搜档网
当前位置:搜档网 › 太阳能辐射计算公式

太阳能辐射计算公式

太阳能辐射计算公式
太阳能辐射计算公式

一、中国太阳能直接辐射的计算方法

()1bS a Q S +='(1)

()

211111S c S b a Q S ++='(2)⊙

()n c S b a Q S 2122++='(3)

S ′为直接辐射平均月(年)总量;Q 为计算直接辐射的起始数据,可采用天文总辐射S 0,理想大气总辐射,Q i ,晴天总辐射Q 0来表示。a ,b ,a 1,b 1,c 1,a 2,b 2,c 2为系数。n 为云量。S 1为日照百分率。 相关系数的计算公式:

()()

()()

()()∑∑∑∑∑∑∑∑∑=========??

?

??-??

?

??--=

----=

n

i n i i i

n

i n i i i

n i n i n

i i

i i i n i i i n

i i i

y y n x x n y x y x n y y x x y y x x

r 12

12

12

121

1

1

1

2

21

考虑到大气透明度,则有

()()n c S b a P P P

Q n c S b a P P P Q S i m

i 2122cos cos sin sin 1

2122++=++='+海

年海

年δ

?δ?(4)

其中m 为大气质量:

δ

?δ?cos cos sin sin 1

sinh 1+==

Θm 其中,φ为测站的纬度;δ为赤纬角,取每月15日的赤纬值作为月平均值;时角ω统一取中午12时,则ω=0,cosω=1;年P 为测站的年平均气压,P 海为海平面气压,P 海=1013.25mp ,海年P P 为对大气质量进行的高度订正。 对于a 2的计算:

当测站的海拔H≥3000m 时,a 2=0.456;

当H≤3000m 是,若年平均绝对湿度E ≤10.0mb ,则

F a ?-=00284.0688.02

否则F a ?-=01826.07023.02,其中F 为测站沙尘暴日数与浮尘日数之和。

对于(4)式中,系数之间的关系式为

{

011.1039.02222=+-=+b a c a

二、中国太阳能散射辐射的算法

)(1

n S Qf D ,∑=

其中∑D 为散射辐射月(年)总辐射量,Q 为计算散射辐射的起始数据,可采用天文总辐射S 0,理想大气总辐射Q i ,晴天总辐射Q 0来表示;f (S1,n ……)为天空遮蔽度函数。

D=Q i (a 1+b 1n t ); D=Q i (a 2+b 2n l ); D=Q i (a 3+b 3S 1); D=Q i (a 4+b 4n mh )

D=Q i (a 5+b 5n mh +c 5n l ) D=Q i (a 6+b 6n mh +c 6S 1) D=Q i (a 7+b 7P +c 7n l ) D=Q i (a 8+b 8P +c 8S 1)

以上8式为计算太阳能散射可筛选公式,其中D 为欲计算的散射辐射量的月总量,Q i ,为理想大气中的月总辐射量,n t ,n l ,n mh 分别为月平均总云量、低云量和中高云量。S 1为日照百分率,P 为薄云指数,它的数值为P = S 1+ n t -1,表示总云量中能够透射的那一部分能量值。 考虑地面反射率A 时:

考虑地面反射率后的理想大气总辐射Qa 与A=0.0时的理想大气总辐射Q i 成正比,其比值K 可由下式确定: ()

A Q Q K a i -+==

13.043.4 因此考虑地面反射后的计算散射辐射的一般公式为

)()(1 n S f c b a Q D

a a

,,,?=∑

这里Q a =KQ i 。

最后确定整个中国计算散射辐射的公式为

D=KQ i (a+bn mh +cn l )

确定上式中的a 、b 系数通常有二种方法。一种是利用日射站求得的拟合系数作线性内插,得到其系数的空间分布;另一种是寻求拟合系数与其它因子的规律,选用经验方程拟合的方法求算。线性内插的方法仅仅取决于二个站之间的相对位置,而没有考虑地形或其它因子的影响。针对我国地势复杂,高差悬殊且日射站分布不均匀的特点,我们采用经验公式拟合的方法确定计算公式中的各系数。

确定系数a、b、c的经验公式,其中指的是海拔高度,E

指的是年平均绝对湿

度。

全国各地太阳能总辐射量

全国各地太阳能总辐射量 全国各地太阳能总辐射量与年平均日照当量 太阳能年辐射量标准光照下 地区类别地区年日照时数年平均日照 22时间,时, MJ/m?年 kWh/m?年 宁夏北部、甘肃北部、 一新疆南部、青海西部、6680-8400 1855-2333 3200-3300 5.08-6.3 西藏西部 河北西北部、山西北 部、内蒙古南部、宁 夏南部、甘肃中部、二 5852-6680 1625-1855 3000-3200 4.45-5.08 青海东部、西藏东南 部、新疆南部 山东、河南、河北 东南部、山西南部、 新疆北部、吉林、辽 宁、云南、陕西北部、三 5016-5852 1393-1625 2200-3000 3.8-4.45 甘肃东南部、广东南 部、福建南部、江苏 北部、安徽北部、台 湾西南部 湖南、湖北、广西、 江西、浙江、福建北

部、广东北部、陕西四 4190-5016 1163-1393 1400-2200 3.1-3.8 南部、江苏南部、安 徽南部、黑龙江、台 湾东北部 五四川、贵州 3344-4190 928-1163 1000-1400 2.5-3.1 、δ、ω、αs、γs值附录B 江苏省部分地区的, 太阳高度太阳方位地理纬度太阳赤纬太阳时角城市名角角(o) ,δ(o) ω(o) α(o) γs(o) s 南京 32.04 -23.43 0 34.53 0 江宁 31.95 -23.43 0 34.62 0 南六合 32.36 -23.43 0 34.21 0 京江浦 32.07 -23.43 0 34.5 0 市溧水 31.65 -23.43 0 34.92 0 高淳 31.32 -23.43 0 35.25 0 苏州 31.32 -23.43 0 35.25 0 张家港 31.86 -23.43 0 34.71 0 常熟 31.64 -23.43 0 34.93 0 苏 州太仓 31.45 -23.43 0 35.12 0 市昆山 31.39 -23.43 0 35.18 0 吴县 31.32 -23.43 0 35.25 0 吴江 31.16 -23.43 0 35.41 0 无锡 31.59 -23.43 0 34.98 0 无 锡江阴 31.91 -23.43 0 34.66 0 市宜兴 31.36 -23.43 0 35.21 0 常州 31.79 -23.43 0 34.78 0 常武进 31.78 -23.43 0 34.79 0 州金坛 31.74 -23.43 0 34.83 0 市溧阳 31.43 -23.43 0 35.14 0 镇江 32.2 -23.43 0 34.37 0 丹徒 32.2 -23.43 0 34.37 0 镇

移动通信基站电磁辐射基础知识

1、GSM基站频率900MHz、1800 MHz、cdma2000分配的频率是1920~1935 MHz(上行) 2、什么是基站? 基站子系统主要包括两类:基站发射台(BTS)和基站控制器(BSC)3、基站监测 2007年7月《移动通信基站电磁辐射环境监测方法》 移动通信监测依据的标准: (1)移动通信。。。 2G发射天线的特点:(1)发射源全向定向;(2)标称发射功率2~60W;(3)频率800~1000MHz;(4)固定方式屋顶重力支架,地面铁塔,屋面拉线塔,窗户,阳台或屋顶悬挂 全向天线县城及乡镇:水平瓣宽360°,垂直瓣宽20°以内。 定向天线城区:(1)板状定向天线俯角在3°~15°不等;(2)水平瓣宽分为90°和65°两种; 对于基站的监测现在主要以《移动通信基站电磁辐射环境监测方法》作为我们监测的规范要求。 (1)适用范围:适用于超过GB8702(电磁辐射防护规定)规定豁免水平,工作频率范围在110 MHz~40GH内的移动通信基站的。。。可豁免的电磁辐射体的等效辐射功率 频率范围MHz 等效辐射功率,W 0.1~3 300 >3~300000

P有效=P标称×G G:天线增益。 监测范围:监测点位一般布设在以发射天线为中心半径50m的范围内可能受到影响的保护目标,根据现场环境情况可对点位进行适当调整。 探头(天线)尖端与操作人员之间距离不少于0.5m。 在室内监测,一般选取房间中央位置,点位与家用电器等设备之间距离不小于1m。 每个测点连续测5次,每次监测时间不小于15s,并读取稳定状态下的最大值。 测量仪器探头(天线)尖端距地面(或立足点)1.7m。

太阳能辐射量分类

太阳能资源分四类(最新): 我国太阳能资源分布是不均衡的,按辐射强度划分,大致可以划分为四类地区,其中: 一类地区大于6700MJ/m2,>159.5千卡/cm2 二类地区是5400-6700MJ/m2, 128.6-159.5千卡/cm2 三类地区4200-5400MJ/m2, 100-128.6千卡/cm2 四类地区小于4200MJ/ m2。 <100千卡/cm2 我国主要城市年平均日照时数,也可以划分成四类地区。 一类地区平均日照时数在2500小时以上,一类地区有乌鲁木齐、拉萨、西宁、银川、呼和浩特、沈阳等, 二类地区平均日照时数在2000-2500小时之间,二类地区有北京、天津、石家庄、济南、南昌、太原、长春、哈尔滨、兰州等, 三类地区平均日照时数在1000-2000小时,三类地区有上海、南京、杭州、合肥、福州、郑州、长沙、南宁、广州、昆明、海口, 四类地区平均日照时数1000小时以下,四类地区有重庆、成都、贵阳。 【我国太阳能资源】旧版本 在我国,西藏西部太阳能资源最丰富,最高达2333 KWh/㎡(日辐射量6.4KWh/㎡),居世界第二位,仅次于撒哈拉大沙漠。 根据各地接受太阳总辐射量的多少,可将全国划分为五类地区。 一类地区 为我国太阳能资源最丰富的地区,年太阳辐射总量6680~8400 MJ/㎡,相当于日辐射量5.1~6.4KWh/㎡。这些地区包括宁夏北部、甘肃北部、新疆东部、青海西部和西藏西部等地。尤以西藏西部最为丰富,最高达2333 KWh/㎡(日辐射量6.4KWh/㎡),居世界第二位,仅次于撒哈拉大沙漠。 二类地区 为我国太阳能资源较丰富地区,年太阳辐射总量为5850-6680 MJ/m2,相当于日辐射量4.5~5.1KWh/㎡。这些地区包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。

太阳能辐射能量的换算

太阳能辐射能量的换算 ?太阳能辐射能量不同单位之间的换算 ?1卡(cal)=4.1868焦(J)=1.16278毫瓦时(mWh) ?1千瓦时(KWh)=3.6兆焦(MJ) ?1千瓦时/米平方(KWh/m2)=3.6兆焦/米平方(MJ/m2) =0.36千焦/厘米平方(KJ/cm2) ?100毫瓦时/厘米平方(mWh/cm2)=85.98卡/厘米平方 (cal/cm2) ?1兆焦/米平方(MJ/m2)=23.889卡/厘米平方 (cal/cm2)=27.8毫瓦时/厘米平方(mWh/cm2) ?太阳能辐射能量与峰值日照时数之间的换算 ?辐射能量换算成峰值日照系数:

?当辐射量的单位为卡/厘米平方时,则: 年峰值日照小时数=辐射量×0.0116(换算系数) 例如: 某地年水平面辐射量139千卡/厘米2(kcal/m2),电池组件倾斜面上的辐射量152.5千卡/厘米2(kcal/cm2),则年峰值日照小时数为:152500卡/厘米2(cal/cm2)×0.0116=1769h,峰值日照时数=1769÷365=4.85h. ?当辐射量的单位为兆焦/米平方(MJ/m2)时,则: 年峰值日照小时数=辐射量÷3.6(换算系数) 例如: 某地年水平辐射量为5497.27兆焦/米2(MJ/m2),电池组件倾斜面上的辐射量为348.82兆焦/米2(MJ/m2),则年峰值日照小时数为:6348.82(MJ/m2)÷3.6=1763.56h,峰值日照时数=1763.56÷365=4.83h. ?当辐射量的单位为千瓦时/米2(KWh/m2)时,则: 峰值日照小时数=辐射量÷365 例如:

全国各地太阳能总辐射量与年平均日照当量

全国各地太阳能总辐射量与年平均日照当量 地区类别地区 太阳能年辐射量 年日照时数 标准光照下 年平均日照 时间(时)MJ/m2·年 kWh/m2· 年 一宁夏北部、甘肃北部、 新疆南部、青海西部、 西藏西部 6680-84 00 1855-233 3 3200-3300 二河北西北部、山西北 部、内蒙古南部、宁 夏南部、甘肃中部、 青海东部、西藏东南 部、新疆南部 5852-66 80 1625-185 5 3000-3200 三山东、河南、河北 东南部、山西南部、 新疆北部、吉林、辽 宁、云南、陕西北部、 甘肃东南部、广东南 部、福建南部、江苏 北部、安徽北部、台 湾西南部 5016-58 52 1393-162 5 2200-3000

四湖南、湖北、广西、 江西、浙江、福建北 部、广东北部、陕西 南部、江苏南部、安 徽南部、黑龙江、台 湾东北部 4190-50 16 1163-139 3 1400-2200 五四川、贵州 3344-41 90 928-1163 1000-1400 附录B 江苏省部分地区的?、δ、ω、αs、γs值 城市名地理纬度 ?(o) 太阳赤纬 δ(o) 太阳时角 ω(o) 太阳高度 角 αs(o) 太阳方位 角 γs(o) 南京市南京0 0 江宁0 0 六合0 0 江浦0 0 溧水0 0 高淳0 0 苏州市 苏州0 0 张家港0 0 常熟0 0 太仓0 0 昆山0 0 吴县0 0 吴江0 0 无锡市无锡0 0 江阴0 0 宜兴0 0 常州市常州0 0 武进0 0 金坛0 0 溧阳0 0 镇镇江0 0

江市丹徒0 0 扬中0 0 丹阳32 0 0 句容0 0 扬州市扬州0 0 江都0 0 刑江0 0 仪征0 0 高邮0 0 宝应0 0 泰州市泰州0 0 晋江0 0 泰兴0 0 姜堰0 0 兴 化 0 0 南通市南通0 0 通州0 0 启东0 0 海门0 0 海安0 34 0 如皋0 0 如东0 0 徐州市徐州0 0 奉县0 0 沛县0 0 赣榆0 0 东海0 0 新沂0 0 邳县0 0 睢宁0 0 铜山0 0 淮安市淮安0 0 楚州0 0 洪泽0 0 盱眙33 0 0 涟水0 0 金湖0 0 盐城市盐城0 0 滨海0 0 阜宁0 0

太阳能板的安装角度计算方式

太阳能板的安装角度计算方式 由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。 1.方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116)10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。 2.倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑落,此外,还要进一步考虑其它因素。对于正南(方位角为0°度),倾斜角从水平(倾斜角为0°度)开始逐渐向最佳的倾斜角过渡时,其日射量不断增加直到最大值,然后再增加倾斜角其日射量不断减少。特别是在倾斜角大于50°~60°以后,日射量急剧下降,直至到最后的垂直放置时,发电量下降到最小。方阵从垂直放置到10°~20°的倾斜放置都有实际的例子。对于方位角不为0°度的情况,斜面日射量的值普遍偏低,最大日射量的值是在与水平面接近的倾斜角度附近。以上所述为方位角、倾斜角与发电量之间的关系,对于具体设计某一个方阵的方位角和倾斜角还应综合地进一步同实际情况结合起来考虑。 3.阴影对发电量的影响一般情况下,我们在计算发电量时,是在方阵面完全没有阴影的前提下得到的。因此,如果太阳电池不能被日光直接照到时,那么只有散射光用来发电,此时的发电量比无阴影的要减少约10%~20%。针对这种情况,我们要对理论计算值进行校正。通常,在方阵周围有建筑物及山峰等物体时,太阳出来后,建筑物及山的周围会存在阴影,因此在选择敷设方阵的地方时应尽量避开阴影。如果实在无法躲开,也应从太阳电池的接线方法上进行解决,使阴影对发电量的影响降低到最低程度。另外,如果方阵是前后放置时,后面的方阵与前面的方阵之间距离接近后,前边方阵的阴影会对后边方阵的发电量产生影响。有一个高为L1的竹竿,其南北方向的阴影长度为L2,太阳高度(仰角)为A,在方位角为B时,假设阴影的倍率为R,则: R =L2/L1 =ctgA×cosB 此式应按冬至那一天进行计算,

1 电磁波基础知识

1 电磁波基础知识 1.1电磁场基本定义 交变电磁场的性质 在某空间内,任何电荷由于它本身的存在,受有一种与电荷成比例的力,则这空间内所存在的物质,也就是给电荷以作用力的物质称为电场。如果电场的存在是由于电荷的存在,则这种电场是符合库仑定律的,称为库仑电场。静止电荷周围所存在的电场,则称为静电场,它是库仑电场的一种特殊情形。运动电荷受到作用力的空间称为有磁场存在的空间。而且将这种了称为磁力。 此外,一个变动的磁场产生一个电场,此电场不但存在于变动磁场的范围里,并且还存在于邻近的范围里。同样,一个变动的电场在发生变动的范围和变动附近的范围里产生一磁场。 可见,不仅电荷可以产生电场,变化的磁场也能产生电场,不仅传导电流可以产生磁场,变化的电场(位移电流)也能产生磁场。 电磁波的性质 在空间的一定范围里无论是电或磁的情况有了一个扰动,那么这个扰动就不能被限制在该范围之内。在该范围里变动的场也在它附近的范围里产生场,这些场又在更外围的空间产生场,于是能量便被传播开来。当这种现象连续进行时,即有一含有电磁能量的波向外传播电磁波。 电磁发射:从源向外发射电磁能的现象。 电磁环境:存在于给定场所(空间)的所有电磁现象(包括全部时间和全部频谱)的总和。 电磁兼容:设备或系统在其中电磁环境中能正常工作且不对该环境中任何事务构成不能承受的电磁骚扰的能力。 电磁干扰:电磁骚扰引起的设备、传输通道或系统性能的下降。 近场和远场: 我们知道,静电场、静磁场等静态场中是没有近场和远场之分,有场源就有场。静电荷周围的静电场,是随着与场源距离的增大而成平方反比的关系衰减的;而恒定电流产生的静磁场,则随着与场源距离的增大而成立方反比的关系衰减。当电磁场由静态场过渡到时变场时,电荷、电流周围依然存在电磁场,称为感应场或近场;此外,还出现一种新的电磁场成分,称为辐射场或远场,它是脱离电荷、电流并以电磁波的形式向外传播的电磁场。它一旦从电荷、电流等场源辐射出去,就按自身的规律运动,与场源后来的状态没有关系。感应场或近场是随着与场源距离的增大而成平方反比关系衰减的,而辐射场或远场仅与距离成反比关系衰减。 由于近场离场源较近,其场强要比远场大得多。随着离天线距离的增加,电场强度和磁场强度迅速减少。所以,近场的空间不均匀度较大,是一个复杂的非均匀场。场中包括储存的能量和辐射的能量,有驻波也有行波,等相位面很不规则,电磁波极化不易确定,场强变化梯度大等。 无论场源是电场源还是磁场源,当离场源距离大于λ/2π以后就变成了远场,这里λ为波长。这时电场和磁场方向垂直并且都和传播方向垂直成为平面电磁波。电场和磁场的比值为固定值,即波阻抗为120π,等于377欧姆。 由于远场距离场源远,场强一般较弱。由于电场和磁场随场源的距离成反比衰减,所以比近场的衰减慢的多,因此空间变化梯度小,比较均匀。 总之,近场的电场和磁场之间存在π/2的相位差,由它们构成的平均坡印亭矢量为零,大部分能量在电场和磁场之间,以及场和源之间交换而不辐射,很小一部分能量向外辐射,并在λ/2π距离以

新能源专业太阳能试卷与答案100分

新能源专业-太阳能试卷 一、单选题【本题型共10道题】 1.光伏发电站并网运行时,向电网馈送的直流电流分量不应超过其交流额定值的()。 A.0.5% B.1% C.1.5% D.2% 用户答案:[A] 得分:1.00 2.光伏发电聚光光伏系统中,点聚焦聚光应采用()跟踪系统。 A.单轴 B.双轴 C.主动控制方式 D.被动控制方式 用户答案:[A] 得分:0.00 3.使用金属边框的光伏组件,边框和支架应结合良好,两者之间接触电阻应不大于()。 A.4Ω B.6Ω C.8Ω D.10Ω

用户答案:[D] 得分:0.00 4.水平单轴跟踪系统宜安装在以下哪类地区。() A.低纬度地区 B.中纬度地区 C.高纬度地区 D.中.高纬度地区 用户答案:[A] 得分:1.00 5.光伏组件串的最大功率工作电压变化范围应在()的最大功率跟踪电压范围内。 A.光伏组件 B.电池板 C.逆变器 D.二极管 用户答案:[C] 得分:1.00 6.我国太阳能资源年太阳辐射总量5850-6680MJ/m2,相当于日辐射量4.5~5.1KWh/㎡的地区,属于()类地区。 A.I B.II C.III D.IV 用户答案:[B] 得分:1.00 7.光伏方阵内光伏组件串的最低点距地面的距离不宜低于()。

A.100mm B.200mm C.300mm D.500mm 用户答案:[C] 得分:1.00 8.光伏电站站址所在地区,参考气象站应具有连续()以上的太阳辐射长期观测记录。 A.2年 B.5年 C.10年 D.15年 用户答案:[C] 得分:1.00 9.光伏发电站发电母线电压应根据接入电网的要求和光伏发电站的安装容量,经技术经济比较后确定,光伏发电站安装总容量大于1MWp,且不大于30MWp时,宜采用()电压等级。 A.0.4kV-10kV B.10kV-35kV C.35kV D.110kV 用户答案:[B] 得分:1.00 10.在我国太阳能资源年太阳辐射总量6680~8400MJ/㎡,相当于日辐射量5.1~6.4KWh/㎡的地区,属于()类地区。

太阳直接辐射计算

太阳直接辐射计算导则 1范围 本标准给出了太阳直接辐射计算的基本原则,不同条件下的计算方法和适用范围,以及对计算结果的检验要求。 本标准适用于水平面直接辐射和法向直接辐射的计算。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 33698 —2017 太阳能资源测量直接辐射 GB/T 34325 —2017 太阳能资源数据准确性评判方法 3术语和定义 下列术语和定义适用于本文件。 3.1 直接辐射direct radiati on 从日面及其周围一小立体角内发出的辐射。 [GB/T 31163 —2014,定义5.11] 注:一般来说,直接辐射是由视场角约为5。的仪器测定的,而日面本身的视场角仅约为0.5 °,因此,它包括日面周围的部分散射辐射,即环日辐射。 3.2 法向直接辐射direct no rmal radiati on 与太阳光线垂直的平面上接收到的直接辐射。 注:从数值上而言,直接辐射与法向直接辐射是相同的;两者的区别在于,直接辐射是从太阳岀射的角度而定义,法向直接辐射则是从地表入射的角度而定义。 [GB/T 31163 —2014,定义5.12] 3.3 水平面直接辐射direct horizo ntal radiation 水平面上接收到的直接辐射。 [GB/T 31163 —2014,定义5.13] 3.4 散射辐射diffuse radiati on ;scatteri ng radiati on

太阳辐射被空气分子、云和空气中的各种微粒分散成无方向性的、但不改变其单色组成的辐射。 [GB/T 31163 —2014,定义5.14] 3.5 [ 水平面] 总辐射global [horizontal] radiation 水平面从上方2 n立体角(半球)范围内接收到的直接辐射和散射辐射之和。注:改写GB/T 31163 —2014,定义 5.15 。 3.6 地外太阳辐射extraterrestrial solar radiation 地球大气层外的太阳辐射。 [GB/T 31163 —2014,定义5.3] 3.7 辐照度irradiance 物体在单位时间、单位面积上接收到的辐射能。注:单位为瓦每平方米(W/m2)。 [GB/T 31163 —2014,定义6.3] 3.8 辐照量irradiation 曝辐量radiance exposure 在给定时间段内辐照度的积分总量。注1:单位为兆焦每平方米(MJ/m2)或千瓦时每平方米(kWh/m2)。 注2: 1 kWh/m2=3.6 MJ/m 2; 1MJ/ni ?0.28 kWh/m2。注3:改写GB/T 31163—2014,定义 6.5 。 3.9 法向直接辐照度direct normal irradiance 与太阳光线垂直的平面上单位时间、单位面积上接收到的直接辐射能。注:单位为瓦每平方米(W/m2)。 3.10 法向直接辐照量direct normal irradiation 在给定时间段内法向直接辐照度的积分总量。 注:单位为兆焦每平方米(Mj/m)或千瓦时每平方米(kwh/m)。 3.11 水平面直接辐照度direct horizontal irradiance 水平面上单位时间、单位面积上接收到的直接辐射能。 注:单位为瓦每平方米(W/m2)。 3.12 水平面直接辐照量direct horizontal irradiation 在给定时间段内水平面直接辐照度的积分总量。

电磁辐射的测量基础知识

电磁辐射的测量基础知识 1、电磁场的远场和近场划分 电磁辐射源产生的交变电磁场可分为性质不同的两个部分,其中一部分电磁场能量在辐射源周围空间及辐射源之间周期性地来回流动,不向外发射,称为感应场;另一部分电磁场能量脱离辐射体,以电磁波的形式向外发射,称为辐射场。 一般情况下,电磁辐射场根据感应场和辐射场的不同而区分为近区场(感应场)和远区场(辐射场)。由于远场和近场的划分相对复杂,要具体根据不同的工作环境和测量目的进行划分,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。 近区场通常具有如下特点: l 近区场内,电场强度与磁场强度的大小没有确定的比例关系。即:E1377H。一般情况下,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备的模具),磁场要比电场大得多。 l 近区场的电磁场强度比远区场大得多。从这个角度上说,电磁防护的重点应该在近区场。 l 近区场的电磁场强度随距离的变化比较快,在此空间内的不均匀度较大。 远区场的主要特点如下: l 在远区场中,所有的电磁能量基本上均以电磁波形式辐射传播,这种场辐射强度的衰减要比感应场慢得多。 l 在远区场,电场强度与磁场强度有如下关系:在国际单位制中,E=377H,电场与磁场的运行方向互相垂直,并都垂直于电磁波的传播方向。l 远区场为弱场,其电磁场强度均较小 近区场与远区场划分的意义: 通常,对于一个固定的可以产生一定强度的电磁辐射源来说,近区场辐射的电磁场强度较大,所以,应该格外注意对电磁辐射近区场的防护。对电磁辐射近区场的防护,首先是对作业人员及处在近区场环境内的人员的防护,其次是对位于近区场内的各种电子、电气设备的防护。而对于远区场,由于电磁场强较小,通常对人的危害较小。 对我们最经常接触的从短波段30MHz到微波段的3000MHz的频段范围,其波长范围从10米到0.1米。 例:具体辐射源的近场(感应场区)与远场(辐射场区)(l = c / f) 频率 (f) 波长(l) 界限(3l) 50 / 60 Hz 电力 6000 / 5000 km 18000 / 15000 km

太阳能辐射能量的换算

太阳能辐射能量的换算 太阳能辐射能量不同单位之间的换算 1卡(cal)=4.1868焦(J)=1.16278毫瓦时(mWh) 1千瓦时(KWh)=3.6兆焦(MJ) 1千瓦时/平方米(KWh/m2)=3.6兆焦/平方米(MJ/m2)=0.36千焦/平方厘米(KJ/cm2) 100毫瓦时/平方厘米(mWh/cm2)=85.98卡/平方厘米(cal/cm2) 1兆焦/米平方(MJ/m2)=23.889卡/平方厘米 (cal/cm2)=27.8毫瓦时/平方厘米 (mWh/cm2) 太阳能辐射能量与峰值日照时数之间的换算 辐射能量换算成峰值日照系数: 当辐射量的单位为卡/平方厘米时,则: 年峰值日照小时数=辐射量×0.0116(换算系数) 例如: 某地年水平面辐射量139千卡/厘米2(kcal/m2),电池组件倾斜面上的辐射量152.5千卡/厘米2(kcal/cm2),则年峰值日照小时数为:152500卡/厘米

2(cal/cm2)×0.0116=1769h,峰值日照时数=1769÷ 365=4.85h. 当辐射量的单位为兆焦/米平方(MJ/m2)时,则:年峰值日照小时数=辐射量÷3.6(换算系数) 例如: 某地年水平辐射量为5497.27兆焦/米2(MJ/m2),电池组件倾斜面上的辐射量为348.82兆焦/米2(MJ/m2),则年峰值日照小时数为:6348.82(MJ/m2)÷3.6=1763.56h,峰值日照时数=1763.56÷365=4.83h. 当辐射量的单位为千瓦时/米2(KWh/m2)时,则:峰值日照小时数=辐射量÷365 例如: 北京年水平面辐射量为1547.31千瓦时/米2(KWh/ m2),电池组件倾斜面上的辐射量为1828.55千瓦时/米2 (KWh/m2),则峰值日照小时数为:1828.55(KWh/m2)÷365=5.01h 当辐射量的单位为千焦/厘米2(KJ/c m2)时,则:年峰值日照小时数=辐射量÷0.36(换算系数) 例如:

太阳能倾斜面上辐射量的计算

倾斜面上辐射量的计算 直接辅射 倾斜面上的直射辐照度可利用下式求出: S(β,α)= Sm·cosθ 式中θ是太阳光线对倾斜面的入射角,可由下式得出: cosθ=cosβSinh+Sinβcoshcos(Ψ-α) 式中β是倾斜面与水平面间的夹角,h是太阳高度角,Ψ是太阳的方位角,α是倾斜面的方位角,方位角从正南算起,向西为正,向东为负。对于水平面来说,由于β=0,所以cosθ=Sinh,因此: S(0,0)= Sm·Sinh 设K S=S(β,α)/S(0,0),将前面的公式代入,则有: K S=cosθ/Sinh=cosβ+Sinβ·cos(Ψ-α) /tanh K S称为换算系数。 有了K S值,根据水平面上的辐射值很容易求出倾斜面的辐射值。对于不同时段的曝辐射量,也是如此。只时求算K S时,Ψ、α、h等值要代入相应时段的平均值。 当计算较长时段内的曝辐射量时,如日总量,使用换算系数也很方便,只是这时的K S值应从实测值中得出,而不能用上述几何关系计算出来。对于实用来说,用月平均日总量的K S值最方便,它比个别日子的K S值对云量和透明状况的依赖性更少。其他影响K S的因子是地点的纬度、倾斜面的朝向和月份等。表13给出了不同纬度三种倾斜角度月平均日总量的K S值。 散射辐射 朝向倾斜面上的散射辐照度,困难要大得多。通常的解决办法是假定辐射是各向同性的,即呈均匀分布。这样,散射辐照度E d↓和反射辐照度E r↑可按下列公式计算。 E d↓(β,α)= E d↓(1+ Cosβ)/2 E r↑(β,α)= E r↑(1- Cosβ)/2 式中E d↓和E r↑是水面上的散射和反射辐照度。 不过,用下式根据水平面上的散射辐照度计算倾斜面上的散射辐照度,要比利用各向同性的假设更准确此。 E d↓(β,α)+ E r↑(β,α)=K(E d+ E r)·E d↓ 换算系数K(E d+E r)是在各种太阳高度角和方位角下,用总辐射表对各种倾斜表面上的散射辐照度和反射辐照度进行实测的结果确定的。表14给出了不同混浊情况下不同的K(E d+E r)值。 总辅射在各向同性的前提下,倾斜面上的总辐射可用下式算出: E g↓(β,α)=Ks·Sm+ E d↓(1+ Cosβ)/2+ E r↑(1- Cosβ)/2 不过,对于大多数用户来说,通过换算系数Kg直接从水平面的总辐射求出E g↓(β,α)更方便,即 E g↓(β,α)=Kg·E g↓ 表15 是国外发表的在一些情况下总辐射月平均日总量的Kg值。

太阳能辐射计算公式

一、中国太阳能直接辐射的计算方法 ()1bS a Q S +='(1) () 211111S c S b a Q S ++='(2)⊙ ()n c S b a Q S 2122++='(3) S ′为直接辐射平均月(年)总量;Q 为计算直接辐射的起始数据,可采用天文总辐射S 0,理想大气总辐射,Q i ,晴天总辐射Q 0来表示。a ,b ,a 1,b 1,c 1,a 2,b 2,c 2为系数。n 为云量。S 1为日照百分率。 相关系数的计算公式: ()() ()() ()()∑∑∑∑∑∑∑∑∑=========?? ? ??-?? ? ??--= ----= n i n i i i n i n i i i n i n i n i i i i i n i i i n i i i y y n x x n y x y x n y y x x y y x x r 12 12 12 121 1 1 1 2 21 考虑到大气透明度,则有 ()()n c S b a P P P Q n c S b a P P P Q S i m i 2122cos cos sin sin 1 2122++=++='+海 年海 年δ ?δ?(4) 其中m 为大气质量: δ ?δ?cos cos sin sin 1 sinh 1+== Θm 其中,φ为测站的纬度;δ为赤纬角,取每月15日的赤纬值作为月平均值;时角ω统一取中午12时,则ω=0,cosω=1;年P 为测站的年平均气压,P 海为海平面气压,P 海=1013.25mp ,海年P P 为对大气质量进行的高度订正。 对于a 2的计算: 当测站的海拔H≥3000m 时,a 2=0.456; 当H≤3000m 是,若年平均绝对湿度E ≤10.0mb ,则 F a ?-=00284.0688.02 否则F a ?-=01826.07023.02,其中F 为测站沙尘暴日数与浮尘日数之和。 对于(4)式中,系数之间的关系式为 { 011.1039.02222=+-=+b a c a

太阳直接辐射计算

太阳直接辐射计算导则 1 围 本标准给出了太阳直接辐射计算的基本原则,不同条件下的计算方法和适用围,以及对计算结果的检验要求。 本标准适用于水平面直接辐射和法向直接辐射的计算。 2 规性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 33698—2017 太阳能资源测量直接辐射 GB/T 34325—2017 太阳能资源数据准确性评判方法 3 术语和定义 下列术语和定义适用于本文件。 3.1 直接辐射 direct radiation 从日面及其周围一小立体角发出的辐射。 [GB/T 31163—2014,定义5.11] 注:一般来说,直接辐射是由视场角约为5°的仪器测定的,而日面本身的视场角仅约为0.5°,因此,它包括日面周围的部分散射辐射,即环日辐射。 3.2 法向直接辐射direct normal radiation 与太线垂直的平面上接收到的直接辐射。 注:从数值上而言,直接辐射与法向直接辐射是相同的;两者的区别在于,直接辐射是从太阳出射的角度而定义,法向直接辐射则是从地表入射的角度而定义。 [GB/T 31163—2014,定义5.12] 3.3 水平面直接辐射direct horizontal radiation 水平面上接收到的直接辐射。 [GB/T 31163—2014,定义5.13] 3.4 散射辐射diffuse radiation;scattering radiation 太阳辐射被空气分子、云和空气中的各种微粒分散成无方向性的、但不改变其单色组成的辐射。 [GB/T 31163—2014,定义5.14] 3.5 [水平面]总辐射global [horizontal] radiation

电磁辐射基础知识

电磁的基本概念 电磁场(electromagnetic field)是物质的一种形式。为了说明电磁的基本概念,现对一些常用名词、术语等做一简略介绍[1]。 一、交流电 1.交流电(alternating current) 交流电是交替地即周期性地改变流动方向和数值的电流。如果我们将电源的两个极,即正极与负极迅速而有规律地变换位置,那么电子就会随着这种变换的节奏而改变自己的流动方向。开始时电子向一个方向流动,以后又改向与开始流动方向相反的方向流动,如此交替地依次重复进行,这种电流就是交流电。 在交流电中,电子在导线内不断地振动,从电子开始向一个方向运动起,然后又回到原点的平行位置时,这一运动过程,称为电流的一次完全振动,发生一次完全振动所需要的时间称为一个周期。半个振动所需要的时间,称为二分之一周期或半周期。 2.频率(frequency) 频率是电流在导体内每秒钟所振动的次数。交流电频率的单位为赫(Hz)。例如我国的民用电频率为50Hz,意思是说民用电这种交流电,在一秒钟内振动50次。美国等一些国家为60Hz。 二、电场与磁场 所有的物体都是由大量的和分立的微小粒子所组成,这些粒子有的带正电,有的带负电,也有的不带电。所有的粒子都在不断地运动,并被它们以一定的速度传播的电磁场所包围着,所以

带电粒子及其电磁场,不是别的,而是物质的一种特殊形态。1.电场(electric field) 我们知道,物体相互作用的力一般分为两大类,一类是物体的.直接接触发生的力,叫接触力,例如碰撞力、摩擦力等均属于这一类。另一类是不需要接触就可以发生的力,称为场力,例如电场力、磁场力、重力等。 电荷的周围存在着一种特殊的物质叫做电场。两个电荷之间的相互作用并不是电荷之间的直接作用,而是一个电荷的电场对另一个电荷所发生的作用,也就是说在电荷周围的空间里,总是有电场力在作用着。因此,我们将有电场力作用存在的空间称为电场。电场是物质的一种特殊形态。 电荷和电场是同时存在的两个方面,只要有电荷,那么它的周围就必然有电场,它们永远是不可分割的整体。当电荷静止不动时,电场也静止不变,这种现象叫做静电场(static field)。当电荷运动时,电场也在变化运动,这种电场称做动电场(dynamlcfield),起电的过程,也是电场建立的过程。起电后,当我们分离正负电荷时,须用外力做功。 那么,电场是怎样显示出来的呢?举个简单的例子,如用一块绒或绸子去摩擦梳子,梳子就会带电,也就是说梳子上面产生了电荷,这种带电的梳子在一定的距离内,就可以吸起小纸屑。这个现象告诉我们,在带电的梳子附近形成了电场,也就是说有电场在起作用。如果将其所带电荷做交变运动,那么它的电场也是

太阳辐射强度测量

4太阳辐射照度实验(略) 实验设备:辐射电流表、总辐射表、辐射热计 实验原理: 太阳辐射电流表是与太阳总辐射表配套使用的二次仪表,将其测得数据经过换算后,即为太阳辐射的瓦/平方米值。其具有检测精度高,便携式设计,性能稳定,功能丰富等方面特点,是太阳能测试方面的理想工具。该表用来测量光谱范围为0.3-3μm的太阳总辐射,也可用来测量入射到斜面上的太阳辐射,如感应面向下可测量反射辐射,如加配遮光环可测量散射辐射。因此,它可广泛应用于教学、太阳能利用、气象、农业、建筑材料老化及大气污染等部门做太阳辐射能量的测量。 仪器的工作原理基于热电效应。在锰铜—康铜组成的热电堆上涂以炭黑及氧化镁,利用他们对太阳辐射热吸收系数的不同而造成热电堆冷、热端点的温差,形成热电势。用辐射电流表测出其热电流强度,这个电流强度的大小与太阳辐射照度成正比。 辐射热计用于测量工作地点所接受到的单向辐射热强度。 实验方法: (1)在太阳直射辐射不被遮蔽的开阔处,安装好天空辐射表,调节底板上的三个螺钉,使仪器感应面成水平位置。辐射电流表安装在天空辐射表的北面,其距离应使观测者读数时不遮挡天空辐射表。 (2)将天空辐射表的2根导线与辐射电流表的(+)、(-)端连接好,待仪器稳定后即可开始测量。 (3)测量总辐射照度时,把天空辐射表头部的金属罩取下,经40s后即可从电流表上读取数值;测散射辐射照度时,需用专用遮光板遮住太阳直射辐射,然后从电流表上读数;直射辐射照度可从同步测得的总辐射照度中减去散射辐射照度来求得。 (4)把上述辐射电流表上的数值按仪器使用说明书中的公式换算成辐射照度。 设备参数: 辐射电流表 测试范围:0~2000瓦/平方米检测精度:<±1瓦/平方米 显示数值:小于200毫伏(液晶显示) 使用温度:-20~+50℃ 电池供电:DC:9V连续使用大于七天相对湿度:80% 重量:小于600克 总辐射表 灵敏度:7~14mv/kw.m-2 响应时间:<35秒(99%) 余弦响应:不大于±7%(太阳高度10°时) 年稳定度:不大于±2% 温度系数:不大于±2%(-10℃~+40℃) 光谱范围:0.3~3.2μm 信号输出:0~20mv 非线性:±2% 重量:2.5kg 辐射热计 量程:0-2kW/平方米分辨率:0.01kW/平方米标定精度:±5% 实验报告要求:测量记录本地太阳能辐射强度。

电磁测量测量基本知识

电磁辐射的测量基础知识 电磁辐射的测量基础知识 电磁辐射的测量方法通常与测量点位和辐射源的距离有关,即,所进行的测量是远场测量还是近场测量。由于远场和近场的情况下,电磁场的性质有所不同,因此,要对远场和近场测量有明确的了解。 1、电磁场的远场和近场划分 电磁辐射源产生的交变电磁场可分为性质不同的两个部分,其中一部分电磁场能量在辐射源周围空间及辐射源之间周期性地来回流动,不向外发射,称为感应场;另一部分电磁场能量脱离辐射体,以电磁波的形式向外发射,称为辐射场。 一般情况下,电磁辐射场根据感应场和辐射场的不同而区分为近区场(感应场)和远区场(辐射场)。由于远场和近场的划分相对复杂,要具体根据不同的工作环境和测量目的进行划分,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。 近区场通常具有如下特点: l 近区场内,电场强度与磁场强度的大小没有确定的比例关系。即:E1377H。一般情况下,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备的模具),磁场要比电场大得多。 l近区场的电磁场强度比远区场大得多。从这个角度上说,电磁防护的重点应该在近区场。 l近区场的电磁场强度随距离的变化比较快,在此空间内的不均匀度较大。 远区场的主要特点如下: l在远区场中,所有的电磁能量基本上均以电磁波形式辐射传播,这种场辐射强度的衰减要比感应场慢得多。 l在远区场,电场强度与磁场强度有如下关系:在国际单位制中,E=377H,电场与磁场的运行方向互相垂直,并都垂直于电磁波的传播方向。 l远区场为弱场,其电磁场强度均较小 近区场与远区场划分的意义: 通常,对于一个固定的可以产生一定强度的电磁辐射源来说,近区场辐射的电磁场强度较大,所以,应该格外注意对电磁辐射近区场的防护。对电磁辐射近区场的防护,首先是对作业人员及处在近区场环境内的人员的防护,其次是对位于近区场内的各种电子、电气设备的防护。而对于远区场,由于电磁场强较小,通常对人的危害较小。 对我们最经常接触的从短波段30MHz到微波段的3000MHz的频段范围,其波长范围从10米到0.1米。 例:具体辐射源的近场(感应场区)与远场(辐射场区)(l = c / f) 频率(f)波长(l)界限(3l) 50 / 60 Hz电力6000 / 5000 km18000 / 15000 km 50 kHz电焊 6 km18km 27 MHz CB 广播, 透热疗法11.1 m33.3 m 100 MHz FM 广播 3 m9 m 433 MHz 工业应用0.7 m 2.1 m

世界太阳能资源分布

世界太阳能资源分布 太阳向宇宙空间发射的辐射功率为3.8x1023kW的辐射值,其中20亿分之一到达地球大气层。到达地球大气层的太阳能,30%被大气层反射,23%被大气层吸收。47%到达地球表面,其功率为800000亿kW,也就是说太阳每秒钟照射到地球上的能量就相当于燃烧500万吨煤释放的热量。 全球人类目前每年能源消费的总和只相当于太阳在40分钟内照射到地球表面的能量。 国际太阳能资源分布 根据国际太阳能热利用区域分类,全世界太阳能辐射强度和日照时间最佳的区域包括北非、中东地区、美国西南部和墨西哥、南欧、澳大利亚、南非、南美洲东、西海岸和中国西部地区等。根据德国航空航天技术中心(DLR)的推荐,不同地区太阳能热发电技术和经济潜能数据及其技术潜能基于太阳年辐照量测量值大于6480MJ/m2,经济潜能基于太阳年辐照量测量值大于7200MJ/m2。 北非地区是世界太阳能辐照最强烈的地区之一。 摩洛哥、阿尔及利亚、突尼斯、利比亚和埃及太阳能热发电潜能很大。阿尔及利亚的太阳年辐照总量9720MJ/m2,技术开发量每年约169440TW·h。摩洛哥的太阳年辐照总量 9360MJ/m2,技术开发量每年约20151TW·h。埃及的太阳年辐照总量10080MJ/m2,技术开发量每年约73656TW·h。太阳年辐照总量大于8280MJ/m2的国家还有突尼斯、利比亚等国。阿尔及利亚有2381.7km2的陆地区域,其沿海地区太阳年辐照总量为6120MJ/m2,高地和撒哈拉地区太阳年辐照总量为6840~9540MJ/m2,全国总土地的82%适用于太阳能热发电站的建设。

世界太阳能资源分布图 南欧的太阳年辐照总量超过7200MJ/m2。 这些国家包括葡萄牙、西班牙、意大利、希腊和土耳其等。西班牙太阳年辐照总量为8100MJ/m2,技术开发量每年约1646TW·h。意大利太阳年辐照总量为7200MJ/m2,技术开发量每年约88TW·h。希腊太阳年辐照总量为6840MJ/m2,技术开发量每年约44TW·h。葡萄牙太阳年辐照总量为7560MJ/m2,技术开发量每年约436TW·h。土耳其的技术开发量每年约400TW·h。西班牙的南方地区是最适合于建设太阳能能热发电站地区之一,该国也是太阳能热发电技术水平最高、太阳能热发电站建设最多的国家之一。 中东几乎所有地区的太阳能辐射能量都非常高。 以色列、约旦和沙特阿拉伯等国的太阳年辐照总量8640MJ/m2。阿联酋的太阳年辐照总量为7920MJ/m2,技术开发量每年约2708TW·h。以色列的太阳年辐照总量为8640MJ/m2,技术开发量每年约318TW·h。伊朗的太阳年辐照总量为7920MJ/m2,技术开发量每年约20PW·h。约旦的太阳年辐照总量约9720MJ/m2,技术开发量每年约6434TW·h。以色列的总陆地区域是20330km2;Negev沙漠覆盖了全国土地的一半,也是太阳能利用的最佳地区之一,以色列的太阳能热利用技术处于世界最高水平之列。我国第1座70KW太阳能塔式热发电站就是利用以色列技术建设的。 美国也是世界太阳能资源最丰富的地区之一。 根据美国239个观测站1961—1990年30年的统计数据,全国一类地区太阳年辐照总量为9198~10512MJ/m2,一类地区包括亚利桑那和新墨西哥州的全部,加利福尼亚、内华达、犹他、科罗拉多和得克莎斯州的南部,占总面积的9.36%。二类地区太阳年辐照总量为7884~9198MJ/m2,除了包括一类地区所列州的其余部分外,还包括犹他、怀俄明、堪萨斯、俄克拉荷马、佛罗里达、佐治亚和南卡罗来纳州等,占总面积的35.67%。三类地区太阳年辐照

相关主题