搜档网
当前位置:搜档网 › 直流电桥的原理和应用

直流电桥的原理和应用

直流电桥的原理和应用
直流电桥的原理和应用

实验四直流电桥的原理和应用

【背景知识】

直流电桥是一种精密的电阻测量仪器,具有重要的应用价值。按电桥的测量方式可分为平衡电桥和非平衡电桥。平衡电桥是把待测电阻与标准电阻进行比较,通过调节电桥平衡,从而测得待测电阻值,如单臂直流电桥(惠斯登电桥)、双臂直流电桥(开尔文电桥);非平衡电桥则是通过测量电桥输出(电压、电流、功率等)并进行运算处理,得到待测电阻值。直流电桥还可用于测量引起电阻变化的其它物理量,如温度、压力、形变等,在检测技术、传感器技术中的应用非常广泛。平衡电桥只能用于测量具有相对稳定状态的物理量,而在实际工程和科学实验中,很多物理量是连续变化的,只能采用非平衡电桥才能测量。

【实验目的】

本实验采用FQJ 型教学用非平衡直流电桥,该仪器集单臂、非平衡电桥于一体,通过本实验能掌握以下内容:

(1)直流单臂电桥(惠斯通电桥)测量电阻的基本原理和操作方法;

(2)非平衡直流电桥电压输出方法测量电阻的基本原理和操作方法;

(3)根据不同待测电阻选择不同桥式和桥臂电阻的初步方法。

【实验原理】

1.平衡电桥

单臂直流电桥是平衡电桥,又称惠斯通电桥,其电路见图4.4.1。其中1R 、2R 、3R 、4R 构成一电桥,A 、

C 两端加一恒定桥压S U ,B 、

D 之间有一检流计PA ,

当电桥平衡时,B 、D 两点为等电位,PA 中无电流流

过,此时有AB AD U U ,41I I ,32I I ,于是有3421R R R R (4.4.1)

图4.4.1惠斯通电桥

如果R 4为待测电阻R X ,R 3为标准比较电阻,则有

1332X R R R K R R & &(4.4.2)

其中21/R R K ,称其为比率(一般惠斯登电桥的K 有001.0、01.0、1.0、1、10、100、1000等。本电桥的比率K 可以任选)。根据待测电阻大小,选择K 后,只要调节3R ,使电桥平衡,检流计为0,就可以根据(4.4.2)式得到待测电阻X R 之值。

2.非平衡电桥

非平衡电桥原理如图4.4.2所示:B 、D 之间为一

负载电阻g R ,只要测量电桥输出g U 、g I ,

就可得到x R 值。根据电桥各臂电阻关系可将非平衡电桥分为三类:

(1)等臂电桥:4321R R R R ;

(2)输出对称电桥(卧式电桥):R R R 41,

R R R 32,且R R ;(3)电源对称电桥(立式电桥):R R R 21,R R R 43,且R R 。

当负载电阻! g R ,即电桥输出处于开路状态时,0 g I ,仅有电压输出,在此用0U 表示,根据分压原理,ABC 半桥的电压降为S U ,通过1R 、4R 两臂及2R 、3R 两臂的电流为:

14231423,S S U U I I I I R R R R ##,(4.4.3)

则输出电压0U 为

?%?%324134014231423()BC DC S S S R R R R R R U U U U U U R R R R R R R R &?& ?

&?& &###&#(4.4.4)

当满足条件1324R R R R & &(4.4.5)

时,电桥输出00 U ,即电桥处于平衡状态。(4.4.5)式称为电桥的平衡条件。为了测量的准确性,在测量的起始点,电桥必须调至平衡,称为预调平衡。这样可使输出只与某一臂

电阻变化有关。

图4.4.2非平衡电桥

若1R 、2R 、3R 固定,4R 为待测电阻,并且其阻值随某非电量x (如温度、压力等)变化而变化,即4()R R x 。若预调平衡后x 发生变化,导致4R 随之变为4()R R x #(,此时因电桥不平衡而产生的电压输出为:

?%2421301423()()()S R R R R x R R U U R R R x R R &&&#(? &##(&#(4.4.6)

考虑到测量开始时已预调平衡,应该有2413R R R R && 上式化为:

?%201423()()()S R R x U U R R R x R R &( &##(&#(4.4.7)

为简便起见,可根据电阻变化率()R x (大小不同,导出不同情况下的电桥电压输出表达式。先分别讨论如下:

(1)若电阻变化较小时,即满足14()R R R ())#时,公式(4.4.7)分母中的R (项可略去,此时各种电桥的输出电压公式为:等臂电桥

0()4S U R x U R ( &(4.4.8)卧式电桥0()4S U R x U R ( &(4.4.9)立式电桥02()()s R R R x U U R R R &( && #(4.4.10)

注意:上式中的R 和其R 均为预调平衡后的电阻。当()R x (较小时,测量得到电压输出与()/R x R (成线性比例关系。测得输出电压后,可通过上述公式运算得()/R x R (或()R x (,从而求得()()R x R R x #(。

同时由(4.4.8)~(4.4.10)式可知,在R 、()R x (相同的情况下,等臂电桥、卧式电桥输出电压比立式电桥高,因此灵敏度也高,但立式电桥测量范围大,可以通过选择R 、R 来扩大测量范围,R 、R 差距愈大,测量范围也愈大。

(2)若电阻变化很大,即12()R R R ())#条件不成立时,上面的近似公式不再适用。此时利用精确公式(4.4.7)可得各种桥式电桥的输出电压公式:等臂电桥0()1()1()

412s U R x U x R x R R ( &&(#(4.4.11)

卧式电桥

0()1()1()412s U R x U x R x R R ( &&(#(4.4.12)立式电桥02()1()()

()1s RR R x U x U R x R R R R R ( &&&( ## #(4.4.13)

【实验仪器】

1.FQJ 型教学用非平衡电桥

FQJ 型非平衡电桥是专门为教学实验而设计的,该仪器集单臂、非平衡电桥于一体,其面板如图4.4.3。

整个仪器的核心部分为面板中部的桥式电路,

其中1R 、2R 和

3R 可选用本仪器配备的可调电阻箱(a R 、b R 、c R ),1R 也可以选

用内部装有的标准电阻,有1000?、100?、10?三个阻值可供

选择,而X R 处接待测电阻,它的两个接线柱与仪器右上角的X R 接线柱连通,因此也可以将待测电阻接在右上角的接线柱上(如图4.4.4)。

a R 、

b R 、

c R 为可调电阻箱,可根据不同的桥式选择使用。其中a R 、b R 为两组同轴电阻箱,共用五个十进位旋钮调节,保证a b R R ,调节范围0~11.1110k ?;c R 包含六个十进位旋钮,调节范围0~11.11110k ?。

图4.4.3FQJ 型非平衡电桥面板

图4.4.4待测电阻接法

电桥工作状态可由“功率、电压选择”旋钮调节。该旋钮中“平衡”区有三档电压供单臂电桥测量时选用。“非平衡”区也有三档,其中“电压”档表示电桥“桥”上的“g R ”可

认为是无穷大,不消耗功率;“功率1”测量小电阻时用,采样电阻“s R ”为10?,g

R 内部线已联通,阻值可调;“功率2”测量大电阻时用,采样电阻“s R ”为1000?,g

R 内部线已联通,阻值可调。“电压”、“功率1”、“功率2”三档的工作电压均为1.3V 。

该仪器还设有G、B 两个按钮,G 按钮是数字电表控制开关,B 按钮是电桥电源开关。

2.FQJ 非平衡电桥加热实验装置

该装置由加热炉及温度控制仪两大部分组成。其结构及连接见下图。

加热:“加热选择”开关分为“1、2、3”三档,由“断”位置转到任意一档,即开始加热,升温的高低及速度以“1”档为最低,“3”档为最高、最快。加热升温时,应根据实际升温需求,选择加热档位。

降温:实验过程中或实验完毕,可能需要对加热铜块或加热炉体降温,此时可以开启控温仪面板上的“风扇开关”使炉体底部的风扇转动,达到使炉体加快降温的目的。

3.待测电阻

(1)Cu50型铜电阻

这是一种线性电阻,具有正的温度系数0(1)t R R t #,0R 为0C t +时的阻值,

图4.4.5加热炉、温度控制仪实物照片及连接方法

温度系数,其理论值0.004280C +。

(2)热敏电阻

本实验采用517.2MF K ?型半导体热敏电阻。该电阻是由一些过渡金属氧化物(主要用Fe Ni Co Mn ,,,等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成,具有P 型半导体的特性,对于一般半导体材料,电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对来说可以忽略。但上述过渡金属氧化物则有所不同,在室温范围内基本上已全部电离,即载流子浓度基本上与温度无关,此时主要考虑迁移率与温度的关系。随着温度升高,迁移率增加,电阻率下降,故这类金属氧化物半导体是一种具有负温度系数的热敏电阻元件,其电阻-温度特性见表4.4.1。根据理论分析,其电阻-温度特性的数学表达式通常可表示为

25exp[(11298)]t n R R B T ?(4.4.14)

式中,25 ,t R R 分别为25C +和C t +时热敏电阻的电阻值;t T # 273;n B 为材料常数,制作时不同的处理方法其值不同。对于确定的热敏电阻,可以由实验测得的电阻-温度曲线求得。我们也可以把上式写成比较简单的表达式

00n B E k T T t R R e

R e & & &(4.4.15)式中298250n

B e R R ?& ,k 为玻尔兹曼常数(开尔文焦耳/103806.123?, k )。热敏电阻之阻

值t R 与t 为指数关系,是一种典型的非线性电阻。

表4.4.1517.2MF K ?型热敏电阻的电阻-温度特性(供参考)温度)

(0C 253035404550556065电阻(?)2700

222518701573134111601000868748【实验内容】

1.用惠斯登电桥测量铜电阻

(1)连接线路(如图4.4.6);

(2)选择适当的1R ,同时调节b R (2R )使120.1R R ,将转换开关置于“平衡”,电压选

择5V;

(3)按下G、B 开关,调节3R (c R ),使电桥平衡(电流表为零),记录室温和室温下电阻值,

然后开始升温,每隔3C +测一个点,记录电阻值和相应温度,共测10个点,自行设计数据表格。

图4.4.6惠斯通电桥电路连接图

2.用卧式电桥测量铜电阻

图4.4.7卧式电桥电路连接图

(1)按图4.4.7连接线路;

(2)调节桥臂电阻值使2350R R R ?(供参考,可自行设计);

(3)预调平衡,将待测电阻接至X R ,功能转换开关转至电压输出,G、B 开关按下,调节

1R ()c R 使电压00U ,记下此时的温度和1R 值;

(4)开始升温,每隔3C +测一个点,记录电压值和相应的温度,共测十个点。

3.用立式电桥测量热敏电阻

考虑到热敏电阻的阻值随温度变化较大,这部分测量采用立式电桥。

(1)如图4.4.8连接线路;

图4.4.8立式电桥电路连接图

(2)调节桥臂电阻使12100R R R ?;

(3)预调平衡,步骤与上面类似;

(4)开始升温,每隔3C +测一个点,共测10个点。

【数据处理】

(1)根据平衡电桥测量的数据作Cu50型铜电阻的()~R t t 曲线,由此求出电阻温度系数 ,

与理论值比较,求出百分误差,并写出表达式。

(2)根据由非平衡电桥测量的数据作Cu50型铜电阻的()~R t t 曲线,用最小二乘法求0C

+时的电阻值0R 和温度系数 。

(3)根据由非平衡电桥测量的数据作MF51型热敏电阻的()~R T T 与ln ()~1/R T T 曲线,

并用最小二乘法拟合曲线,求出0R 及材料常数n B ,得出经验方程。

【注意事项】

(1)实验开始前。所有导线,特别是加热炉与控温仪之间的信号输入线应连接可靠;

(2)测量前不得随意打开控温器开关,以免提前使加热炉升温,影响测量;

(3)传热铜块与传感器组组件,出厂时已由厂家调节好,不得随意拆卸。

(4)由于热敏电阻、铜电阻耐高温的局限,在设定加温的上限值时不允许超过120℃。

(5)装置在加热时,应注意关闭风扇电源。

(6)实验完毕后,应切断仪器工作电源。

【思考题】

(1)提出设计方案,将本实验提供的实验器材改造成温度计。

(2)非平衡电桥之立式桥为什么比卧式桥测量范围大?

(3)当采用立式桥测量某电阻变化时,如产生电压表溢出现象,应采取什么措施?

非平衡直流电桥的原理和应用

非平衡直流电桥的原理和应用

非平衡直流电桥的原理和应用 直流电桥是一种精密的电阻测量仪器,具有重要的应用价值。按电桥的测量方式可分为平衡电桥和非平衡电桥。平衡电桥是把待测电阻与标 准电阻进行比较,通过调节电桥平衡,从而测得待测电阻值,如单臂直流电桥(惠斯登电桥)、双臂直流电桥(开尔文电桥)。它们只能用于测量具有相对稳定状态的物理量,而在实际工程中和科学实验中,很多物理量是连续变化的,只能采用非平衡电桥才能测量;非平衡电桥的基本原理是通过桥式电路来测量电阻,根据电桥输出的不平衡电压,再进行运算处理,从而得到引起电阻变化的其它物理量,如温度、压力、形变等。【实验目的】 本实验采用FQJ型教学用非平衡直流电桥,该仪器集单臂、非平衡电桥于一体,通过本实验能掌握以下内容: 1.直流单臂电桥(惠斯登电桥)测量电阻的基本原理和操作方法; 2.非平衡直流电桥电压输出方法测量电阻的基本原理和操作方法; 3.根据不同待测电阻选择不同桥式和桥臂电阻的初步方法及非平衡电桥功率输出法测电阻; 4.单臂电桥采用“三端”法测量电阻的意义。 【实验仪器】 1. FQJ型教学用非平衡直流电桥; 2. FQJ非平衡电桥加热实验装置。 【实验原理】

FQJ 型教学用非平衡直流电桥包括单臂直流电桥,非平衡直流电桥,上节我们已经对单臂电 桥有所了解,下面对非平衡电桥的工作原理进行介绍。 图1 非平衡电桥原理图 1.非平衡电桥桥路输出电压 非平衡电桥原理如图1所示,当负载电阻g R →∞ ,即电桥输出处于开路状态时,g 0I = ,仅有电压输出,并用0U 表示,根据分压原理,ABC 半桥的电压降为S U ,通过14, R R 两臂的电流为: S 1414 U I I R R ==+ (1) 则4 R 上之电压降为: 4BC S 14R U U R R =?+ (2) 同理 3R 上的电压降为: 3DC S 23R U U R R =?+ (3) 输出电压0U 为BC U 与DC U 之差

交流电桥的原理和应用

交流电桥的原理和应用 交流电桥是一种比较式仪器,在电测技术中占有重要地位。它主要用于测量交流等效电阻及其时间常数;电容及其介质损耗;自感及其线圈品质因数和互感等电参数的精密测量,也可用于非电量变换为相应电量参数的精密测量。 常用的交流电桥分为阻抗比电桥和变压器电桥两大类。习惯上一般称阻抗比电桥为交流电桥。本实验中交流电桥指的是阻抗比电桥。交流电桥的线路虽然和直流单电桥线路具有同样的结构形式,但因为它的四个臂是阻抗,所以它的平衡条件、线路的组成以及实现平衡的调整过程都比直流电桥复杂。 【交流电桥的原理】 图1是交流电桥的原理线路。它与直流单电桥原理相似。在交流电桥中,四个桥臂一般是由交流电路元件如电阻、电感、电容组成;电桥的电源通常是正弦交流电源;交流平衡指示仪的种类很多,适用于不同频率范围。频率为200Hz 以下时可采用谐振式检流计;音频范围内可采用耳机作为平衡指示器;音频或更高的频率时也可采用电子指零仪器;也有用电子示波器或交流毫伏表作为平衡指示器的。本实验采用高灵敏度的电子放大式指零仪,有足够的灵敏度。指示器指零时,电桥达到平衡。 图1 交流电桥原理 一、交流电桥的平衡条件 我们在正弦稳态的条件下讨论交流电桥的基本原理。在交流电桥中,四个桥臂由阻抗元件组成,在电桥的一个对角线cd 上接入交流指零仪,另一对角线ab 上接入交流电源。 当调节电桥参数,使交流指零仪中无电流通过时(即I 0=0),cd 两点的电位相等,电桥达到平衡,这时有 U ac =U ad U cb =U db 即 I 1Z 1=I 4Z 4 I 2Z 2=I 3Z 3 两式相除有 3 34 4221Z I Z I Z I Z I 1 当电桥平衡时,I 0=0,由此可得 I 1=I 2,I 3=I 4 所以 Z 1Z 3=Z 2Z 4 (1) 上式就是交流电桥的平衡条件,它说明:当交流电桥达到平衡时,相对桥臂的阻抗的乘

整流二极管的作用及其整流电路

整流二极管的作用及其整流电路 整流二极管的作用及其整流电路 一种将交流电能转变为直流电能的半导体器件。通常它包含一个PN结,有阳极和阴极两个端子。 P区的载流子是空穴,N区的载流子是电子,在P区和N区间形成一定的位垒。外加使P区相对N区为正的电压时,位垒降低,位垒两侧附近产生储存载流子,能通过大电流,具有低的电压降(典型值为0.7V),称为正向导通状态。 若加相反的电压,使位垒增加,可承受高的反向电压,流过很小的反向电流(称反向漏电流),称为反向阻断状态。整流二极管具有明显的单向导电性,。 整流二极管可用半导体锗或硅等材料制造。硅整流二极管的击穿电压高,反向漏电流小,高温性能良好。通常高压大功率整流二极管都用高纯单晶硅制造。这种器件的结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。整流二极管主要用于各种低频整流电路。 二极管整流电路 一、半波整流电路 图5-1、是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。 下面从图5-2的波形图上看着二极管是怎样整流的。

变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在0~K时间内,e2为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2通过它加在负载电阻Rfz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,Rfz,上无电压。在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、留下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压 Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路(单向桥式整流电路) 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。

惠斯通电桥原理

惠斯通电桥 在实验中,测量电阻的常见方法有伏安法和电桥法。伏安法测量电阻的公式为R=U/I (测量的电阻两端电压/测量的流经电阻的电流),除了电流表和电压表本身的精度外, 还有电表本身的电阻,不论电表是内接或外接都无法同时测出流经电阻的电流 I 和电阻 两端的电压U ,不可避免存在测量线路缺陷。电桥是用比较法测量电阻的仪器。电桥的 特点是灵敏、准确、使用方便,它被广泛地应用于现代工业自动控制电气技术、非电量 转化为电学量测量中。电桥可分为直流电桥、交流电桥,直流电桥可以用于测电阻,交 流电桥可用于测电容、电感。通过传感器可以将压力、温度等非电学量转化为传感器阻 抗的变化进行测量。 惠斯通电桥属于直流电桥,主要用于测量中等数值的电阻(101 ~106 Q )O 对于太小 的电阻 (10"6 ~101 Q 量级),要考虑接触电阻、导线电阻,可考虑使用双臂电桥;对于大 电阻(107Q 级),要考虑使用冲击检流计等方法。惠斯通电桥使用检流计作为指零仪表, 而实验室用检流计属于 1惠斯通电桥测量原理 图1是惠斯通电桥的原理图。四个电阻 R o 、R i 、R 2、 R x 连成四边形,称为电桥的四个臂。四边形的一个对角线 连有检流计,称为“桥”;四边形的另一对角线接上电源, 称为电桥的“电源对角线” 。E 为线路中供电电源,学生 实验用双路直流稳压电源,电压可在 0-30V 之间调节。R 保护为较大的可变电阻,在电桥不平衡时取最大电阻作限流 作用以保护检流计;当电桥接近平衡时取最小值以提高检 流计的灵敏度。限流电阻用于限制电流的大小,主要目的 在于保护检流计和改变电桥灵敏度。 电源接通时,电桥线路中各支路均有电流通过。当C 、D 两点之间的电位不相等时, 桥路中的电流I g -0,检流计的指针发生偏转;当 C 、D 两点之间的电位相等时,桥路 中的电流I g =0,检流计指针指零(检流计的零点在刻度盘的中间),这时我们称电桥 处于平衡状态。因此电桥处于平衡状态时有: I g =0 U AC =U AD 于是空二邑即R x R 2二R 0R 1 R 0 R 2 此式说明,电桥平衡时,电桥相对臂电阻的乘积相等。这就是电桥的平衡条件。 根据电桥的平衡条件,若已知其中三个臂的电阻,就可以计算出另一个桥臂电阻, 因此,电桥测电阻的计算式为 R x 二邑凤二 KR 。 (1) R 2 电阻R 1、R 2为电桥的比率臂,R x 为待测臂,R 为比较臂,R 。作为比较的标准,实 A 表,电桥的灵敏度要受检流计的限制。 [1 U CB = U DB 1 Rx = 1 R0 I R1 = I R2 1 Rx R x = 1 R1 R 1 1 R0R 0 = 1 R2 R 2

直流电桥实验报告要点

清 华 大 学 实 验 报 告 系别:机械工程系 班号:72班 姓名:车德梦 (同组姓名: ) 作实验日期 2008年 11月 5日 教师评定: 实验3.3 直流电桥测电阻 一、实验目的 (1)了解单电桥测电阻的原理,初步掌握直流单电桥的使用方法; (2)单电桥测量铜丝的电阻温度系数,学习用作图法和直线拟合法处理数据; (3)了解双电桥测量低电阻的原理,初步掌握双电桥的使用方法。 (4)数字温度计的组装方法及其原理。 二、实验原理 1. 惠斯通电桥测电阻 惠斯通电桥(单电桥)是最常用的直流电桥,如图是它的电路原理图。 图中1R 、2R 和R 是已知阻值的标准电阻,它们和被测电阻x R 连成一个四边形,每一条边称作电桥的一个臂。对角A 和C 之间接电源E ;对角B 和D 之间接有检流计G ,它像桥一样。若调节R 使检流计中电流为零,桥两端的B 点和D 点点位相等,电桥达到平衡,这时可得 x R I R I 21=, 1122I R I R = 两式相除可得 R R R R x 1 2 = 只要检流计足够灵敏,等式就能相当好地成立,被测电阻值x R 可以仅从三个标准电阻

的值来求得,而与电源电压无关。这一过程相当于把x R 和标准电阻相比较,因而测量的准确度较高。 单电桥的实际线路如图所示: 将2R 和1R 做成比值为C 的比率臂,则被测电阻为 CR R x = 其中12R R C =,共分7个档,0.001~1000,R 为测量臂,由4个十进位的电阻盘组 成。图中电阻单位为Ω。 2. 铜丝电阻温度系数 任何物体的电阻都与温度有关,多数金属的电阻随文的升高而增大,有如下关系式: )1(0t R R R t α+= 式中t R 、0R 分别是t 、0℃时金属丝的电阻值;R α是电阻温度系数,单位是(℃-1 )。严格 地说,R α一般与温度有关,但对本实验所用的纯铜丝材料来说,在-50℃~100℃的范围内R α的变化很小,可当作常数,即t R 与t 呈线性关系。于是 t R R R t R 00 -= α 利用金属电阻随温度变化的性质,可制成电阻温度计来测温。例如铂电阻温度及不仅准确度高、稳定性好,而且从-263℃~1100℃都能使用。铜电阻温度计在-50℃~100℃范围内因其线性好,应用也较广泛。 3. 双电桥测低电阻 用下图所示的单电桥测电阻时,被测臂上引线1l 、2l 和接触点1X 、2X 等处都有一定

整流桥电路大全

整流电路大全 9.3.7 正、负极性全波整流电路及故障处理 如图9-24所示是能够输出正、负极性单向脉动直流电压的全波整流电路。电路中的T1是电源变压器,它的次级线圈有一个中心抽头,抽头接地。电路由两组全波整流电路构成,VD2和VD4构成一组正极性全波整流电路,VD1和VD3构成另一组负极性全波整流电路,两组全波整流电路共用次级线圈。 图9-24 输出正、负极性直流电压的全波整流电路 1.电路分析方法 关于正、负极性全波整流电路分析方法说明下列2点: (1)在确定了电路结构之后,电路分析方法和普通的全波整流电路一样,只是需要分别分析两组不同极性全波整流电路,如果已经掌握了全波整流电路的工作原理,则只需要确定两组全波整流电路的组成,而不必具体分析电路。 (2)确定整流电路输出电压极性的方法是:两二极管负极相连的是正极性输出端(VD2和VD4连接端),两二极管正极相连的是负极性输出端(VD1和VD3连接端)。 2.电路工作原理分析 如表9-28所示是这一正、负极性全波整流电路的工作原理解说。 关键词说明

3.故障检测方法 关于这一电路的故障检测方法说明下列几点: (1)如果正极性和负极性直流输出电压都不正常时,可以不必检查整流二极管,而是检测电源变压器,因为几只整流二极管同时出现相同故障的可能性较小。 (2)对于某一组整流电路出现故障时,可按前面介绍的故障检测方法进行检查。这一电路中整流二极管中的二极管VD1和VD3、VD2和VD4是直流电路并联的,进行在路检测时会相互影响,所以准确的检测应该将二极管脱开电路。 4.电路故障分析 如表9-29所示是正、负极性全波整流电路的故障分析。 分页:123456

DH4518交流电桥的原理和应用

交流电桥的原理和设计 交流电桥是一种比较式仪器,在电测技术中占有重要地位。它主要用于测量交流等效电阻及其时间常数;电容及其介质损耗;自感及其线圈品质因数和互感等电参数的精密测量,也可用于非电量变换为相应电量参数的精密测量。 常用的交流电桥分为阻抗比电桥和变压器电桥两大类。习惯上一般称阻抗比电桥为交流电桥。本实验中交流电桥指的是阻抗比电桥。交流电桥的线路虽然和直流单电桥线路具有同样的结构形式,但因为它的四个臂是阻抗,所以它的平衡条件、线路的组成以及实现平衡的调整过程都比直流电桥复杂。 【实验目的】 1、掌握交流电桥的平衡条件和测量原理 2、设计各种实际测量用的交流电桥 3、验证交流电桥的平衡条件 【交流电桥的原理】 图1是交流电桥的原理线路。它与直流单电桥原理相似。在交流电桥中,四个桥臂一般是由交流电路元件如电阻、电感、电容组成;电桥的电源通常是正弦交流电源;交流平衡指示仪的种类很多,适用于不同频率范围。频率为200Hz 以下时可采用谐振式检流计;音频范围内可采用耳机作为平衡指示器;音频或更高的频率时也可采用电子指零仪器;也有用电子示波器或交流毫伏表作为平衡指示器的。本实验采用高灵敏度的电子放大式指零仪,有足够的灵敏度。指示器指零时,电桥达到平衡。 图 1 交流电桥原理 一、交流电桥的平衡条件 我们在正弦稳态的条件下讨论交流电桥的基本原理。在交流电桥中,四个桥臂由阻抗元件组成,在电桥的一个对角线cd上接入交流指零仪,另一对角线ab 上接入交流电源。

当调节电桥参数,使交流指零仪中无电流通过时(即I 0=0),cd 两点的电位相等,电桥达到平衡,这时有 U ac =U ad U cb =U db 即 I 1Z 1=I 4Z 4 I 2Z 2=I 3Z 3 两式相除有 3 34 4221Z I Z I Z I Z I 1 当电桥平衡时,I 0=0,由此可得 I 1=I 2,I 3=I 4 所以Z 1Z 3=Z 2Z 4 (1) 上式就是交流电桥的平衡条件,它说明:当交流电桥达到平衡时,相对桥臂的阻抗的乘积相等。 由图1可知,若第一桥臂由被测阻抗Z x 构成,则 Z x = 3 2 Z Z Z 4 当其他桥臂的参数已知时,就可决定被测阻抗Z x 的值。 二、交流电桥平衡的分析 下面我们对电桥的平衡条件作进一步的分析。 在正弦交流情况下,桥臂阻抗可以写成复数的形式 Z=R+jX=Ze j φ 若将电桥的平衡条件用复数的指数形式表示,则可得 Z 1e j φ12Z 3e j φ3=Z 2e j φ22Z 4e j φ4 即 Z 12Z 3 e j(φ1+φ3)=Z 22Z 3 e j(φ2+φ4) 根据复数相等的条件,等式两端的幅模和幅角必须分别相等,故有 Z 1Z 3=Z 2Z 4 φ1+φ3=φ2+φ4 上面就是平衡条件的另一种表现形式,可见交流电桥的平衡必须满足两个条件:一是相对桥臂上阻抗幅模的乘积相等;二是相对桥臂上阻抗幅角之和相等。 由式(2)可以得出如下两点重要结论。 1、交流电桥必须按照一定的方式配置桥臂阻抗 如果用任意不同性质的四个阻抗组成一个电桥,不一定能够调节到平衡,因此必须把电桥各元件的性质按电桥的两个平衡条件作适当配合。 在很多交流电桥中,为了使电桥结构简单和调节方便,通常将交流电桥中的两个桥臂设计为纯电阻。 ) 2(

整流电路计算

桥式整流属于全波整流,它不是利用副边带有中心抽头的变压器,用四个二极管接成电桥形式,使在电压V2的正负半周均有电流流过负载,在负载形成单方向的全波脉动电压。 桥式整流电路计算主要参数: 单相全波整流电路图 利用副边有中心抽头的变压器和两个二极管构成如下图所示的全波整流电路。从 图中可见,正负半周都有电流流过负载,提高了整流效率。 全波整流的特点: 输出电压V O高;脉动小;正负半周都有电流供给负载,因而变压器得到充 分利用,效率较高。 主要参数:

桥式整流电路电感滤波原理 电感滤波电路利用 电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。从能量的观点看,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,电感L有平波作用 桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。 桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰, 只适应于低电压、大电流的场合。

例10.1.1桥式整流器滤波电路如图所示,已知V1是220V交流电源,频率为50Hz, 直流电压V L=30V,负载电流I L=50mA。试求电源变压器副边电压v2的有效值,选择整流二极管及滤波电容。

桥式整流电路电容滤波电路 图10.5分别是单相桥式整流电路图和整流滤波电路的部分波形。这里假设‘ 、 t<0时,电容器C已经充电到交流电压V2的最大值(如波形图所示)。 结论1:电容的储能作用,使得输出波形比较平滑,脉动成分降低输出电压的平均值增大。

直流单臂电桥的工作原理

直流单臂电桥的工作原理 直流单臂电桥又称惠斯登电桥,其原理电路如上图所示,图中ac、cb、bd、da四条支路为电桥的四个臂,其中R1(RX)为被测臂,R2、R3构成比列臂,R4称为较臂。在电桥的对角线cd 上连接指零仪表(一般是检流计)另一对角线ab上连接直流电源E。 在电桥投入工作时,先接通电源按钮SB,调节电桥的一个臂或几个臂的标准电阻,使检流计指针指示为零,这时,就表示电桥达到平衡。在电桥平衡时,cd两点的电位相等。 则:Uac=Uad, Ucb=Udb 即:I1R1=I4R4, I2R2=I3R3 将这两式相除,得:I1R1/I2R2=I4R4/I3R3 当电桥平衡时,Ig=0 ∴I1=I2,I3=I4 代入上式得: R1R3=R2R4 上式是电桥的平衡条件。它说明:在电桥平衡时,两相对桥臂上电阻乘积等于另外两相对桥臂上电阻的乘积。根据这个关系,在已知三个臂电阻的情况下,就可确定另外一个臂的被测电阻的电阻值。 设被测电阻RX是位于第一个桥臂中,则RX=R2R4/R3。 图1 单臂电桥原理图R1为被测电阻R2、R3、R4为可调电阻P为检流计E为电池。 单臂电桥的使用方法 1、先将检流计的锁扣打开(内外),调节调零器把指针调到零位。 2、把被测电阻接在?的位置上。 要求用较粗较短的连接导线,并将漆膜刮净。接头拧紧,避免采用线夹。因为接头接触不良将使电桥的平衡不稳定,严重时可能损坏检流计。 3、估计被测电阻的大小,选择适当的桥臂比率,使比较臂的四档都能被充分利用。这样容易把电桥调到平衡,并能保证测量结果的4位有效数字。 4、先按电源按钮B,(锁定)再按下检流计的按钮G(点接)。 5、调整比较臂电阻使检流计指向零位,电桥平衡。若指针指?,则需增加比较臂电阻,针指向?,则需减小比较臂电阻。 6、读取数据:比较臂比率臂=被测电阻 7、测量完毕,先断开检流计按钮,在断开电源按钮,然后拆除被测电阻,再将检流计锁扣锁上,以防搬动过程中损坏检流计。 )从而可以测量R3/R4×(R1=R2数值,当电桥平衡时有:R4、R3、R2通过电桥调节.

交流电桥测电容

交流电桥测电容 一、实验目的 1.了解交流电桥的平衡原理及配置方法. 2.自组交流电桥测量电容及损耗. 3.学习使用数字电桥测量电阻、电容. 二、仪器与用具 低频信号发生器,交流毫伏表,交流电阻箱,可调标准电容箱(例如RX7-0型),待测电容,电阻,数字电桥,开关等. 实验原理 1.交流电桥平衡条件 交流电桥是对比直流电桥的结构而发展出来的,它在测量电路组成上与惠斯通电桥相似,如图28-1所示,电桥的四个臂1~Z ,2~Z ,3~Z ,4~ Z 通常是复阻抗(可以是电阻、电容、电 感或它们的组合),ab 间接交流电源E ,cd 间接交流平衡指示器D (毫伏表或示波器等). 电桥平衡时,c 、d 两点等电位,由此得到交流电桥的平衡条件: 1~Z 3~Z =2~Z 4~Z (28.1) 利用交流电桥测量未知阻抗 X Z ~ (X Z ~=1~Z )的 过程就是调节其余各臂阻抗参数使(28.1)式满足 的过程.一般来说,X Z ~包含二个未知分量,实际 上按复阻抗形式给出的平衡条件相当于两个实数 平衡条件,电桥平衡时它们应同时得到满足,这 意味着要测量X Z ~,电桥各臂阻抗参数至少要有两 个可调,而且各臂必须按电桥的两个平衡条件作 适当配置. 图28—1 2.桥臂配置和可调参数选取的基本原则 在多数交流电桥中,为了使线路结构简单和实现“分别读数”(即电桥的两个可调参数分别只与被测阻抗的一个分量有单值的函数关系),常把电桥的两个臂设计成纯电阻(统称为辅助臂),这样,除被测x Z ~ 外只剩一个臂具有复阻抗性质,此臂由标准电抗元件(标准电感或标准电容 )与一个可调电阻适当组合而成(称为比较臂),在这样的条件下,由交流电桥的平衡条件得到桥臂配置和可调参数选取的基本原则. (1)当比较臂与被测臂阻抗性质相同(指同为电感性或电容性),二者应放在相邻的桥臂位置上;反之,应放在相对的桥臂位置上. (2)若取比较臂的两个阻抗分量作可调参数,则当比较臂阻抗分量的联接方式(指串联或并联)与被测臂等效电路的联接方式一致时,二者应放在相邻的桥臂位置;反之,就放在相对的桥臂位置. (3)当缺乏可调标准电抗元件或需要采用高精度固定电抗元件作为标准量具时,则选取辅助臂和比较臂所含电阻中的两个作为可调参数使电桥趋于平衡.(此时一般不能分别读

十种精密全波整流电路图

十种精密全波整流电路图 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益。 图2优点是匹配电阻少,只要求R1=R2

图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计。

图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。

图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性。 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波。 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了。 图3的优势在于高输入阻抗。 其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高。

交流电桥实验报告

[标签:标题] 篇一:交流电桥测电容和电感 实验二十八交流电桥测电容和电感 交流电桥与直流电桥相似,也由四个桥臂组成。但交流电桥组成桥臂的元件不仅是电阻,还包括电容或电感以及互感等。由于交流电桥的桥臂特性变化繁多,因此它测量范围更广泛。交流电桥除用于精确测量交流电阻、电感、电容外,还经常用于测量材料的介电常数、电容器的介质损耗、两线圈间的互感系数和耦合系数、磁性材料的磁导率以及液体的电导率等。当电桥的平衡条件与频率有关时,可用于测量交流电频率等。交流电桥电路在自动测量和自动控制电路中也有着广泛的应用。 一、实验目的 1.了解交流电桥的平衡原理及配置方法. 2.自组交流电桥测量电感、电容及损耗. 3.学习使用数字电桥测量电阻、电感和电容. 二、仪器与用具 低频信号发生器,交流毫伏表,交流电阻箱,可调标准电容箱(例如RX7-0型),待测电容,电感线圈,电阻,数字电桥,开关等. 实验原理 1.交流电桥平衡条件 交流电桥是对比直流电桥的结构而发展出来的,它在测量电路组成上与惠斯通电桥相似,如图28-1所示,电桥的四个臂Z1,Z2,Z3,Z4通常是复阻抗(可以是电阻、电容、电 感或它们的组合),ab间接交流电源E,cd间接交流平衡指示器D(毫伏表或示波器等). 电桥平衡时,c、d两点等电位,由此得到交流电桥的平衡条件: ~~~~Z1Z3=Z2Z4 (28.1) ~~~~ 利用交流电桥测量未知阻抗ZX (ZX=Z1)的 过程就是调节其余各臂阻抗参数使(28.1)式满足 的过程.一般来说,ZX包含二个未知分量,实际 上按复阻抗形式给出的平衡条件相当于两个实数 平衡条件,电桥平衡时它们应同时得到满足,这 意味着要测量ZX,电桥各臂阻抗参数至少要有两 个可调,而且各臂必须按电桥的两个平衡条件作 适当配置.图28—1 2.桥臂配置和可调参数选取的基本原则 在多数交流电桥中,为了使线路结构简单和实现“分别读数”(即电桥的两个可调参数分别只与被测阻抗的一个分量有单值的函数关系),常把电桥的两个臂设计成纯电阻(统称为辅助臂),这样,除被测Zx外只剩一个臂具有复阻抗性质,此臂由标准电抗元件(标准电感或标准电容)与一个可调电阻适当组合而成(称为比较臂),在这样的条件下,由交流电桥的平衡条件得到桥臂配置和可调参数选取的基本原则. (1)当比较臂与被测臂阻抗性质相同(指同为电感性或电容性),二者应放在相邻的桥臂位置上;反之,应放在相对的桥臂位置上.~~~~~~ (2)若取比较臂的两个阻抗分量作可调参数,则当比较臂阻抗分量的联接方式(指串联或并联)与被测臂等效电路的联接方式一致时,二者应放在相邻的桥臂位置;反之,就放在相对的桥臂位置.

开关电源整流桥的基础知识整理

开关电源整流桥的基础知识整理 50Hz交流电压经过全波整流后变成脉动直流电压u1,再通过输入滤波电容得到直流高压U1。在理想情况下,整流桥的导通角本应为180°(导通范围是从0°~180°),但由于滤波电容器C的作用,仅在接近交流峰值电压处的很短时间内,才有输入电流流经过整流桥对C 充电。50Hz交流电的半周期为10ms,整流桥的导通时间tC≈3ms,其导通角仅为54°(导通范围是36°~90°)。因此,整流桥实际通过的是窄脉冲电流。桥式整流滤波电路的原理如图1(a)所示,整流滤波电压及整流电流的波形分别如图l(b)和(c)所示。 最后总结几点: (1)整流桥的上述特性可等效成对应于输入电压频率的占空比大约为30%。(2)整流二极管的一次导通过程,可视为一个“选通脉冲”,其脉冲重复频率就等于交流电网的频率(50Hz)。 (3)为降低开关电源中500kHz以下的传导噪声,有时用两只普通硅整流管(例如1N4007) 与两只快恢复二极管(如FR106)组成整流桥,FRl06的反向恢复时间trr≈250ns。 2)整流桥的参数选择 隔离式开关电源一般采用由整流管构成的整流桥,亦可直接选用成品整流桥,完成桥式整流。全波桥式整流器简称硅整流桥,它是将四只硅整流管接成桥路形式,再用塑料封装而成的半导体器件。它具有体积小、使用方便、各整流管的参数一致性好等优点,可广泛用于开关电源的整流电路。硅整流桥有4个引出端,其中交流输入端、直流输出端各两个。 硅整流桥的最大整流电流平均值分0.5~40A等多种规格,最高反向工作电压有50~1000V等多种规格。小功率硅整流桥可直接焊在印刷板上,大、中功率硅整流桥则要用螺钉固定,并且需安装合适的散热器。 整流桥的主要参数有反向峰值电压URM(V),正向压降UF(V),平均整流电流 Id(A),正向峰值浪涌电流IFSM(A),最大反向漏电流IR(霢)。整流桥的反向击穿电压URR应满足下式要求:

非平衡直流电桥的原理和应用

非平衡直流电桥的原理和应用 直流电桥是一种精密的电阻测量仪器,具有重要的应用价值。按电桥的测量方式可分为平衡电桥和非平衡电桥。平衡电桥是把待测电阻与标准电阻进行比较,通过调节电桥平衡,从而测得待测电阻值,如单臂直流电桥(惠斯登电桥)、双臂直流电桥(开尔文电桥)。它们只能用于测量具有相对稳定状态的物理量,而在实际工程中和科学实验中,很多物理量是连续变化的,只能采用非平衡电桥才能测量;非平衡电桥的基本原理是通过桥式电路来测量电阻,根据电桥输出的不平衡电压,再进行运算处理,从而得到引起电阻变化的其它物理量,如温度、压力、形变等。 【实验目的】 FQJ型教学用非平衡直流电桥,该仪器集单臂、非平衡电桥于一体,通过本实验能掌握以本实验采用下内容: 1.直流单臂电桥(惠斯登电桥)测量电阻的基本原理和操作方法; 2.非平衡直流电桥电压输出方法测量电阻的基本原理和操作方法; 3.根据不同待测电阻选择不同桥式和桥臂电阻的初步方法及非平衡电桥功率输出法测电阻; 4.单臂电桥采用“三端”法测量电阻的意义。 【实验仪器】 FQJ型教学用非平衡直流电桥;1. FQJ非平衡电桥加热实验装置。2. 【实验原理】 FQJ型教学用非平衡直流电桥包括单臂直流电桥,非平衡直流电桥,上节我们已经对单臂电桥有所了解,下面对非平衡电桥的工作原理进行介绍。 图1 非平衡电桥原理图 1.非平衡电桥桥路输出电压 R??,所示,当负载电阻非平衡电桥原理如图1g 0?I并即电桥输出处于开路状态时,,,仅有电压输出g U ABC为压压,用表示根据分原降半桥的理,电0UR R,电流为:,通过两臂的S41U S?II?41R?R)1(41R则上之电压降为:4. R4??UU(2)SBC R?R41R上的电压降为:同理3R3??UU(3)SDC R?R 32UUU之差为输出电压与DCBC0RR34U?UU?U?U?SS0BCDC R?RR?R3412 ????S RR?R?R3142RR?RRU?0,即电桥处(4))?RR(RR3421U ? 于平衡状态。当满足条件时,电桥输出43210(5)式就称为电桥的平衡条件。为了测量的准确性,在测量的起始点,电桥必须调至平衡,称为预调平R, RRR, RR?。若关电阻变化有臂这样可使输出只固定,与为待测电阻某一,则当衡。1423x4R?R??R时,因电桥不平衡而产生的电压输出为:

交流电桥的原理和应用

交流电桥的原理和应用 交流电桥是一种比较式仪器,在电测技术中占有重要地位。它主要用于测量交流等效电阻及其时间常数;电容及其介质损耗;自感及其线圈品质因数和互感等电参数的精密测量,也可用于非电量变换为相应电量参数的精密测量。 常用的交流电桥分为阻抗比电桥和变压器电桥两大类。习惯上一般称阻抗比电桥为交流电桥。本实验中交流电桥指的是阻抗比电桥。交流电桥的线路虽然和直流单电桥线路具有同样的结构形式,但因为它的四个臂是阻抗,所以它的平衡条件、线路的组成以及实现平衡的调整过程都比直流电桥复杂。 【交流电桥的原理】 图1是交流电桥的原理线路。它与直流单电桥原理相似。在交流电桥中,四个桥臂一般是由交流电路元件如电阻、电感、电容组成;电桥的电源通常是正弦交流电源;交流平衡指示仪的种类很多,适用于不同频率范围。频率为200Hz 以下时可采用谐振式检流计;音频范围内可采用耳机作为平衡指示器;音频或更高的频率时也可采用电子指零仪器;也有用电子示波器或交流毫伏表作为平衡指示器的。本实验采用高灵敏度的电子放大式指零仪,有足够的灵敏度。指示器指零时,电桥达到平衡。 图1 交流电桥原理 一、交流电桥的平衡条件 我们在正弦稳态的条件下讨论交流电桥的基本原理。在交流电桥中,四个桥臂由阻抗元件组成,在电桥的一个对角线cd 上接入交流指零仪,另一对角线ab 上接入交流电源。 当调节电桥参数,使交流指零仪中无电流通过时(即I 0=0),cd 两点的电位相等,电桥达到平衡,这时有 U ac =U ad U cb =U db 即 I 1Z 1=I 4Z 4 I 2Z 2=I 3Z 3 两式相除有 3 34 4221Z I Z I Z I Z I 1 当电桥平衡时,I 0=0,由此可得 I 1=I 2,I 3=I 4 所以 Z 1Z 3=Z 2Z 4 (1) 上式就是交流电桥的平衡条件,它说明:当交流电桥达到平衡时,相对桥臂的阻抗的乘

各类整流电路图及工作原理

桥式整流电路图及工作原理介绍 桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。四只整流二极管接成电桥形式,故称桥式整流。 图1 桥式整流电路图 桥式整流电路的工作原理 如图2所示。

在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压。 在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即 UL = 0.9U2 IL = 0.9U2/RL 流过每个二极管的平均电流为 ID = IL/2 = 0.45 U2/RL 每个二极管所承受的最高反向电压为 什么叫硅桥,什么叫桥堆 目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。 二极管整流电路原理与分析 半波整流 二极管半波整流电路实际上利用了二极管的单向导电特性。

当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。当输入电压处于交 流电压的负半周时,二极管截止,输出电压v o=0。半波整流电路输入和输出电压的波形如图所 示。 二极管半波整流电路 对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。 电容输出的二极管半波整流电路仿真演示 通过上述分析可以得到半波整流电路的基本特点如下: (1)半波整流输出的是一个直流脉动电压。 (2)半波整流电路的交流利用率为50%。 (3)电容输出半波整流电路中,二极管承担最大反向电压为2倍交流峰值电压(电容输出 时电压叠加)。 (3)实际电路中,半波整流电路二极管和电容的选择必须满足负载对电流的要求。

交流电桥

实验十三 交流电桥 交流电桥是一种比较式仪器,在电测技术中占有重要地位。它主要用于测量交流等效电阻及其时间常数;电容及其介质损耗;自感及其线圈品质因数和互感等电参数的精密测量,也可用于非电量变换为相应电量参数的精密测量。 常用的交流电桥分为阻抗比电桥和变压器电桥两大类。习惯上一般称阻抗比电桥为交流电桥。本实验中交流电桥指的是阻抗比电桥。交流电桥的线路虽然和直流单臂电桥线路具有同样的结构形式,但因为它的四个臂是阻抗,所以它的平衡条件、线路的组成以及实现平衡的调整过程都比直流电桥复杂。 [实验目的] 1. 了解交流桥路的特点和调节平衡的方法。 2. 学会使用交流电桥测量电容及其损耗。 3. 学会使用交流电桥测量电感及其Q 值。 4. 学会使用交流电桥测量电阻。 [实验仪器] DH4518型交流电桥实验仪、待测元件。 [实验原理] 图4-13-1是交流电桥的原理线路。它与直流单臂电桥原理相似。在交流电桥中,四个桥臂一般是由交流电路元件如电阻、 电感、电容组成;电桥的电源通常是正弦交流电源;交流平衡指示仪的种类很多,适用于不同频率范围。频率为200Hz 以下时可采用谐振式检流计;音频范围内可采用耳机作为平衡指示器;音频或更高的频率时也可采用电子指零仪器;也有用电子示波器或交流毫伏表作为平衡指示器的。本实验采用高灵敏度的电子放大式指零仪,具有足够的灵敏度。指示器指零时,电桥达到平衡。 一、交流电桥的平衡条件 我们在正弦稳态的条件下讨论交流电桥的基本原理。在交流电桥中,四个桥臂由阻抗元件组成,在电桥的一个对角线cd 上接入交流指零仪,另一对角线ab 上接入交流电源。 当调节电桥参数,使交流指零仪中无电流通过时(即I 0=0),cd 两点的电位相等,电桥达到平衡,这时有 U ac =U ad U cb =U db 即: I 1Z 1=I 4Z 4 I 2Z 2=I 3Z 3 两式相除有: 3 34 42211Z I Z I Z I Z I = 当电桥平衡时,I 0=0,由此可得: I 1=I 2, I 3=I 4 所以 Z 1Z 3=Z 2Z 4 (4-13-1) 上式就是交流电桥的平衡条件,它说明:当交流电桥达到平衡时,相对桥臂的阻抗的乘积相等。 由图4-13-1可知,若第一桥臂由被测阻抗Z x 构成,则: 43 2 Z Z Z Z x ?= 当其他桥臂的参数已知时,就可决定被测阻抗Z x 的值。 图4-13-1 交流电桥原理

交流电桥 (2)

实验名称 :交流电桥 实验目的:掌握交流电桥的组成原理和用交流电桥测电感电容的方法. 实验原理: 一,交流电桥组成与基本原理 平衡条件 : 4 3 2 1Z Z Z Z 即 43214321 i i e Z Z e Z Z 实部相等 4 3 21Z Z Z Z 虚部相等 4 321 二,交流元件 电阻0R Z R i 电流与电压相位一致 电容 容抗1C X Z i C 电流比电压超前2 电感 感抗L x Z i L 电流比电压落后2 实验一:交流电桥测电感

各臂阻抗 1111 2 2 33441/11 s s X X X Z R i C R i C R Z R Z R Z R R i L R i L & &&& 12311x s R R i L R R i C R 实部与虚部分别相等,得到平衡时 2342312314//X s X X L R R C R R R R R R R R R R R 其中Rx 为Lx 的损耗电阻,是由于涡流作用以热量形式发散出去,恰似在电感上串联一个Rx 等效电阻。电感的Q 值 X R L Q 实验二:交流电桥测电容

各臂阻抗 11223411X X s s Z R Z R Z R i C Z R i C && && 121 1 s X s X R R R R i C i C 实部与虚部分别相等,得到平衡时, 2112 ,X S X S R R C C R R R R 其中CS 为标准电容,由电容箱调节RS 为标准电阻,由电阻箱调节,Rx 为Cx 的损耗电阻,是由于涡流 作用以热量形式发散出去,恰似在电容上串联一个Rx 等效电阻。 试验记录 实验仪器及规格精度 ZX17-1交直流电阻器 0.5W RX710型十进制电容箱50V AC 参考值 13X L mH : 10L R : 0.68X C F : 0.65C R : 1500f Hz 计算公式如下: 实验一 23'231'231//2X s X L X X X X L R R C R R R R R R R R R R R L fL Q R R 计算值填入试验表格

整流桥

整流桥-桥式整流工作原理 (2009-12-31 17:11:44) 转载 标 签: 杂谈 整流桥-桥式整流工作原理 整流桥 有多种方法可以用整流二极管将交流电转换为直流电,包括半波整流、全波整流以及桥式整流等。整流桥,就是将桥式整流的四个二极管封装在一起,只引出四个引脚。四个引脚中,两个直流输出端标有+或-,两个交流输入端有~标记。 应用整流桥到电路中,主要考虑它的最大工作电流和最大反向电压。 图一整流桥(桥式整流)工作原理

图二各类整流桥 (有些整流桥上有一个孔,是加装散热器用的) 这款电源的整流桥部分采用了一体式的整流桥,整流桥的作用就是能够通过二极管的单向导通的特性将电平在零点上下浮动的交流电转换为单向的直流电,通常电源中采用的整流桥除了这种单颗集成式的还有采用四颗二极管实现的,它们的原理完全相同 作用就是整流,把交流电变为直流电。实质上就是把4个硅二极管接成桥式整流电路之后封装在一起用塑料包装起来,引出4个脚,其中2个脚接交流电源,用~~符号表示,2个脚是直流输出,用+ -表示。 特点是方便小巧。不占地方。 规格型号一般直接用参数表示:50伏1安,100伏5安等等。 如果你要使用整流桥,选择的时候留点余量,例如要做12伏2安培输出的整流电源,就可以选择25伏5安培的桥。 选择整流桥要考虑整流电路和工作电压. 整流桥堆 整流桥堆一般用在全波整流电路中,它又分为全桥与半桥。 全桥是由4只整流二极管按桥式全波整流电路的形式连接并封装为一体构成的,图是其外形。

全桥的正向电流有0.5A、1A、1.5A、2A、2.5A、3A、5A、10A、20A、35A、50A等多种规格,耐压值(最高反向电压)有25V、50V、100V、200V、300V、400V、500V、600V、800V、1000V等多种规格。 常用的国产全桥有佑风YF系列,进口全桥有ST、IR等。 整流桥命名规则 一般整流桥命名中有3个数字,第一个数字代表额定电流,A;后两个数字代表额电压(数字*100),V 如:KBL410 即4A,1000V RS507 即5A,700V 整流这一个术语,它是通过二极管的单向导通原理来完成工作的,通俗的来说二极管它是正向导通和反向截止,也就是说,二极管只允许它的正极进正电和负极进负电。二极管只允许电流单向通过,所以将其接入交流电路时它能使电路中的电流只按单向流动,即所谓“整流”,用两只管是半泼整流,四只是全泼整流。

相关主题