的25.22%,其中单机容量介于500-800MW者占60%-70%,至1994年共安装和投运了9台1300MW的超临界机组。 日本在1967年第一台超临界的600MW机组系从美国引进,在长崎电厂投运。此后日本的超临界压力火力发电得到了迅速的发展。截止1989年3月,日本各大电力公司的48个主要火电厂的总装机容量75870 MW中,超临界压力的为49350MW,占总装机量的65%,比重很大,致使火电机组全国供电煤耗由1963年的366g/kWh 降低到1987年335g/kWh 。1989和1990年在川越电厂投运的两台700MW机组的参数是两次再过热的31MPa /566/566/ 566℃℃℃,在满负荷下的热效率达41.9%,投运以来情况很好。目前在日本,450MW以上的机组全部采用超临界参数。从1993年以后已把蒸汽温度提高到566/593℃℃和593/593℃℃,一次再过热,说明这种等级的超超临界参数已达到成熟阶段。 原苏联也是世界上拥有超临界机级最多的国家,共有224台,总容量达79300MW,凝汽式汽轮机中,超临界机组的容量占48.7%。1963年,苏联投入第一台300MW超临界机组,其热耗率比超高压的200MW机组降低了5.2%。这一成功促使苏联决定,300MW以上的机组全部采用超临界参数。300MW 机组在70年代中期的可用率已达86.4%,1984年雷夫提恩电厂的300MW机组的利用小时达7043小时。德国早在60年代开始发展超临界机组,是研究和制造超临界机组最早的国家之一,但初期容量较小。1972年投运了一台430MW的超临界机组,1979年投入了一台475MW二次再过热的机组。德国VEAG电力公司在1999和2000年于Lippendorf电厂投产的两台900MW褐煤机组,蒸汽参数为26.8MPa/ 554/ 583℃℃,净效率为42%;计划于2002年在Niederaussen 发电厂投产的985MW褐煤机组,使用的蒸汽参数为26MPa/580/600℃℃,由于采用了以超超临界参数为主的多项提高效率的措施,净效率高达45.2%,机组滑压运行,可超负荷5 %。最低负荷为50%,电厂大修期最少为4年。 丹麦是热能动力方面很先进的国家,在火电机组上也处于领先地位。在1998年在Skaebaek发电厂投产的

超临界与亚临界机组特点比较

超临界机组与亚临界机组特点的比较2006-10-25 20:42

600MW 亚临界及超临界机组甩负荷试验技术研究 一、任务来源 汽轮机作为一个高速转动机械必须保证转速不超过它设计允许的最高转速,以防止超速产生的 严重后果。在防止机组发生甩负荷工况时的动态转速飞升方面,起主要作用的就是超速保护限制回 路,也即OPC 保护回路,而甩负荷试验是考核汽轮机调速系统动态特性最直接、最常用的方法。所 以,对于甩负荷试验而言,OPC 超速保护回路是最重要的。 甩负荷试验是一项较为复杂和极其重要的试验.涉及到各机、炉、电、热、化各专业,并具有一定 的风险性。由于甩负荷试验对于保证机组安全稳定运行有重要意义,目前新机组在基建期间,移交 生产前,都基本会按照有关要求进行甩负荷试验,但由于甩负荷试验涉及到各专业,自身技术上比 较复杂,在各地实际进行的甩负荷试验中,由于认知和理解上的不同,存在不同的技术观点,导致 实际甩负荷试验操作中,有不同的操作方式,甩负荷的试验结果也不尽相同,很多试验存在一些问 题,比如试验过程中二次飞升转速比较高、OPC 动作次数过多、甩负荷后机组没法维持空转并再次 并网接带负荷等问题,不仅影响到机组的定期投产,也影响到电网的安全稳定。尤其近年超临界机 组的建设投产比较多,超临界机组的甩负荷试验,暴露出一些新的问题。 本文正是在这个背景下,结合广东正在建设的600MW 等级的亚临界及超临界机组,对于600MW 机组的甩负荷试验,进行了深入的分析和比较研究,全面掌握现代大型机组甩负荷试验的技术要点, 着重解决实际甩负荷试验过程中的关键技术难点,为大型机组的甩负荷试验,包括即将大规模投产 的1000MW 机组的甩负荷试验,提供技术支持和技术指导,为保证现代大型机组甩负荷试验的顺利进 行和机组的安全稳定运行服务。 为此,广东省电力工业局试验研究所于2006 年开始了该项目的研究工作,项目名称:600MW 亚 临界及超临界机组甩负荷试验技术研究。 二、应用领域和技术原理 防止汽轮机超速是调节保安系统的一个重要功能,尤其是发生甩负荷等恶劣工况时,要求调节 汽门能尽快关闭,控制汽轮机转速不致使机组跳闸,并将转速控制在同步转速。若是电网短时故障, 应能迅速重新并网接带负荷。甩负荷试验是考核汽轮机调速系统动态特性最直接、最常用的方法。 由于甩负荷试验对于保证机组和整个电网的安全稳定运行,都有重要意义,本项目通过研究600MW 亚临界及超临界机组的甩负荷试验技术,来为机组和电网安全稳定运行提供支持和服务。 本课题的技术主要包括以下几个部分: 1、比较不同机组的甩负荷技术特点 实施方案:调查研究典型机组的OPC 保护逻辑的技术特点分析。包括1)国产引进型600MW 机组 的OPC 逻辑特点;2)俄罗斯列宁格勒、日立、三菱、ABB 等进口机组的OPC 逻辑特点 2、分析600MW 亚临界及超临界机组甩负荷试验中的主要技术难点和对应解决方法 实施方案:1)分析600MW 亚临界及超临界机组甩负荷试验中的主要技术难点,主要是OPC 的复位逻辑、再热汽压力的控制、转子转动惯量的计算等;2)对存在的技术难点,研究对应的解决方法;3) 制定出科学合理的甩负荷试验执行方案;

火力发电机组超临界化的发展趋势

中国?海南中国科协2004年学术年会电力分会场暨中国电机工程学会2004年学术年会论文集 11 火力发电机组超临界化的发展趋势 李波 (通辽发电总厂) 摘要:从世界火力发电机组的发展历史及现状, 论证采用超临界和超超临界参数将是新世纪初火力发电厂主要发展方向之一,近而说明我厂三期建成一台超临界机组符合时代发展的要求。 关键词:火力发电机组;超临界 1 前言 对我厂三期工程建设一台亚临界机组还是超监界机组的问题进行分析论证。并最终得出结论。 2 超临界化发展模式的成功实践 超临界火电机组是常规蒸汽动力火电机组的自然发展和延伸。提高蒸汽初参数一直是提高这类火电厂效率的主要措施。当蒸汽压力提到高于22.1MPa时就称为超临界机组,如果蒸汽初压力超过27MPa,则称为超超临界火电机组。目前一些发达国家中,超临界和超超临界机组巳是火电结构中的主导机组或是占据一个举足轻重的比例,也就是说火电结构巳经"超临界化"了。以超临界化为特点的对火电结构的更新换代早在20世纪的中叶就已开始。超临界化可以说是火电发展的一种模式,一条道路,是被多国实践证明的成功模式。 美国于1957年投运的第一台125MW超临界机组的参数为31MPa/621℃/566℃/560℃,1958年投运的325MW机组的参数为34.4MPa/649℃/566℃/566℃,实质上它们已是迄今最高参数的超超临界机组。到60年代中期,新增机组中有一半采用超临界参数,但到70年代订货台数急剧下降。根据EPRI的一份调查报告认为,这一下降的原因是多方面的,当时美国缺乏超临界机组调峰运行的经验,最重要的是核电站担负起了基本负荷,因而对带基荷的超临界机组的需求量出现了下降,在采用超临界参数方面出现了反复。在日本和欧洲则情况则有所不同。尽管如此,从宏观上看美国在1967年-1976年的10年期间,共安装118台超临界机组,单机最大容量为1300MW,到80年代初,超临界机组仍增至170余台,占燃煤机组的70%以上,占总装机容量的25.22%,其中单机容量介于500-800MW者占60%-70%,至1994年共安装和投运了9台1300MW的超临界机组。 日本在1967年第一台超临界的600MW机组系从美国引进,在长崎电厂投运。此后日本的超临界压力火力发电得到了迅速的发展。截止1989年3月,日本各大电力公司的48个主要火电厂的总装机容量75870 MW中,超临界压力的为49350MW,占总装机量的65%,比重很大,致使火电机组全国供电煤耗由1963年的366g/kWh降低到1987年335g/kWh 。1989和1990年在川越电厂投运的两台700MW机组的参数是两次再过热的31MPa /566/566/ 566 ℃℃℃,在满负荷下的热效率达41.9%,投运以来情况很好。目前在日本,450MW以上的机组全部采用超临界参数。从1993年以后已把蒸汽温度提高到566/593 ℃℃和593/593 ℃℃,一次再过热,说明这种等级的超超临界参数已达到成熟阶段。 原苏联也是世界上拥有超临界机级最多的国家,共有224台,总容量达79300MW,凝汽式汽轮机中,超临界机组的容量占48.7%。1963年,苏联投入第一台300MW超临界机组,其热耗率比超高压的200MW机组降低了5.2%。这一成功促使苏联决定,300MW以上的机组全部采用超临界参数。300MW 机组在70年代中期的可用率已达86.4%,1984年雷夫提恩电厂的300MW机组的利用小时达7043小时。 德国早在60年代开始发展超临界机组,是研究和制造超临界机组最早的国家之一,但初期容量较小。 1972年投运了一台430MW的超临界机组,1979年投入了一台475MW二次再过热的机组。德国VEAG电力公司在1999和2000年于Lippendorf电厂投产的两台900MW褐煤机组,蒸汽参数为26.8MPa/ 554/ 583 ℃℃,净效率为42%;计划于2002年在Niederaussen 发电厂投产

大型超超临界火电机组现状和发展趋势

大型超超临界火电机组现状和发展趋势 摘要:本文简述了上海发展超超临界火电机组的战略意义、国内 外现状、关键技术和经济效益。 1. 超超临界的概念 火力发电厂的工质是水,在常规条件下水经加热温度达到给定压力下的饱和温度时,将产生相变,水开始从液态变成汽态,出现一个饱和水和饱和蒸汽两相共存的区域。当蒸汽压力达到22.129MPa时,汽化潜热等于零,汽水比重差也等于零,该压力称为临界压力。水在该压力下加热至374.15℃时即被全部汽化,该温度称为临界温度。水在临界压力及超过临界压力时没有蒸发现象,即变成蒸汽,并且由水变成蒸汽是连续的,以单相形式进行。蒸汽压力大于临界压力的范围称超临界区,小于临界压力的范围称亚临界区。从水的物性来讲,只有超临界和亚临界之分,超超临界是人为的一种区分,也称为优化的或高效的超临界参数。目前超超临界与超临界的划分界限尚无国际统一的标准,一般认为蒸汽压力大于25MPa、且蒸汽温度高于580℃称为超超临界。 2. 发展超超临界火电机组的战略意义 2003年7月中国机械联合会根据对我国能源结构、国家能源政策和未来发电用能源供应状况的分析,在充分考虑水电、天然气、核电和新能源资源的开发基础上,再考虑煤电的开发,经过分析、测算,推荐的全国发电能源需求预测方案见表1。 表1 全国电能源构成 项目单位2000实际2020预测 全国总装机容量万千瓦31932.09 90000 比重% 100 100 1、水电万千瓦7935.22 22000 比重% 24.9 24.4 2、火电万千瓦23746.96 63500 比重% 74.4 70.6 其中:煤电万千瓦23223.96 58000 比重% 72.7 64.4 气电万千瓦511.8 5500

亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势的研究报告终稿

亚临界、超临界、超超临界火电机组技 术区别、发展现状与发展趋势的研究报告 一、问题的提出 通过书本上的学习我们初步了解了火电厂的工作流程和原理,在整个流程中机组选择的不同使得火电厂对发电用的蒸汽的各项参数、工件的选择、材料的要求等提出不同的标准。本小组通过对亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势进行研究,找出了他们的一些不同与相同之处,陈列如下不对之处还望指正。 二、调查方法 1.从书籍中查找有关资料 2.在英特网中查阅有关资料 三、正文 我国自1882年在上海建立第一座火力发电厂开始, 火力发电已走过100多年发展历程。新中国成立以后, 特别是改革开放以来, 我国的火力发电事业取得了煌的成就。全国电力装机到1987年跨上100GW的台阶后, 经过7年的努力, 在1995年3月份突破200GW至1995年底我国电力装机容达到217.224GW,其中水电52.184GW,火电162.94GW,核电2.1GW.1995年全国发电装机容量跃居世界第三位、发电量居世界第二位。 火力发电在电力结构中一直占有重要地位。从全球范围看, 火电在电力工业中起着主导作用。对中国而言, 火电在电力工业中所占比重更大, 其中煤电所占比例要比全世界平均水平更高。国内外一些机构曾对我国能源结构进行过预测分析, 虽然数字有些差异, 但结论大致相同,火力发电特别是燃煤发电在未来几年及21世纪上半叶, 甚至更长时间内在我国电力工业中将起主导作用。 我国火电机组的研制从50年代中期6MW中压机组起步, 到70年代已具备设计制造200MW超高压机组和300MW亚临界压力机组的能力, 但我国最大单机容量同国外先进水平的差距一般为30-40年, 我国机组的技术性能和可靠性水平与国外先进水平相比有相当大的差距( 以当时的亚临界300MW汽轮机为例, 其热耗值比国外同类机组高出约209KJ/(KW·h), 按每台机组每年运行7000h 计算, 仅此一项每台机组每年就需多消耗近2000t标准煤。为尽快缩小与国外先进水平的差距, 从80年代初开始,我国采取引进→消化吸收→攻关创新→推广应用的技术路线, 自主研制开发火电机组, 促进了电力工业在装备、设计施工、运行和管理方面跃上新水平。现已发展到设计制造600MW亚临界压力机组。电站锅炉、汽轮机的燕汽参数从中压、高压发展到超高压, 亚临界压力。汽轮发电机电压从6.3kV发展到20kV冷却方式已掌握了空冷、氢冷、双水内冷、水氢氢冷等技术, 近10年来, 我国新建火电机组容量也从以100-200MW为主发展到以300-600MW为主。之后我国引进并消化吸收国外先进技术, 提高我国火电机组研制水平,优化引进型机组, 推广应用新技术, 改进提高国产机组水平,推广优化技术, 提高国产火电机组水平。在“九五”期间及以后又致力于积极开发大容量超临界压力机组,开发大型空冷和热电联供机组,研制能燃用劣质煤的大

国内外石油钻井装备的发展现状分析

国内外石油钻井装备的发展现状分析 摘要:通过对当前国外石油钻机新技术的介绍和国内石油钻机装备的现状及问题的分析,提出了石油钻井装备的发展趋势,并重点介绍了矢量控制全数字变频超深井钻机ZJ70DB。 关键词:石油钻井钻机钻井技术 当前的经济形势使我国油气工业面临着巨大的压力,加之跨国石油公司进入我国市场所形成的压力,使得我们必须大力推进技术进步。在这种背景下,我国钻井行业要想和国外钻井承包商及其技术服务公司争夺国内钻井市场,并挤入国际钻井市场,除了保持钻井技术持续高速发展之外,还必须有技术先进的钻机。 一、国外石油钻机新技术 为了适应浅海、海滩、沙漠和丘陵等不同地带油气藏的勘探开发,国外研究改进、开发创新了多种新型石油钻机,涌现了许多新结构、新技术,美、德、法、意、加和罗马尼亚等国先后开发了各种类型的石油钻机。 1.挪威AKER MH公司可编程自动钻井系统(CADS),该公司的第一套可编程管子处理系统己在挪威海上钻井平台上使用 操作该系统时,司钻可以预先依次将起下钻操作步骤程序化,不需要分别操作绞车、顶驱、管子处理装置和卡瓦。钻台上除司钻操作室内的司钻外,不需要其它操作者。该系统总称为可配置自动钻井系统(CADS),根据承包商和操作者的要求,该公司可将各种操作程序化。系统除有一套可编程管子处理系统外,还包括一套先进的防碰系统,用来防止操作间的相互干扰。在司钻操作室内,触摸屏代替了按钮和开关,同时配备有手动操作的备用系统,所有操作都是经过优化的,大大减少了起下钻时间,每小时可以起下55柱立根。 2.Varco公司钻机在线监视与诊断系统 Varco公司的E-Drill是第一套可用于远程监视和诊断世界各地钻机上的Varco监测系统,钻机操作人员可以在1h以内和Varco的技术人员取得联系,各种参数可以直接从置于Varco公司监测系统内的智能系统取得,用于最大限度提高顶驱、排管系统和Varco集成控制和信息系统(V-ICIS)的性能。通过该监测系统,操作人员可以访问由解决方案、事件记录、运行检查、通话记录组成的档案数据库,各钻机数据资源可共享。当遇到故障时,可与Varco公司的E-Drill 技术人员和钻机人员联系,分析故障原因并提出解决方案。 3.RIGSERV钻机集成控制系统 RIGSERV钻机集成控制系统是安装在钻台上司钻控制室内完整和最先进的

目前主要国内制造厂1000MW超超临界锅炉设备及特点

目前主要国内制造厂1000MW超超临界锅炉设备及特点

超超临界机组技术资料汇编锅炉专业第五章目前主要国内制造厂1000MW超超临界锅炉设备及特点 概述 我国电力工业以煤为主要燃料,以煤为主的发电格局在今后相当长的时期内不会改变。超临界机组在国际上已经是商业化成熟的发电技术,对于超临界机组,一般可以分为两个层次,一个是常规超临界机组(Conventional Supercritical),其中主汽压力一般为240bar左右,主汽和再热蒸汽温度为540-560℃,另一个是高效超临界机组(High Efficiency Supercritical Cycle),通常也称为超超临界机组(Ultra Supercritical)或者高参数超临界机组(Advanced Supercritical),其中主汽压力为280~300bar,主汽和再热蒸汽温度为580~600℃。 目前我国超超临界锅炉的主要设计生产厂家 241

超超临界机组技术资料汇编锅炉专业主要有:哈尔滨锅炉厂(简称HBC),其技术支持方为日本三菱重工业株式会社(MHI);东方锅炉厂(简称DBC),其技术支持方为日本巴布科克-日立公司(BHK);上海锅炉厂(简称SBWL)的技术支持方为美国阿尔斯通公司(API)。 哈尔滨锅炉厂选定三菱重工株式会社(MHI)作为技术支持方。MHI是全球著名的发电设备和重型机械制造公司之一,在开发超临界和超超临界技术方面走在世界的前列,到目前为止已投运的容量大于500MW的超临界和超超临界锅炉已达60台,其中采用螺旋管圈水冷壁的变压运行超临界锅炉为21台,采用新型的垂直管圈水冷壁的变压超临界锅炉和超超临界锅炉已投运12台。采用内螺纹管垂直管圈、变压运行的超超临界锅炉在技术上代表了当前高效超临界锅炉的最新水平。到2003年,MHI已生产了68台超临界锅炉和超 242

我国超超临界燃煤机组现状和发展趋势

我国超超临界燃煤机组现状和发展趋势 【摘要】我国是煤炭生产与消费大国,随着社会市场经济的发展,社会的电力需求在不断增大,作为耗煤量高、能源利用率低的典型航呀,发电行业在运行的过程中,由于大量煤炭的燃烧,对环境造成非常严重的污染,积极提升燃煤发电机组的能源利用率非常的必要,本文就主要对我国超超临界燃煤机组的现状及发展趋势进行简单分析。 【关键词】超超临界燃煤机组;发展现状;发展趋势 发电行业与人们的日常生活息息相关,在社会发展过程中发挥着非常重要的作用,但是在火力发电厂运行过程中,伴随着巨大的能量消耗,这不仅会加剧我国的能源危机,还会带来严重的环境污染问题,积极提升超超临界燃煤机组的能源利用率、减少污染物的排放非常的重要,本文就主要针对此予以简单分析研究。 1超超临界燃煤机组的简单介绍 首先对超超临界的参数概念进行简单分析,通常会将水蒸气参数值超过临界状态点的参数值称作超临界参数,并且当水蒸气参数值超出水蒸气参数值,并且升高到一定数值时,就达到了超超临界参数范围中,我国的相关标准中,超超临界状态主要是指,蒸汽压力值大于27兆帕的状态,国内外的大多数发电企业及动力设备制造企业,认为机组的主蒸汽参数满足下列条件之一时,可以将其称之为超超临界机组: (1)机组的主蒸汽压力大于等于27兆帕; (2)机组的主蒸汽压力大于等于24兆帕,并且蒸汽的温度值≥580e。 超超临界机组与普通的燃煤机组相比,其水蒸气的温度、压力等明显提升,这对于机组的热效率的提升具有非常重要的作用,与亚临界机组的效率相比,超临界机组能够提升2%~3%,而超超临界机组的效率能够在超临界机组的基础上,再提升2%~4%,但是在机组使用寿命、运行灵活性、可靠性、可用率等方面与亚临界机组相比没有明显的差别,在二氧化硫、二氧化碳的排放量、能源利用率等方面,超超临界机组是明显优于普通的超临界机组及亚临界机组的。 将超超临界发电技术与其他相关的洁净煤发电技术进行对比分析,其具有这样的优势: (1)超超临界机组的单机容量能够达到1000MW及以上,这与电力工业的大容量机组需求相符; (2)超超临界发电技术具有很高的发电效率,并且其应用高效的除尘技术、低二氧化氮技术及烟气脱硫技术,能够有效降低污染物的排放量,与其他发电技

超临界机组与亚临界机组特点的比较

超临界机组与亚临界机组特点的比较 关键词:超临界机组亚临界机组 河南华能沁北电厂工程处(454662) 刘发灿 摘要:通过对国产首台超临界机组与亚临界机组的技术、经济性、可靠性等方面的比较,从而体现出超临界机组的优越性。 主题词:超临界亚临界特点 1 概述 随着我国电力工业的发展及电力结构的调整,600MW级火电机组已经成为我国火电的发展方向并即将成为电网的主力机组,尤其是超临界参数机组,由于其更低的运行成本和高效益,使得此类型的机组在现在的电力市场中更具有竞争性。沁北电厂一期工程作为国家引进600MW超临界机组的依托项目以及2000年燃煤示范电厂,承担着引进先进技术,降低工程造价的双重任务,这就给工程的提出了较高的要求。随着2004年12月13日13:31分2#机组顺利通过1 68小时,标志着超临界600MW机组国产化目标的顺利实现。 2 600MW超临界和亚临界机组的技术特点的比较 2.1 超临界机组和亚临界机组特点比较 超临界机组是指主蒸汽压力高于临界压力(22.13MPa)的锅炉和汽轮发电机组,它具有如下特点: (1)热效率高、热耗低。超临界机组比亚临界机组可降低热耗~2.5%,故可节约燃料,降低能源消耗和大气污染物的排放量。

(2)超临界压力时水和蒸汽比容相同,状态相似,单相的流动特性稳定,没有汽水分层和在中间集箱处分配不均的困难,并不需要象亚临界压力锅炉那样用复杂的分配系统来保证良好的汽水混合,回路比较简单。 (3) 超临界锅炉水冷壁管道内单相流体阻力比亚临界汽包炉双相流体阻力低。 (4) 超临界压力下工质的导热系数和比热较亚临界压力的高。 (5)超临界压力工质的比容和流量较亚临界的小,故锅炉水冷壁管内径较细,汽机的叶片可以缩短,汽缸可以变小,降低了重量与成本。 (6)超临界压力直流锅炉没有大直径厚壁的汽包和下降管,制造时不需要大型的卷板机和锻压机等机械,制造、安装、运输方便。同时取消汽包而采用汽水分离器,汽水分离器远比亚临界锅炉的汽包小,内部装置也很简单,制造工艺也相对容易,相应地降低了成本。 (7)启动、停炉快。超临界压力直流锅炉不存在汽包上下壁温差等安全问题,而且其金属重量和储水量小,因而锅炉的储热能力差,所以其增减负荷允许的速度快,启动、停炉时间可大大缩短。一般在较高负荷(80~100%)时,其负荷变动率可达10%/min。 (8) 超临界压力锅炉适宜于变压运行。 (9)超临界锅炉机组的水质要求较高,使水处理设备费用增加,例如蒸汽中铜、铁和二氧化硅等固形物的溶解度是随着蒸汽比重的减小而增大,因而在超临界压力下,即使温度不高,铜、铁和二氧化硅

超临界、超超临界机组发展现状、

超临界、超超临界机组发展现状、趋势和存在问题的分析研究 分析报告 上海电力学院 2009年3月

超临界、超超临界机组发展现状、趋势和存在问题的分析研究 1.引言 按照国家制订的2020年电力发展规划,我国发电装机容量将从目前的约8亿千瓦增加到2020年9亿千瓦,其中燃煤机组比例约占总容量75%左右。由于电力是最大的煤炭用户,要提高煤炭的利用效率,提高燃煤电厂的效率是一个主要途径。 分析国际上燃煤发电技术的发展趋势,将采用两种技术路线来提高效率和降低排放。其一是利用煤化工中已经成熟的煤气化技术,采用整体煤气化蒸汽燃气联合循环技术(IGCC)实现高效清洁发电,其代表技术为IGCC。此技术提高能效的前景很好,但因系统相对复杂而造成投资偏高的问题需要解决。目前正在烟台电厂建设一台300或400MW等级的IGCC示范机组,为今后的发展作好技术储备。另一个发展方向是通过提高常规发电机组的蒸汽参数来提高效率,即超临界机组和超超临界机组。超超临界机组在发达国家已经实现了大容量、大批量生产。通过努力我国可以较快实现国产化能力,降低设备成本。 超超临界机组蒸汽参数愈高,热效率也随之提高。热力循环分析表明,在超超临界机组参数范围的条件下,主蒸汽压力提高1MPa,机组的热耗率就可下降0.13%~0.15%;主蒸汽温度每提高10℃,机组的热耗率就可下降0.25~0.30%;再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%~0.20%。在一定的范围内,如果采用二次再热,则其热耗率可较采用一次再热的机组下降 1.4%~1.6%。 亚临界机组的典型参数为16.7MPa/538℃/538℃,其发电效率约为38%。超临界机组的主蒸汽压力通常为24MPa左右,主蒸汽和再热蒸汽温度为538~560℃;超临界机组的典型参数为24.1MPa/538℃/538℃,对应的发电效率约为41%。超超临界机组的主蒸汽压力为25~31MPa,主蒸汽和再热蒸汽温度为580~610℃。超临界机组的热效率比亚临界机组的高2%~3%左右,而超超临界机组的热效率比超临界机组的高4%左右。并且超超临界机组技术具有继承性好,

660MW超超临界锅炉技术特点及分析

2010年第2期(总第59期) 2010年4月 收稿日期:2010 02 01 第一作者简介:李亚峰,1974年生,男,山西长治人,1996年毕业于太原电力高等专科学校热能与动力工程专业,工程师。 工作研究 660M W 超超临界锅炉技术特点及分析 李亚峰, 薛青鸿 (国华陈家港发电有限公司,江苏 盐城 224631) 摘 要: 介绍了国华陈家港电厂660M W 超超临界锅炉水冷系统、启动系统、低NO x 燃烧器等的主要技术特点。指出,该型号锅炉在节能减排、环境保护等方面有显著的技术优越性。关键词: 超超临界锅炉;技术特点;系统 中图分类号: T K 229 文献标识码: A 文章编号: 1674 3997 (2010)02 0018 03 Analysis on Technical C haracteristics of 660MW Ultra Supercritical Boiler LI Ya feng,XU E Qing hong (GuoHua Chenjiagang Power Generation C O.,LTD.,YanC heng 224631,Jiangsu,Chi na) Abstract:T his paper analyzed 660M W ultr a supercritical boiler technical characteristics of Guohua Chengjiag ang pow er plant.T he unit showed a more significant technical super iority on energ y saving emission r eduction,and enviro nment friendly among ul tra supercritical units throug h analyzed t he technical characteristics of water cooling system,boot,low N ox Burner etc.Key words:ultra supercr itical boiler;technical character istics;system 0 引言 中国以火电为主的电力结构,决定了节能减排的重点是煤炭的清洁利用。大力发展大容量、高参数超超临界机组是中国可持续发展、节约能源、保护环境的重要措施之一。 国华陈家港电厂一期2台660MW 超超临界锅炉是上海锅炉厂有限公司在消化吸收ALST OM 公司超超临界锅炉设计制造技术的基础上,结合超超临界机组参数、锅炉燃煤的特点及用户的特殊要求自行设计的660MW 超超临界机组锅炉。笔者在介绍该型号锅炉承压部件、燃烧系统、启动调节等方面独特技术特点基础上,指出其在节能减排、提高能效方面的优越性和发展前景。 1 总体介绍 陈家港电厂2台660M W 超超临界锅炉采用的是超超临界参数变压运行螺旋管圈与垂直管屏直流炉结合、单炉膛、一次中间再热、四角切圆燃烧方式、平衡通风、 型露天布置,固态排渣,全钢架悬吊结构。额定工况及BM CR 工况主要参数见表1。 炉膛上部布置有分隔屏过热器和后屏过热器,炉膛折焰角上方布置了高温过热器,水平烟道布置了高温再热器,尾部烟道为并联双烟道,后烟井前烟道布置 有低温再热器、后烟道布置有低温过热器,在低温再热器和低温过热器管组下方布置有省煤器,省煤器的型式与常规机组一样。 表1 额定工况及BM CR 工况主要参数 名称单位额定工况 BM CR 工况 过热蒸汽流量t/h 1940 2037 过热蒸汽出口压力M Pa 26.0326.15过热蒸汽出口温度 605605再热蒸汽流量t/h 16291716再热蒸汽进口压力M Pa 5.84 6.16再热蒸汽进口温度 377386再热蒸汽出口压力M Pa 5.66 5.97再热蒸汽出口温度 603603给水温度 294 298 锅炉燃烧系统,按中速磨冷一次风直吹式制粉系统设计。24只直流式燃烧器分6层布置于炉膛下部四角,煤粉和空气从四角送入,在炉膛中呈切圆方式燃烧。 过热器汽温通过煤水比调节和三级喷水来控制。再热器汽温采用烟气挡板调温、燃烧器摆动和过量空气系数的变化调节,两级再热器之间连接管道上设置微量喷水。 2 技术特点及分析 2.1 省煤器及水冷系统 超超临界锅炉采用一级省煤器,并联布置在后烟井中,分别在低温再热器和低温过热器的下部。给水由锅炉左侧单路经过电动闸阀和止回阀后进入省煤器 18

相关主题