搜档网
当前位置:搜档网 › 完整word版,计算方法试题库汇总,推荐文档

完整word版,计算方法试题库汇总,推荐文档

完整word版,计算方法试题库汇总,推荐文档
完整word版,计算方法试题库汇总,推荐文档

计算方法

一、填空题

1.假定x ≤1,用泰勒多项式?+??+++=!

!212n x x x

e n

x

,计算e x

的值,若要求截断误差不超过0.005,则n=_5___ 2.

03432

3=-+x - 

x x 的牛顿迭代公式

)463/()343(121121311+--+--=------k k k k k k k x x x x x x x

3.一阶常微分方程初值问题

?????=

='y x y y x f y 0

0)()

,(,其改进的欧拉方法格式为)],(),([21

1

1

y

x y x y y

i i i

i

i

i f f h

+++++=

4.解三对角线方程组的计算方法称为追赶法或回代法

5. 数值求解初值问题的四阶龙格——库塔公式的局部截断误差为o(h 5

) 6.在ALGOL 中,简单算术表达式y

x 3

+

的写法为x+y ↑3

7.循环语句分为离散型循环,步长型循环,当型循环. 8.函数)(x f 在[a,b]上的一次(线性)插值函数=

)(x l )()(b f a

b a

x a f b a b x --+-- 9.在实际进行插值时插值时,将插值范围分为若干段,然后在每个分段上使用低阶插值————如线性插值和抛物插值,这就是所谓分段插值法

10、数值计算中,误差主要来源于模型误差、观测误差、截断误差和舍入误差。 11、电子计算机的结构大体上可分为输入设备 、 存储器、运算器、控制器、 输出设备 五个主要部分。

12、算式2

cos sin 2x

x x

+在ALGOL 中写为))2cos()(sin(2↑+↑x x x 。 13、ALGOL 算法语言的基本符号分为 字母 、 数字 、 逻辑值、 定义符四大

类。

14、语句大体上分为无条件语句、条件语句、循环语句三类。 15、在过程体中形式参数分为赋值形参和换名形参。

16、若线性方程组具有主对角优势,则高斯一塞德尔格式对任意给定的初值均收敛。 17.已知函数表,

则一次差商=]4.0,2.0[f 0.6

18、算法是指 解题方案的准确而完整的描述 。

19、步长型循环语句的一般形式为for V: =E 1 stepE 2 until E 3 do S 。 20、过程说明的一般形式为procedure (过程导引)(过程体)。 21、求解f(x)=0的二分法的理论依据是连续函数的零值存在定理。 22、方程()0f x =的解*x 称作它的 根 (或称函数()f x 的 零点 ) 23、源程序由开始部分、说明部分、语句部分、结束部分组成。 24、ALGOL 的基本符号有4大类即字母、数字、逻辑值和定义符。 25、用代数多项式作为工具研究插值问题,这就是所谓的 代数插值 。 26、四阶龙格一库塔格式的截断误差为O(h 5)。 27、求解x=g(x)的牛顿迭代公式为)

(1)

(1k k k k k x f x f x x x '---

=+。

28、离散型循环语句的一般形式为for V:=E 1, E 2, … E n do S 。

29、导数'()f a 有三种差商,其中1

[()()]f a f a h h

-++称为 向前差商 ,

1[()()]f a h f a h --+称为 向后差商 ,而1

[()()]2f a h f a h h

--++则称为 中心差商 。

30、欧拉格式),(1i i i i y x hf y y +=+的截断误差为O(h 2)。 31、算法是指 解题方案的准确而完整的描述 。

32、由辛卜性公式=

?b

a

dx x f )()]()2

(4)([6b f b

a f a f a

b +++-。 33、ALGOL 算法语言的基本符号分为 字母 、 数字 、 逻辑值、 定义符四大类。

34、电子计算机的结构大体上可分为输入设备 、 存储器、运算器、控制器、 输出设备 五个主要部分。

35、函数过程说明的一般形式为(类型)procedure (过程导引)(过程体)。 36、具有n+1个结点的拉格朗日插值多项式为∑∏=≠--n

k k j

k j k j y x x x x 0)(

37、求解f(x)=0的牛顿法,误差具有平方收敛性。

38、方程()0f x =的解*x 称作它的 根 (或称函数()f x 的 零点 )。 39、用代数多项式作为工具研究插值问题,这就是所谓的 代数插值 。

40、导数'()f a 有三种差商,其中1

[()()]f a f a h h

-++称为 向前差商 ,

1[()()]f a h f a h --+称为 向后差商 ,而1

[()()]2f a h f a h h

--++则称为 中心差商 。

41、ALGOL 中的变量主要有整数型、实数型两种类型。

二、简答题

42、利用电子计算机解题的一般步骤是什么。

答:1、构造数学模型;2、选择计算方法;3、计算过程的程序设计;4、将计算程序和原始数据输入,上机计算,最后计算机输出计算结果。

43、 什么是算法语言?

答:算法语言是算法的一种描述工具,在电子计算机产生初期,人们用电子计算机解题,需将解题步骤用机器语言编成程序。算法语言是介于机器语言和数学语

言之间的一种通用语言。

44、 什么叫做标识符?

答:以字母开头的由字母和数字组成的符号序列叫做标识符。

45、 叙述秦九韶方法的概念及特点。

答:多项式计算的这种有效算法称作秦九韶方法,他是我国宋代的一位数学家秦九韶最先提出的。

秦九韶方法的特点在于,它通过一次式的反复计算,逐步得到高次多项式的值,也就是说,将一个n 次多项式1110()n n n n p x a x a x a x a --=+++L 的求值问题,归结为重复计算n 个一次式1,1,2,...,k k n k v v x a k n --=+=来实现。

46、什么是算法语言?

答:算法语言是算法的一种描述工具,在电子计算机产生初期,人们用电子计算机解题,需将解题步骤用机器语言编成程序。算法语言是介于机器语言和数学语言之间的一种通用语言。

47、利用电子计算机解题的一般步骤是什么。

答:1、构造数学模型;2、选择计算方法;3、计算过程的程序设计;4、将计算程序和原始数据输入,上机计算,最后计算机输出计算结果。

48、 什么叫做标识符?

答:以字母开头的由字母和数字组成的符号序列叫做标识符。

49、叙述截断误差与舍人误差。

答、许多数学运算是通过极限过程来定义的,然而计算机只能完成有限次的算术

运算及逻辑运算,因此需将解题方案加工成算术运算与逻辑运算的有限序列。这种加工常常表现为某种无穷过程的“截断”,由此产生的误差通常称作截断误差。 计算当中遇到的数据可能位数很多,甚至会是无穷小数,然而受机器字长的限制,用机器代码表示的数据必须舍入成一定的位数,这又会引进舍入误差。

三、解答题。

50、编写计算4x =时,41y x =-的值的程序。 答:用算法语言来写就是下列形式:

Begin Integer x; Real y; X:=4; Y:=x ↑4-1; Write1(y) End

51、用LPL T

分解法解方程组????? ??=????? ????

???

??3016101795953533321x x x 解:????

?

??????

? ?

??????

??=????? ??1001010

00000101

00

11795953533323121321

32

3121l l l d d d l l l

解得2,3

5

,1,32,2,3323121321====

==l l l d d d

得1,1,2123=-==x x x

52、已知,,,a b c x 的值,计算2y ax bx c =++的值,写出源程序(ALGOL 程序)。 解:begin

real ,,,,;a b c x y 4(,,,);read a b c x :();y a x b x c =?+?+ 1()write y end

53、 用迭代法求方程310x x --=在 1.5x =附近的一个根。

解:设将方程改写为下列形式x =

用所给的初始近似0 1.5x =代人上式的右端,得到1 1.35721x =

计算结果说明,0x 并不满足方程x =。如果改用1x 作为近似值代人

x =2 1.33086x =

由于2x 与1x 仍有偏差,我们再取作为近似值,并重复这个步骤。如此继续下去,

这种逐步校正的过程称作迭代过程,这里迭代公式10,1,2,k x k +==L 。

5411==,用线性插值求115x =的平方根y 。 解:适合所给函数表

的一次插值多项式是

1110

10(100)121100

y x -=+

--

用115x = 10.71429y =。

55、利用10100=,11121=,12144=,求x 的二次插值,并求115。 解:由拉格朗日插值公式

12

)

121144)(100144()

121)(100(11)144121)(100121()144)(100(10)144100)(121100()144)(121()(2?----+?----+?----=

x x x x x x x P 7228.10)115(2=P

56、将下列程序用普通语言表示,并指出它们是描述什么样的计算公式。

Begin Integer x; Real y; X:=4; Y:=x ↑4-1; Write1(y)

End 解:开始 整型数x ; 实型数y ; 将4赋给变量x ;

计算41x -的值并把结果送到y 中; 打印计算结果y

结束

它们描述的计算公式是:计算当4x =时,41y x =-的值的程序。

57、已知,,,a b c x 的值,计算2y ax bx c =++的值,写出源程序(ALGOL 程序)。 解:begin

real ,,,,;a b c x y 4(,,,);read a b c x :();y a x b x c =?+?+ 1()write y end

58、编写计算∑=100

12i n 的源程序。

解: begin

Integer S, n, m; S:=0; n:=1;

L: if n ≤100 then begin

m:=n ↑2; n:=n+1; S:=S+m; goto L end; write 1 (S) end

59、 用迭代法求方程310x x --=在 1.5x =附近的一个根。

解:设将方程改写为下列形式x =

用所给的初始近似0 1.5x =代人上式的右端,得到1 1.35721x =

计算结果说明,0x 并不满足方程x =。如果改用1x 作为近似值代人

x =2 1.33086x =

由于2x 与1x 仍有偏差,我们再取作为近似值,并重复这个步骤。如此继续下去,

这种逐步校正的过程称作迭代过程,这里迭代公式10,1,2,k x k +==L 。

60、 利用100,121和144的平方根和抛物插值公式方法来求115x =的平方根

y 。

解:用抛物插值公式,0201122012010210122021()()()()()()()()()()()()()

x x x x x x x x x x x x p x y y y x x x x x x x x x x x x ------=

++------

这里001122100,10;121,11;144,12;x y x y x y ======又115x =,代入求得

(115121)(115144)(115100)(115144)

1011

(100121)(100144)(121100)(121144)

(115100)(115121)1210.7228(144100(144121)

y ----=?+?------+?=--

再同所求平方根的实际值10.7238比较,这里得到了具有4位有效数字的结果。

61、编写计算分段函数

??

???≥<≤<=1cos 100sin )(x x x x x x

x f 的源程序

解: begin

real x, y; read1 (x);

if x<0 then y:=sin(x) alse if n ≥1 then y:=cos(x) alse y:=x; write 1 (y) end

62、编导计算2

02

1gt t v S +=的源程序。 解: begin

real s, Vo, t; read2 (Vo, t);

S: =Vo×t+0.5×9.8×t↑2; Write 1 (S) end

63、编写程序求2223+-=x x y 在[-1,1]上的最大值,步长为0.1。 解: begin

real max, x, y; max : =2;

for x:=-1 step 0.1 until 1 do begin

y: = x ↑3-2×x↑2+2; if y > max then max: =y end;

Write 1 (max) end

64、用当循环语句求∑∞

=13

1

n n

,要求误差小于10-5。 解: begin ingeger n;

real S, S 1;

S: =0; S 1:=-1; n:=0;

for n:=n+1 while (S -S 1)≥10↑(-5) do begin

S 1=S; S:=S+x ↑(-3) end;

Write 1 (S) end

65、利用牛顿法求115的近似值。

解:设f(x)=x 2-115,则f(x)=0的正根就是115 ∵f(10)=-15<0, F(11)=6>0 ∴(10,11)内有根

又∵02,02)()(>=''>='x x f x f ∴取x 0=11 由k

k k k x x x x 2115

2

1

--

=+得 x 1=10.727272, x 2=10.72380586, x 3=10.72380530 ∴x ≈10.723805

66、利用n=5的复化辛卜生公式计算?-1

011

dx x

解:3.011

1.011(4)8.0116.0114.011

2.011(2011[5161+++?++++++++?++?=S

.69315.0]111)9.0117.0115.011=++++++++

67、,3332

31

232221

131211???

?

?

??=a a a a a a a a a A 写出求A T 的源程序 解: begin

Integer i, j; real T; array A[1:3, 1:3]; read 1 (A); for i:=1 step 1 until 3 do for j:=1 step until 3 do begin

T:=A[i,j]; A[i,j]:=A[j:i]; A[j:i] =T end; write 1 (A) end

68、设一元二次方程为,02

=++c bx a x 以知三个系数a,b,c(a ≠0),试写出求根的源程序。 解

begin );2/())((:1a d sqrt -b x ?+= real a,b,c,d,;,,,21im re x x );2/())((:2a d -b-sqrt x ?= read3 (a,b,c); ),,(321x x d write d:=b ↑2-4×a × end;

if d <0 then write3 (a,b,c) begin end

re:= );2(a -b ?

);2/()(:a -d sqrt im ?=

write3 (d,re,im) end else begin

69.给出100个数,,,10021a a a Λ试写出平方和∑==100

12

i i a S 的源程序。(10分)

解: begin

array A[100]; integer k; real s; read1 (A); s:=0;

for k:=1 step 1 until 100 do s:=A[K]↑2+s; write1 (s) end

70.设343)(23-+-=x x x x f ,请用秦九韶算法计算)2(f 。

解: 按秦九韶算法列表计算如下:

1 -3 4 -3

2=x 2 -2 4

1 -1

2 1=f(2)(7分)

所以f(2)=1.

71.用二分法计算方程0343)(23=-+-=x x x x f 的近似根,并进行到第3步为止。

解: 由于f(0)=-3<0, f(2)=1>0,343)(23-+-=x x x x f 在[0,2]上连续, 故由闭区间上连续函数的零点存在定理, [0,2]为方程的隔离区间;

取[0,2]的中点c=1, 此时有f(c)=-1<0, 而f(2)=1>0, 故此时方程的隔离区间缩小为[1,2];

再取[1,2]的中点c=1.5, 此时有f(c)= -0.375<0, 而f(2)=1>0, 故此时方程的隔离区间缩小为[1.5,2];

再取[1.5,2]的中点c=1.525, 此时有f(c)= -0.330 <0, 而f(2)=1>0, 故此时方程的隔离区间缩小为[1.525,2];

所以计算进行到第3步为止时,方程的近似根为x=c=1.525.

72.取节点1,5.0,0210===x x x ,求函数e x

y -=在区间[0,1]上的建立二次插值多项式

)(2

x p

解:题中给出的插值条件为:

e p e

p p --1

2

5

.02

)1(,)5.0(,1)0(===故满足次值条

件的二次Lagrange 插值多项式为:

)

5.01)(01()

5.0)(0()1()15.0)(05.0()1)(0()5.0()10)(5.00()1)(5.0()0()(2

2

2

2

----+----+=x x x x --x -x -x p p p p

=2(x-0.5)(x-1)-)5.0(2)1(41

5

.0-+---x x x x e e

73、用4阶龙格一库塔法求解???=-='2

)0(38y y

y ,取步长h=0.2,计算y(0.4)。

解:)22(6

1

43211k k k k y y n n ++++=+

??????

?-=-=-=-=n

n n

n y k y k y k y k 3156.08416.0474.0264.142.012.16.06.14321

《数值计算方法》试题集及答案(1-6) 2

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

(完整word版)西工大计算方法试题参考(完整版).docx

2002-2003 第一学期 一.计算及推导( 5*8) 1.已知 x* 3.141, x ,试确定 x * 近似 x 的有效数字位数。 * * * 0.100 * * * 2.有效数 x 1 3.105, x 2 0.001, x 3 1 x 2 3 ,试确定 x x 的相对误差限。 3.已知 f ( x) 0.5 x 3 0.1x 2 ,试计算差商 f 0,1,2,3 4.给出拟合三点 A (0,1), B (1,0) 和 C (1,1) 的直线方程。 5.推导中矩形求积公式 b (b a) f ( a b ) 1 f '' ( )(b a)3 f (x)dx a 2 24 b n f (x)dx A i f ( x i ) a 6.试证明插值型求积公式 i 0 的代数精确度至少是 n 次。 7.已知非线性方程 x f (x) 在区间 a, b 内有一实根,试写出该实根的牛顿迭代 公式。 8.用三角分解法求解线性方程组 1 2 1 x 1 0 2 2 3 x 2 3 1 3 0 x 3 2 二.给出下列函数值表 0.4 0.5 0.6 0.7 0.8 x i 0.38942 0.47943 0.56464 0.64422 0.71736 f ( x i ) 要用二次插值多项式计算 f (0.63891) 的近似值,试选择合适的插值节点进行计 算,并说明所选用节点依据。 (保留 5 位有效数字)(12 分) 三. 已知方程 x ln x 0 在 (0,1) 内有一实根 ( 1)给出求该实根的一个迭代公式,试之对任意的初始近似 x 0 (0,1) 迭代法都收 敛,并证明其收敛性。 ( 2) x 0 0.5 试用构造的迭代公式计算 的近似值 x n ,要求 x n x n 1 10 3 。 四. 设有方程组

《计算方法》期末考试试题

《计算方法》期末考试试题 一 选 择(每题3分,合计42分) 1. x* = 1.732050808,取x =1.7320,则x 具有 位有效数字。 A 、3 B 、4 C 、5 D 、6 2. 取7 3.13≈(三位有效数字),则 ≤-73.13 。 A 、30.510-? B 、20.510-? C 、10.510-? D 、0.5 3. 下面_ _不是数值计算应注意的问题。 A 、注意简化计算步骤,减少运算次数 B 、要避免相近两数相减 C 、要防止大数吃掉小数 D 、要尽量消灭误差 4. 对任意初始向量)0(x 及常向量g ,迭代过程g x B x k k +=+)() 1(收敛的充分必要条件是_ _。 A 、11< B B 、1<∞ B C 、1)(

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式就是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差与( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 10、已知f (1)=2,f (2)=3,f (4)=5、9,则二次Newton 插值多项式中x 2系数为( 0、15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式

计算方法试题

计算方法考试题(一) 满分70分 一、选择题:(共3道小题,第1小题4分,第2、3小题3分,共10分) 1、将A 分解为U L D A --=,其中),,(2211nn a a a diag D =,若对角阵D 非奇异(即),1,0n i a ii =≠,则b Ax =化为b D x U L D x 1 1)(--++=(1) 若记b D f U L D B 111 1),(--=+= (2) 则方程组(1)的迭代形式可写作 ) 2,1,0(1 )(1)1( =+=+k f x B x k k (3) 则(2)、(3)称 【 】 (A)、雅可比迭代。(B)、高斯—塞德尔迭代 (C)、LU 分解 (D)、Cholesky 分解。 2、记*x x e k k -=,若0lim 1≠=+∞→c e e p k k k (其中p 为一正数)称序列}{k x 是 【 】 (A)、p 阶收敛; (B)、1阶收敛; (C)、矩阵的算子范数; (D)、p 阶条件数。 3、牛顿切线法的迭代公式为 【 】 (A)、 ) () (1k x f x f x x k k k '- =+ (B)、 )()())((111--+--- =k k k k k k k x f x f x x x f x x 1 )() ()1()()()(x x f x f x f k i k i k i ??+=+ (D)、 )() ()()1(k k k x f x x -=+ 二、填空题:(共2道小题,每个空格2分,共10分) 1、设0)0(f =,16)1(f =,46)2(f =,则一阶差商 ,二阶差商=]1,2,0[f ,)x (f 的二次牛顿 插值多项式为 2、 用二分法求方程 01x x )x (f 3 =-+=在区间]1,0[内的根,进行第一步后根所在的区间为 ,进行第二步后根所在的区间 为 。 三、计算题:(共7道小题,第1小题8分,其余每小题7分,共50分) 1、表中各*x 都是对准确值x 进行四舍五入得到的近似值。试分别指出试用抛物插值计算115的近似值,并估计截断误差。 3、确定系数101,,A A A -,使求积公式 ) ()0()()(101h f A f A h f A dx x f h h ++-≈? -- (1) 具有尽可能高的代数精度,并指出所得求积公式的代数精度。

地方时计算方法及试题精选

关于地方时的计算 一.地方时计算的一般步骤: 1.找两地的经度差: (1)如果已知地和要求地同在东经或同在西经,则: 经度差=经度大的度数—经度小的度数 (2)如果已知地和要求地不同是东经或西经,则: 经度差=两经度和(和小于180°时) 或经度差=(180°—两经度和)。(在两经度和大于180°时) 2.把经度差转化为地方时差,即: 地方时差=经度差÷15°/H 3.根据要求地在已知地的东西位置关系,加减地方时差,即:要求点在已知点的东方,加地方时差;如要求点在已知点西方,则减地方时差。 二.东西位置关系的判断: (1)同是东经,度数越大越靠东。即:度数大的在东。 (2)是西经,度数越大越靠西。即:度数大的在西。 (3)一个东经一个西经,如果和小180°,东经在东西经在西;如果和大于180°,则经度差=(360°—和),东经在西,西经在东;如果和等于180,则亦东亦西。 三.应用举例: 1、固定点计算 【例1】两地同在东经或西经 已知:A点120°E,地方时为10:00,求B点60°E的地方时。 分析:因为A、B两点同是东经,所以,A、B两点的经度差=120°-60°=60° 地方时差=60°÷15°/H=4小时 因为A、B两点同是东经,度数越大越靠东,要求B点60°E比A点120°E小,所以,B点在A点的西方,应减地方时差。 所以,B点地方时为10:00—4小时=6:00 【例2】两地分属东西经 A、已知:A点110°E的地方时为10:00,求B点30°W的地方时. 分析:A在东经,B在西经,110°+30°=140°<180°,所以经度差=140°,且A点东经在东,B点西经在西,A、B两点的地方时差=140°÷15°/H=9小时20分,B点在西方, 所以,B点的地方时为10:00—9小时20分=00:40。 B、已知A点100°E的地方时为8:00,求B点90°W的地方时。 分析:A点为东经,B点为西经,100°+90°=190°>180°, 则A、,B两点的经度差=360°—190°=170°,且A点东经在西,B点西经在东。 所以,A、B两点的地方时差=170°÷15°/H=11小时20分,B点在A点的东方, 所以B点的地方时为8:00+11小时20分=19:20。 C、已知A点100°E的地方 8:00,求B点80°W的地方时。 分析:A点为100°E,B点为80°W,则100°+80°=180°,亦东亦西,即:可以说B点在A点的东方,也可以说B点在A点的西方,A,B两点的地方时差为180÷15/H=12小时。所以B点的地方时为8:00+12小时=20:00或8:00—12小时,不够减,在日期中借一天24小时来,即24小时 +8:00—12小时=20:00。 2、变化点计算 【例1】一架飞机于10月1日17时从我国上海(东八区)飞往美国旧金山(西八区),需飞行14小时。到达目的地时,当地时间是() A. 10月2日15时 B. 10月2日3时 C. 10月1日15时 D. 10月1日3时

计算方法模拟试题及答案

计算方法模拟试题 一、 单项选择题(每小题3分,共15分) 1.近似值210450.0?的误差限为( )。 A . 0.5 B. 0.05 C . 0.005 D. 0.0005. 2. 求积公式)2(3 1 )1(34)0(31)(2 0f f f dx x f ++≈ ?的代数精确度为( )。 A. 1 B. 2 C. 3 D. 4 3. 若实方阵A 满足( )时,则存在唯一单位下三角阵L 和上三角阵R ,使LR A =。 A. 0det ≠A B. 某个0 det ≠k A C. )1,1(0det -=≠n k A k D. ),,1(0det n k A k =≠ 4.已知?? ?? ? ?????=531221112A ,则=∞A ( )。 A. 4 B. 5 C. 6 D 9 5.当实方阵A 满足)2(,221>>-=i i λλλλ,则乘幂法计算公式1e =( )。 A. 1+k x B. k k x x 11λ++ C. k x D. k k x x 11λ-+ 二、填空题(每小题3分,共15分) 1. 14159.3=π,具有4位有效数字的近似值为 。 2. 已知近似值21,x x ,则=-?)(21x x 。 3.已知1)(2-=x x f ,则差商=]3,2,1[f 。 4.雅可比法是求实对称阵 的一种变换方法。

5.改进欧拉法的公式为 。 三、计算题(每小题12分 ,共60分) 1. 求矛盾方程组; ??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2.用列主元法解方程组 ??? ??=++=++=++4 26453426352321 321321x x x x x x x x x 3.已知方程组 ???? ? ?????=????????????????????----131********x x x a a a a (1) 写出雅可比法迭代公式; (2) 证明2

2016华工计算机计算方法(数值分析)考试试卷_共4页

考完试了,顺便把记得的题目背下来,应该都齐全了。我印象中也就只有这些题,题 目中的数字应该是对的,我也验证过,不过也不一定保证是对的,也有可能我也算错了。 还有就是试卷上面的题目可能没有我说的这么短,但是我也不能全把文字背下来,大概意 思就是这样吧。每个部分的题目的顺序可能不是这样,但总体就是这四大块。至于每道题 目的分值,我记得的就写出来了,有些题目没注意。我题目后面写的结果都是我考试时算 出来的,考完了也懒得验证了,可能不一定对,自己把握吧,仅供参考。 华南理工大学2016计算机计算方法(数值分析)考试试卷 一填空题(16分) 1.(6分)X* = 3.14,准确值x = 3.141592,求绝对误差e(x*) = ,相对误差e r(x*) = ,有效数位是。 2.(4分)当插值函数的n越大时,会出现龙格现象,为解决这个问题,分段函数不一个 不错的办法,请写出分段线性插值、分段三次Hermite插值和三次样条插值各自的特点。 3.(3分)已知x和y相近,将lgx – lgy变换成可以使其计算结果更准确。 4.(3分)已知2x3 – 3x2 +2 = 0,求牛顿迭代法的迭代式子。 解题思路:1. 这里的绝对误差和相对误差是没有加绝对值的,而且要注意是用哪个数减去哪个数得到的值,正负号会不一样;2. 可以从它们函数的连续性方面来说明;3. 只要满足课本所说的那几个要求就可以;这个记得迭代公式就可以直接写,记不住可以自己推导, 就是用泰勒展开式来近似求值得到的迭代公式。 我最终的结果是: 1.-0.001592 -0.000507 3 2.分段线性插值保证了插值函数的连续性,但是插值函数的一次导数不一定连续; 分段三次Hermite既保证了插值函数的连续性,也保证了其一次导数的连续性; 三次样条插值保证了插值函数及其一次导数和二次导数的连续性 3.lg(x/y) 4.x k+1 = x k – (2x3 – 3x2 +2)/(6x2 -6x) 二计算题(64分) 1.已知f(x) = x3 –x -1,用对分法求其在[0 , 2]区间内的根,误差要满小于0.2,需要对分多 少次?请写出最后的根结果。 解题思路:每次求区间的中值并计算其对应的函数值,然后再计算下一个区间中值及函数值,一直到两次区间中值的绝对值小于0.2为止。 我最终算得的对分次数是4,根的结果为11/8. 2.根据以下数据回答相应问题: x-2045 y51-31 (1)请根据以上数据构造Lagrange三次插值函数; (2)请列出差商表并写出Newton三次插值函数。 解题思路:(1) 直接按照书本的定义把公式列出来就可以了,这个要把公式记住了才行,不然也写不了;(2)差商表就是计算Newton三次插值函数过程中计算到的中间值及结

计算方法习题

《计算方法》练习题一 练习题第1套参考答案 一、填空题 1. 14159.3=π的近似值3.1428,准确数位是( 2 10- )。 2.满足d b f c a f ==)(,)(的插值余项=)(x R ( ))((!2) (b x a x f --''ξ ) 。 3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P (5 2 )。 4.乘幂法是求实方阵(按模最大 )特征值与特征向量的迭代法。 5.欧拉法的绝对稳定实区间是( ]0,2[-)。 二、单选题 1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε(C )。 A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2 )(,则=]3,2,1[f ( A )。 A.1 B.2 C.3 D.4 3.设A=?? ? ? ??3113,则化A为对角阵的平面旋转=θ( C ) . A. 2π B.3π C.4π D.6 π 4.若双点弦法收敛,则双点弦法具有(B )敛速. A.线性 B.超线性 C.平方 D.三次 5.改进欧拉法的局部截断误差阶是( C ). A .)(h o B.)(2 h o C.)(3 h o D.)(4 h o 三、计算题 1.求矛盾方程组:??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2 212 212 2121)2()42()3(),(--+-++-+=x x x x x x x x ?, 由 0,021=??=??x x ? ?得:???=+=+9 629232121x x x x , 解得14 9 ,71821== x x 。

计算方法试题

计算方法试题 1.有效数字位数越多,相对误差越小。() 2.若A是n×n阶非奇异阵,则必存在单位下三角阵L和上三角阵U,使A=LU唯一成立。() 3.当时,型求积公式会产生数值不稳定性。() 4.不适合用牛顿-莱布尼兹公式求定积分的情况有的原函数不能用有限形式表示。() 5.中矩形公式和左矩形公式具有1次代数精度。() 1.数的六位有效数字的近似数的绝对误差限是() 2.用二分法求方程在区间[0,1]内的根,进行一步后根的所在区间为()。 3.求解线性代数方程组的高斯-赛德尔迭代格式为( ) 4.已知函数在点=2和=5处的函数值分别是12和18,已知,则()。 5.5个节点的牛顿-柯特斯求积公式的代数精度为()。 1.不是判断算法优劣的标准是()。 A、算法结构简单,易于实现 B、运算量小,占用内存少 C、稳定性好 D、计算误差大 2.计算(),取,采用下列算式计算,哪一个得到的结果最好? ()。 A、 ()B、99-70C、D、 () 3.计算的Newton迭代格式为()。 A、B、C、D、4.雅可比迭代法解方程组的必要条件是()。 A、A的各阶顺序主子式不为零 B、 C、,,,, D、

5.设求方程的根的切线法收敛,则它具有()敛速度。 A、线性 B、超越性 C、平方 D、三次 6.解线性方程组的主元素消元法中选择主元的目的是()。 A、控制舍入误差 B、减小方法误差 C、防止计算时溢出 D、简化计算 7.设和分别是满足同一插值条件的n次拉格朗日和牛顿插值多项式,它们的插值余项分别为和,则()。 A、, B、, C、, D、, 8.求积公式至少具有0次代数精度的充要条件是:() A、B、 C、D、 9.数值求积公式中Simpson公式的代数精度为()。 A、0B、1 C、2D、3 10.在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 A、B、C、D、 1.简述误差的四个来源。(10分) 2.简述分析法对的根进行隔离的一般步骤。 1.已知方程有一个正根及一个负根。 a)估计出有根区间; b)分别讨论用迭代公式求这两个根时的收敛性; c)如果上述格式不迭代,请写出一个收敛的迭代格式。(不需要证明)

数值分析计算方法试题集及答案

数值分析复习试题 第一章 绪论 一. 填空题 1.* x 为精确值 x 的近似值;() **x f y =为一元函数 ()x f y =1的近似值; ()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-: *** r x x e x -= ()()()*'1**y f x x εε≈? ()() () ()'***1**r r x f x y x f x εε≈ ? ()()()() ()* *,**,*2**f x y f x y y x y x y εεε??≈?+??? ()()()()() ** * *,***,**222r f x y e x f x y e y y x y y y ε??≈ ?+??? 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误 差 。 3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和 7 位;又取 1.73≈-21 1.73 10 2 ≤?。 4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。 5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。 6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得 到,则相对误差限为 0.0000204 . 7、 递推公式,??? ? ?0n n-1y =y =10y -1,n =1,2, 如果取0 1.41y ≈作计算,则计算到10y 时,误 差为 81 10 2 ?;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3* =π,则近似值141.3*1=π和1415.3*2=π分别有 3

计算方法试题库讲解

计算方法 一、填空题 1.假定x ≤1,用泰勒多项式?+??+++=! !212n x x x e n x ,计算e x 的值,若要求截断误差不超过0.005,则n=_5___ 2. 解 方 程 03432 3=-+x -  x x 的牛顿迭代公式 )463/()343(121121311+--+--=------k k k k k k k x x x x x x x 3.一阶常微分方程初值问题 ?????= ='y x y y x f y 0 0)() ,(,其改进的欧拉方法格式为)],(),([21 1 1 y x y x y y i i i i i i f f h +++++= 4.解三对角线方程组的计算方法称为追赶法或回代法 5. 数值求解初值问题的四阶龙格——库塔公式的局部截断误差为o(h 5 ) 6.在ALGOL 中,简单算术表达式y x 3 + 的写法为x+y ↑3 7.循环语句分为离散型循环,步长型循环,当型循环. 8.函数)(x f 在[a,b]上的一次(线性)插值函数= )(x l )()(b f a b a x a f b a b x --+-- 9.在实际进行插值时插值时,将插值范围分为若干段,然后在每个分段上使用低阶插值————如线性插值和抛物插值,这就是所谓分段插值法 10、数值计算中,误差主要来源于模型误差、观测误差、截断误差和舍入误差。 11、电子计算机的结构大体上可分为输入设备 、 存储器、运算器、控制器、 输出设备 五个主要部分。 12、算式2 cos sin 2x x x +在ALGOL 中写为))2cos()(sin(2↑+↑x x x 。 13、ALGOL 算法语言的基本符号分为 字母 、 数字 、 逻辑值、 定义符四大

《计算方法》期末考试试题

一 选 择(每题3分,合计42分) 1. x* = ,取x =,则x 具有 位有效数字。 A 、3 B 、4 C 、5 D 、6 2. 取7 3.13≈(三位有效数字),则 ≤-73.13 。 A 、30.510-? B 、20.510-? C 、10.510-? D 、 3. 下面_ _不是数值计算应注意的问题。 A 、注意简化计算步骤,减少运算次数 B 、要避免相近两数相减 C 、要防止大数吃掉小数 D 、要尽量消灭误差 4. 对任意初始向量)0(x 及常向量g ,迭代过程g x B x k k +=+)() 1(收敛的充分必要条件是_ _。 A 、11< B B 、1<∞ B C 、1)(0 C 、f (a )f (b )<0 D 、f (a )f (b )>0 14. 由4个互异的数据点所构造的插值多项式的次数至多是____。

《计算方法》模拟试题3

模拟试卷三 一、 单项选择题(每小题3分,共15分) 1. 以下误差公式不正确的是( ) A .()1212x x x x ?-≈?-? B .()1212x x x x ?+≈?+? 2. 已知等距节点的插值型求积公式 ()()3 5 2 k k k f x dx A f x =≈∑?,那么3 k k A ==∑( ) A .1 B. 2 C. 3 D. 4 3. 辛卜生公式的余项为( ) A .()()3 2880 b a f η-''- B .()()3 12 b a f η-''- C .()()()5 4 2880 b a f η-- D .()( ) ()4 52880 b a f η-- 4.对矩阵4222222312A -?? ??=-????--?? 进行的三角分解,则u 22 =( ) 5. 用一般迭代法求方程()0f x =的根,将方程表示为同解方程()x x ?=的,则()0f x = 的根是( ) A . y x =与()y x ?=的交点 B . y x =与与x 轴的交点的横坐标的交点的横坐标 C . y x =与()y x ?=的交点的横坐标 D . ()y x ?=与x 轴的交点的横坐标 二、 填空题(每小题3分,共15分) 1. 2. 3. 龙贝格积分法是将区间[],a b 并进行适当组合而得出的积分近似值的求法。

4.乘幂法可求出实方阵A 的 特征值及其相应的特征向量. 5. 欧拉法的绝对稳定实区间为 。 三、 计算题(每小题12分,共60分) 1. 已知函数2 1 1y x = +的一组数据: 求分段线性插值函数,并计算()1.5f 的近似值. 2. 求矩阵101010202A -????=????-?? 的谱半径. 3. 已知方程组 123210113110121x x x ????????????=-?????????????????? (1) 证明高斯-塞德尔法收敛; (2) 写出高斯-塞德尔法迭代公式; (3) 取初始值() ()00,0,0T X =,求出()1X 。 4. 4n =时,用复化梯形与复化辛卜生公式分别计算积分 1 20 4 x dx x +? . 5. 用改进平方根法求解方程组1233351035916591730x x x ????????????=?????????????????? 四.证明题(每小题5分,共10分) 证明向量X 的范数满足不等式 (1)2 X X ∞ ∞≤≤ (2)111 X X X n ∞ ≤≤

计算方法各章习题及答案

第二章 数值分析 2.1 已知多项式432()1p x x x x x =-+-+通过下列点: 试构造一多项式()q x 通过下列点: 答案:54313 ()()()3122 q x p x r x x x x x =-=- ++-+. 2.2 观测得到二次多项式2()p x 的值: 表中2()p x 的某一个函数值有错误,试找出并校正它. 答案:函数值表中2(1)p -错误,应有2(1)0p -=. 2.3 利用差分的性质证明22212(1)(21)/6n n n n +++=++. 2.4 当用等距节点的分段二次插值多项式在区间[1,1]-近似函数x e 时,使用多少个节点能够保证误差不超过 61 102 -?. 答案:需要143个插值节点. 2.5 设被插值函数4()[,]f x C a b ∈,() 3()h H x 是()f x 关于等距节点 01n a x x x b =<<<=的分段三次艾尔米特插值多项式,步长b a h n -= .试估计() 3||()()||h f x H x ∞-. 答案:() 4 43||()()||384 h M f x H x h ∞-≤. 第三章 函数逼近 3.1 求()sin ,[0,0.1]f x x x =∈在空间2 {1,,}span x x Φ=上最佳平方逼近多项式,并给 出平方误差. 答案:()sin f x x =的二次最佳平方逼近多项式为

-522sin ()0.832 440 710 1.000 999 10.024 985 1x p x x x ≈=-?+-, 二次最佳平方逼近的平方误差为 0.1 22-1220 (sin )())0.989 310 710x p x dx δ=-=??. 3.2 确定参数,a b c 和,使得积分 2 1 2 1 (,,)[I a b c ax bx c -=++-?取最小值. 答案:810, 0, 33a b c ππ =- == 3.3 求多项式432()251f x x x x =+++在[1,1]-上的3次最佳一致逼近多项式 ()p x . 答案:()f x 的最佳一致逼近多项式为3 2 3 ()74 p x x x =++ . 3.4 用幂级数缩合方法,求() (11)x f x e x =-≤≤上的3次近似多项式6,3()p x ,并估计6,3||()()||f x p x ∞-. 答案: 236,3()0.994 574 650.997 395 830.542 968 750.177 083 33p x x x x =+++, 6,3||()()||0.006 572 327 7f x p x ∞-≤ 3.5 求() (11)x f x e x =-≤≤上的关于权函数 ()x ρ= 的三次最佳平方逼近 多项式3()S x ,并估计误差32||()()||f x S x -和3||()()||f x S x ∞-. 答案:233()0.994 5710.997 3080.542 9910.177 347S x x x x =+++, 32||()()||0.006 894 83f x S x -=,3||()()||0.006 442 575f x S x ∞-≤. 第四章 数值积分与数值微分 4.1 用梯形公式、辛浦生公式和柯特斯公式分别计算积分1 (1,2,3,4)n x dx n =? ,并与 精确值比较. 答案:计算结果如下表所示

《数值计算方法》试题及答案

数值计算方法考试试题 一、选择题(每小题4分,共20分) 1. 误差根据来源可以分为四类,分别是( A ) A. 模型误差、观测误差、方法误差、舍入误差; B. 模型误差、测量误差、方法误差、截断误差; C. 模型误差、实验误差、方法误差、截断误差; D. 模型误差、建模误差、截断误差、舍入误差。 2. 若132)(3 56++-=x x x x f ,则其六阶差商 =]3,,3,3,3[6210 f ( C ) A. 0; B. 1; C. 2; D. 3 。 3. 数值求积公式中的Simpson 公式的代数精度为 ( D ) A. 0; B. 1; C. 2; D. 3 。 4. 若线性方程组Ax = b 的系数矩阵A 为严格对角占优矩阵,则解方程组的Jacobi 迭代法和Gauss-Seidel 迭代法 ( B ) A. 都发散; B. 都收敛 C. Jacobi 迭代法收敛,Gauss-Seidel 迭代法发散; D. Jacobi 迭代法发散,Gauss-Seidel 迭代法收敛。 5. 对于试验方程y y λ=',Euler 方法的绝对稳定区间为( C ) A. 02≤≤-h ; B. 0785.2≤≤-h ; C. 02≤≤-h λ; D. 0785.2≤≤-h λ ; 二、填空题(每空3分,共18分) 1. 已知 ? ??? ??--='-=4321,)2,1(A x ,则 =2 x 5,= 1Ax 16 ,=2A 22115+ 2. 已知 3)9(,2)4(==f f ,则 f (x )的线性插值多项式为)6(2.0)(1+=x x L ,且用线性插值可得f (7)= 2.6 。 3. 要使 20的近似值的相对误差界小于0.1%,应至少取 4 位有效数字。 三、利用下面数据表, 1. 用复化梯形公式计算积分 dx x f I )(6 .28 .1? =的近似值; 解:1.用复化梯形公式计算 取 2.048 .16.2,4=-= =h n 1分 分 分分7058337 .55))6.2()2.08.1(2)8.1((22.04)) ()(2)((231 1 1 4=+++=++=∑∑=-=f k f f b f x f a f h T k n k k 10.46675 8.03014 6.04241 4.42569 3.12014 f (x ) 2.6 2.4 2.2 2.0 1.8 x

计算方法试题集及答案(新)

1.* x 为精确值 x 的近似值;() **x f y =为一元函数 ()x f y =1的近似值; ()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-: *** r x x e x -= ()()()*'1**y f x x εε≈? ()() () ()'***1**r r x f x y x f x εε≈ ? ()()()() ()* *,**,*2**f x y f x y y x y x y εεε??≈?+??? ()()()()() ** * *,***,**222r f x y e x f x y e y y x y y y ε??≈ ?+??? 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差 。 3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和 7 1.73≈(三位有效数字)-21 1.73 10 2 ≤?。 4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。 5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。 6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得到,则相对误差限为 0.0000204 . 7、 递推公式,??? ? ?0n n-1y =y =10y -1,n =1,2,L 如果取 0 1.41y =≈作计算,则计算到10y 时,误差为 81 10 2 ?;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值Λ14159265.3* =π,则近似值141.3*1=π和1415.3*2=π分别有 3 位和 4 位有效数字。 9、 若* 2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10-5 。 10、 设x*的相对误差为2%,求(x*)n 的相对误差0.02n 11、近似值* 0.231x =关于真值229.0=x 有( 2 )位有效数字; 12、计算方法主要研究( 截断 )误差和( 舍入 )误差; 13、为了使计算 ()()23 346 10111y x x x =+ +- --- 的乘除法次数尽量地少,应将该表达式改