搜档网
当前位置:搜档网 › 精选高一对数与对数函数练习题及答案

精选高一对数与对数函数练习题及答案

精选高一对数与对数函数练习题及答案
精选高一对数与对数函数练习题及答案

《对数与对数函数》测试 12.21

一、选择题: 1.已知3a +5b = A ,且

a 1+b

1

= 2,则A 的值是( ). (A).15 (B).15 (C).±15 (D).225 2.已知a >0,且10x = lg(10x)+lg

a

1

,则x 的值是( ). (A).-1 (B).0 (C).1 (D).2

3.若x 1,x 2是方程lg 2x +(lg3+lg2)+lg3·lg2 = 0的两根,则x 1x 2的值是( ). (A).lg3·lg2 (B).lg6 (C).6 (D).

6

1

4.若log a (a 2+1)<log a 2a <0,那么a 的取值范围是( ). (A).(0,1) (B).(0,21) (C).(2

1

,1) (D).(1,+∞) 5. 已知x =

31log 12

1

31log 15

1

,则x 的值属于区间( ).

(A).(-2,-1) (B).(1,2) (C).(-3,-2) (D).(2,3) 6.已知lga ,lgb 是方程2x 2-4x +1 = 0的两个根,则(lg

b

a )2

的值是( ). (A).4 (B).3 (C).2 (D).1 7.设a ,b ,c ∈R ,且3a = 4b = 6c ,则( ).

(A).c 1=a 1+b 1 (B).c 2=a 2+b 1

(C).c 1=a 2+b 2 (D).c 2=a 1+b

2

8.已知函数y = log 5.0(ax 2+2x +1)的值域为R ,则实数a 的取值范围是( ). (A).0≤a ≤1 (B).0<a ≤1 (C).a ≥1 (D).a >1 9.已知lg2≈0.3010,且a = 27×811×510的位数是M ,则M 为( ). (A).20 (B).19 (C).21 (D).22 10.若log 7[ log 3( log 2x)] = 0,则x 2

1

为( ).

(A).

3

21 (B).

3

31 (C).2

1 (D).

4

2

11.若0<a <1,函数y = log a [1-(

2

1)x

]在定义域上是( ). (A).增函数且y >0 (B).增函数且y <0 (C).减函数且y >0 (D).减函数且y <0 12.已知不等式log a (1-2

1

+x )>0的解集是(-∞,-2),则a 的取值范围是( ). (A).0<a <

21 (B).2

1

<a <1 (C).0<a <1 (D).a >1 二、填空题

13.若lg2 = a ,lg3 = b ,则lg 54=_____________.

14.已知a = log 7.00.8,b = log 1.10.9,c = 1.19.0,则a ,b ,c 的大小关系是_______________.

15.log

1

2-(3+22) = ____________.

16.设函数)(x f = 2x (x ≤0)的反函数为y =)(1

x f -,则函数y =)12(1

--x f

的定义域为

________.

三、解答题

17.已知lgx = a ,lgy = b ,lgz = c ,且有a +b +c = 0,求x c

b 1

1+·y

a

c 11+·x

b

a 11+的值.

18.要使方程x 2+px +q = 0的两根a 、b 满足lg(a +b) = lga +lgb ,试确定p 和q 应满足的关系.

19.设a ,b 为正数,且a 2-2ab -9b 2= 0, 求lg(a 2+ab -6b 2)-lg(a 2+4ab +15b 2)的值.

20.已知log 2[ log 2

1( log 2x)] = log 3[ log 3

1( log 3y)] = log 5[ log 5

1( log 5z)] =

0,试比较x 、y 、z 的大小.

21.已知a >1,)(x f = log a (a -a x ). ⑴ 求)(x f 的定义域、值域; ⑵判断函数)(x f 的单调性 ,并证明; ⑶解不等式:)2(21

--x f >)(x f .

22.已知)(x f = log 2

1[a x 2+2(ab)x -b x 2+1],其中a >0,b >0,

求使)(x f <0的x 的取值范围.

参考答案:

一、选择题:

1.(B).2.(B). 3.(D).4.(C).5.(D).6.(C).7.(B).8.(A). 9.(A).

10.(D).11.(C).12.(D). 提示:

1.∵3a +5b = A ,∴a = log 3A ,b = log 5A ,∴

a 1+b

1

= log A 3+log A 5 = log A 15 = 2,

∴A =15,故选(B).

2.10x = lg(10x)+lg

a 1= lg(10x ·a

1

) = lg10 = 1,所以 x = 0,故选(B). 3.由lg x 1+lg x 2=-(lg3+lg2),即lg x 1x 2= lg 61,所以x 1x 2=6

1

,故选(D).

4.∵当a ≠1时,a 2+1>2a ,所以0<a <1,又log a 2a <0,∴2a >1,即a >2

1

,综

合得2

1

<a <1,所以选(C).

5.x = log 3

1

21+log 3151= log 31(21×51) = log 3

1101= log 310,∵9<10<27,∴ 2<log 310<3,故选(D).

6.由已知lga +lgb = 2,lga ·lgb =

21,又(lg b

a

)2= (lga -lgb)2= (lga +lgb)2-4lga ·lgb = 2,故选(C).

7.设3a = 4b = 6c = k ,则a = log 3k ,b= log 4k ,c = log 6k ,

从而c 1= log k 6 = log k 3+21log k 4 =a 1+b 21,故c 2=a 2+b

1

,所以选(B).

8.由函数y = log 5.0(ax 2+2x +1)的值域为R ,则函数u(x) = ax 2+2x +1应取遍所

有正实数,

当a = 0时,u(x) = 2x +1在x >-

2

1

时能取遍所有正实数; 当a ≠0时,必有???≥-=?.44,

0a >a ?0<a ≤1.

所以0≤a ≤1,故选(A).

9.∵lga = lg(27×811×510) = 7lg2+11lg8+10lg5 = 7 lg2+11×3lg2+10(lg10

-lg2) = 30lg2+10≈19.03,∴a = 1003.19,即a 有20位,也就是M = 20,故选(A).

10.由于log 3( log 2x) = 1,则log 2x = 3,所以x = 8,因此 x

2

1

-= 8

2

1

-

=

8

1=

2

21=

4

2,故选(D).

11.根据u(x) = (21)x 为减函数,而(21)x >0,即1-(2

1

)x <1,所以y = log a [1-(

2

1)x

]在定义域上是减函数且y >0,故选(C).

12.由-∞<x <-2知,1-2

1

+x >1,所以a >1,故选(D). 二、填空题

13.21a +23b 14.b <a <c . 15.-2. 16.2

1

<x ≤1

提示: 13.lg 54=

21lg(2×33) =21( lg2+3lg3) =21a +2

3

b . 14.0<a = log 7.00.8<log 7.00.7 = 1,b = log 1.10.9<0,

c = 1.19.0>1.10= 1,故b <a <c .

15.∵3+22= (2+1)2,而(2-1)(2+1) = 1,即2+1= (2-1)1-, ∴log 1

2-(3+22) =log 1

2-(2-1)2

-=-2. 16.)(1

x f

-= log 2x (0<x ≤1=,y =)12(1

--x f

的定义域为0<2x -1≤1,即

2

1

<x ≤1为所求函数的定义域.

二、解答题

17.由lgx = a ,lgy = b ,lgz = c ,得x = 10a ,y = 10b ,z = 10c ,所以

x c

b 11+·y a

c 11+·x b

a 11+=10

)()()(

c

a c

b b a b

c a c a b +++++=10111---= 103-=

1000

1

. 18.由已知得,?

??=-=+.,

q ab p b a

又lg(a +b) = lga +lgb ,即a +b = ab , 再注意到a >0,b >0,可得-p = q >0, 所以p 和q 满足的关系式为p +q = 0且q >0. 19.由a 2-2ab -9b 2= 0,得(

b a )2-2(b

a

)-9 = 0, 令b

a

= x >0,∴x 2-2x -9 = 0,解得x =1+10,(舍去负根),且x 2= 2x +9, ∴lg(a 2

+ab -6b 2

)-lg(a 2

+4ab +15b 2

) = lg 2

2221546b ab a b ab a ++-+= lg 15

46

22++-+x x x x = lg

15

4)92(6

)92(+++-++x x x x

= lg

)4(6)1(3++x x = lg )4(21++x x = lg )

4101(21101++++= lg 1010=-21

20.由log 2[ log 21( log 2x)] = 0得,log 21( log 2x)= 1,log 2x =21

,即x = 221

由log 3[ log 31( log 3y)] = 0得,log 31( log 3y) = 1,log 3y =31

,即y =331

由log 5[ log 51( log 5z)] = 0得,log 5

1( log 5z) = 1,log 5z =51

,即z = 551.

∵y =331= 362= 961,∴x = 221= 263= 86

1,∴y >x , 又∵x = 22

1

= 210

5= 3210

1,z = 55

1= 510

2= 2510

1,∴x >z . 故y >x >z .

21.为使函数有意义,需满足a -a x >0,即a x <a ,当注意到a >1时,所求函数的定义域为(-∞,1),

又log a (a -a x )<log a a = 1,故所求函数的值域为(-∞,1). ⑵设x 1<x 2<1,则a -a 1

x >a -a

2

x ,所以)x (1f -)x (2f = log a (a -a

1

x )-log a (a

-a

2

x )>0,即)x (1f >)x (2f .

所以函数)(x f 为减函数. ⑶易求得)(x f 的反函数为)(1

x f -= log a (a -a x

) (x <1),

由)2(2

1

--x f >)(x f ,得log a (a -a

)

2(2-x )>log a (a -a x ),

∴a

)

2(2-x <a x ,即x 2-2<x ,解此不等式,得-1<x <2,

再注意到函数)(x f 的定义域时,故原不等式的解为-1<x <1.

22.要使)(x f <0,因为对数函数y = log 2

1x 是减函数,须使a x 2+2(ab)x -b x 2+1

>1,即

a x 2+2(ab)x -

b x 2>0,即a x 2+2(ab)x +b x 2>2b x 2,∴(a x +b x )2>2b x 2, 又a >0,b >0,∴a x +b x >2b x ,即a x >(2-1)b x ,∴(b

a )x

>2-1. 当a >b >0时,x >log b

a (2-1);当a =

b >0时,x ∈R ;

当b >a >0时,x <log b

a (2-1).

综上所述,使)(x f <0的x 的取值范围是: 当a >b >0时,x >log b

a (2-1);当a = b

>0时,x ∈R ;当b >a >0时,x <log b

a (2-1).

对数函数典型例题

对数运算与对数函数复习 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -=. 例2.比较下列各组数中两个值的大小: (1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; (3)log 5.1a ,log 5.9a . (4)0.91.1, 1.1log 0.9,0.7log 0.8; 例3.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ≠).

例4.(1)已知:36log ,518,9log 3018求==b a 值. 例5.判断函数22()log (1)f x x x =+的奇偶性。

对数运算与对数函数复习练习 一、选择题 1.3 log 9log 28的值是( ) A .32 B .1 C .2 3 D .2 2.函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为( ) A .[0,1] B .[1,2] C .[2,4] D .[4,16] 3.函数2x log y 5+=(x ≥1)的值域是( ) A .R B .[2,+∞] C .[3,+∞] D .(-∞,2) 4.如果0-+ C .0)a 1(log )a 1(>+- D .0)a 1(log )a 1(<-+ 5.如果02log 2log b a >>,那么下面不等关系式中正确的是( ) A .0b>1 D .b>a>1 6 若a>0且a ≠1,且14 3log a <,则实数a 的取值范围是( ) A .0或 D .4 3a 0<<或a>1 7.设0,0,a b <<且,722ab b a =+那么1lg |()|3 a b +等于( ) A .1(lg lg )2a b + B .1lg()2ab C .1(lg ||lg ||)3a b + D .1lg()3 ab 8.如果1x >,12log a x =,那么( ) A .22a a a >> B .22a a a >> C .22a a a >> D .22a a a >> 二、填空题(共8题) 8.计算=+?+3log 22450lg 2lg 5lg . 10.若4 12x log 3=,则x =________ 11 .函数f(x)的定义域是[-1,2],则函数)x (log f 2的定义域是_____________ 12.函数x )31 (y =的图象与函数x log y 3-=的图象关于直线___________对称.

新教材高一数学寒假作业(13)对数与对数函数新人教B版

新教材高一数学寒假作业(13)对数与对数函数新人教B 版 1、已知28 29,log 3 x y ==,则2x y +的值为( ) A.6 B.8 C.4 D.4log 8 2、若0a >且1,0,0,N a x y n *≠>>∈且1n >.给出下列结论: ①2(log )2log a a x x =; ②log ()log log a a a x y x y +=+; ③log log log a a a x x y y =; ④ log log a a x n =. 其中正确结论的个数是( ) A.0 B.1 C.2 D.3 3、若0,1,0,N a a x y n *>≠>>∈,则下列各式: ①(log )log n a a x n x =;②(log )log n n a a x x =;③1log log a a n x n x -=; ④ log log log a a a x x y y =; 1log a x n =; ⑥ log log a a x n =; ⑦log log n a a x n x =;⑧log log a a x y x y x y x y -+=-+-. 其中成立的有( ) A.3个 B.4个 C.5个 D.6个 4、若(31)4,1 ()log ,1a a x a x f x x x -+> B.b c a >> C.c a b >> D.c b a >>

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

高一对数及对数函数练习题及答案

《对数与对数函数》测试 12.21 一、选择题: 1.已知3a +5b = A ,且 a 1+b 1 = 2,则A 的值是( ). (A).15 (B).15 (C).±15 (D).225 2.已知a >0,且10x = lg(10x)+lg a 1 ,则x 的值是( ). (A).-1 (B).0 (C).1 (D).2 3.若x 1,x 2是方程lg 2x +(lg3+lg2)+lg3·lg2 = 0的两根,则x 1x 2的值 是( ). (A).lg3·lg2 (B).lg6 (C).6 (D). 6 1 4.若log a (a 2+1)<log a 2a <0,那么a 的取值X 围是( ). (A).(0,1) (B).(0,21) (C).(21 ,1) (D).(1,+∞) 5. 已知x = 31log 12 1 + 31log 1 5 1 ,则x 的值属于区间( ). (A).(-2,-1) (B).(1,2) (C).(-3,-2) (D).(2,3) 6.已知lga ,lgb 是方程2x 2-4x +1 = 0的两个根,则(lg b a )2的值是( ). (A).4 (B).3 (C).2 (D).1 7.设a ,b ,c ∈R ,且3a = 4b = 6c ,则( ). (A).c 1=a 1+b 1 (B).c 2=a 2+b 1 (C).c 1=a 2+b 2 (D).c 2=a 1+b 2 8.已知函数y = log 5.0(ax 2+2x +1)的值域为R ,则实数a 的取值X 围是( ). (A).0≤a ≤1 (B).0<a ≤1 (C).a ≥1 (D).a >1 9.已知lg2≈0.3010,且a = 27×811×510的位数是M ,则M 为( ).

高一指数函数与对数函数经典基础练习题,

指数函数与对数函数 一. 【复习目标】 1. 掌握指数函数与对数函数的函数性质及图象特征. 2. 加深对图象法,比较法等一些常规方法的理解. 3. 体会分类讨论,数形结合等数学思想. 二、【课前热身】 1.设5 .1348.029.0121,8,4-? ? ? ??===y y y ,则 ( ) A. 213y y y >> B 312y y y >> C 321y y y >> D 231y y y >> 2.函数)10(|log |)(≠>=a a x x f a 且的单调递增区间为 ( ) A (]a ,0 B ()+∞,0 C (]1,0 D [)+∞,1 3.若函数)(x f 的图象可由函数()1lg +=x y 的图象绕坐标原点O 逆时针旋转 2 π 得到,=)(x f ( ) A 110 --x B 110-x C x --101 D x 101- 4.若直线y=2a 与函数)且1,0(|1|≠>-=a a a y x 的图象有两个公共点,则a 的取值范围是 . 5..函数)3(log 32x x y -=的递增区间是 . 三. 【例题探究】 例1.设a>0,x x e a a e x f += )(是R 上的偶函数. (1) 求a 的值; (2) 证明:)(x f 在()+∞,0上是增函数 例2.已知()())2(log 2log )(,2 2 log )(222 >-+-=-+=p x p x x g x x x f (1) 求使)(),(x g x f 同时有意义的实数x 的取值范围 (2) 求)()()(x g x f x F +=的值域. 例3.已知函数)1(1 2 )(>+-+ =a x x a x f x (1) 证明:函数)(x f 在()+∞-,1上是增函数;

对数函数 典型例题

对数函数 例1求下列函数的定义域 (1)y=log2(x2-4x-5); (2)y=log x+1(16-4x) (3)y= . 解:(1)令x2-4x-5>0,得(x-5)(x+1)>0, 故定义域为{x|x<-1,或x>5}. (2)令得 故所求定义域为{x|-1<x<0,或0<x<2}. (3)令,得 故所求定义域为 {x|x<-1- ,或-1- <x<-3,或x≥2}. 说明求与对数函数有关的定义域问题,首先要考虑,真数大于零.底数大于零不等于1,若处在分母的位置,还要考虑不能使分母为零. 例2求下列函数的单调区间. (1)y=log2(x-4);(2)y=log0.5x2. 解:(1)定义域是(4,+∞),设t=x-4,当x>4时,t随x的增大而增大,而y=log2t,y又随t的增大而增大, ∴(4,+∞)是y=log2(x-4)的递增区间. (2)定义域{x|x∈R,且x≠0},设t=x2,则y=log0.5t 当x>0时,t随x的增大而增大,y随t的增大而减小, ∴(0,+∞)是y=log0.5x2的递减区间. 当x<0时,t随x的增大而减小,y随t的增大而减小, ∴(-∞,0)是y=log0.5x2的递增区间.

例3比较大小: (1)log0.71.3和log0.71.8. (2)(lg n)1.7和(lgn)2(n>1). (3)log23和log53. (4)log35和log64. 解:(1)对数函数y=log0.7x在(0,+∞)内是减函数.因为1.3<1.8,所以 log0.71.3>log0.71.8. (2)把lgn看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lgn讨论. 若1>lgn>0,即1<n<10时,y=(lgn)x在R上是减函数,所以(lgn)1.2>(lgn)2; 若lgn>1,即n>10时,y=(lgn)2在R上是增函数,所以(lgn)1.7>(lgn)2.(3)函数y=log2x和y=log5x当x>1时,y=log2x的图像在y=log5x图像上方.这里 x=3,所以log23>log53. (4)log35和log64的底数和真数都不相同,须找出中间量“搭桥”,再利用对数函数的单调性即可求解. 因为log35>log33=1=log66>log64,所以log35>log64. 评析要注意正确利用对数函数的性质,尤其是第(3)小题,可直接利用例2中的说明得到结论. 例4已知函数f(x)=log a(a-a x)(a>1), (1)求f(x)的定义域、值域. (2)判断并证明其单调性. (3)解不等式f-1(x2-2)>f(x). 解:(1)要使函数有意义,必须满足a-a x>0,即a x

高一《对数与对数函数》讲义【解析版】

对数与对数函数 【高考要求】 1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化为自然对数或常用对数,了解对数在简化运算中的作用. 2.理解对数函数的概念,理解对数函数的单调性与函数图象通过的特殊点,知道指数函数y =a x 与对数函数y =log a x 互为反函数(a>0,a ≠1),体会对数函数是一类重要的函数模型. 【知识梳理】 1.对数的概念 (1)对数的定义 如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作___ x =log a N ___,其中__ a __叫做对数的底数,__ N __叫做真数.真数N 为正数(负数和零无对数). 说明:①实质上,上述对数表达式,不过是指数函数x a y =的另一种表达形式,例如:8134=与 81log 43= 这两个式子表达是同一关系,因此,有关系式.log N x N a a x =?= ②“log ”同“+”“×” “ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这 种运算叫对数运算,不过对数运算的符号写在数的前面。 ③对数的底数和真数 从对数的实质看:如果a b =N (a >0且a ≠1),那么b 叫做以a 为底N 的对数,即b =log a N .它是知道底数和幂求指数的过程.底数a 从定义中已知其大于0且不等于1;N 在对数式中叫真数,在指数式中,它就是幂,所以它自然应该是大于0的. (2)几种常见对数 2.对数的性质与运算法则 (1).对数基本性质:log 10a =,log 1a a =,log a N a N =---对数恒等式 (2).对数运算性质:若0,1,0,0a a M N >≠>>且,则: ①log ()log log a a a MN M N =+ ②log log log a a a M M N N =- ③log log ()n a a M n M n R =∈ (3).换底公式:log log (0,1;0,1;0)log c a c b b a a c c b a = >≠>≠> 推论:①log log (,,0)m n a a n M M m n R m m = ∈≠ ②1log log a b b a = 点评:(1)要熟练掌握公式的运用和逆用。 (2)在使用公式的过程中,要注意公式成立的条件。 例如:真数为两负数的积,).5(log ).3(log 22--不能写成).5(log ).3(log 22--=).5(log )3(log 22-+-

高一数学对数函数经典题及详细答案

高一数学对数函数经典练习题 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 答案A 。 ∵3a =2→∴a=log 32 则: log 38-2log 36=log 323 -2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-2 2、2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、41 B 、4 C 、1 D 、4或1 答案B 。 ∵2log a (M-2N )=log a M+log a N , ∴log a (M-2N)2=log a (MN ),∴(M-2N)2 =MN , ∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2 -5n m +4=0,设x=n m →x 2-5x+4=0→(x 2 ???==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0 ∴n m =1答案为:4 3、已知2 2 1,0,0x y x y +=>>,且1 log (1),log ,log 1y a a a x m n x +==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1 2 m n - 答案D 。 ∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n →loga(1-x 2)=m-n →∵ x 2+y 2=1,x>0,y>0, → y 2=1- x 2→loga(y 2)=m-n

新课标高一数学对数与对数函数练习题及答案

对数与对数函数同步练习 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 2、2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、4 1 B 、4 C 、1 D 、4或1 3、已知221,0,0x y x y +=>>,且1 log (1),log ,log 1y a a a x m n x +==-则等于 ( ) A 、m n + B 、m n - C 、()12m n + D 、()1 2 m n - 4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( ) A 、lg5lg7 B 、lg35 C 、35 D 、35 1 5、已知732log [log (log )]0x =,那么12 x -等于( ) A 、1 3 B 23 C 22 D 336、函数2lg 11y x ?? =- ?+?? 的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称 7、函数(21)log 32x y x -=- ) A 、()2,11,3??+∞ ? ?? B 、()1,11,2?? +∞ ? ?? C 、2,3??+∞ ??? D 、1,2??+∞ ??? 8、函数212 log (617)y x x =-+的值域是( ) A 、R B 、[)8,+∞ C 、(),3-∞- D 、[)3,+∞

高一数学必修一对数及对数函数知识点总结

高一数学必修一对数及对数函数知识点总 结 数学是学习和研究现代科学技术必不可少的基本工具。以下是查字典数学网为大家整理的高一数学必修一对数及 对数函数知识点,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。 对数定义 如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数,记作x=logaN。其中,a叫做对数的底数,N叫做真数。 注: 1.以10为底的对数叫做常用对数,并记为lg。 2.称以无理数e(e=2.71828...)为底的对数称为自然对数,并记为ln。 3.零没有对数。 4.在实数范围内,负数无对数。在复数范围内,负数是有对数的。 对数公式 0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。/p p其中x 是自变量,函数的定义域是(0,+∞)。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,

同样适用于对数函数。/p p对数函数性质/p p align=" center="" img="" /> 定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1} 值域:实数集R,显然对数函数无界。 定点:函数图像恒过定点(1,0)。 单调性:a>1时,在定义域上为单调增函数; 奇偶性:非奇非偶函数 周期性:不是周期函数 对称性:无 最值:无 零点:x=1 注意:负数和0没有对数。 两句经典话:底真同对数正,底真异对数负。 要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼

对数及对数函数典型例题精讲

对数与对数函数 一、选择题(本大题共6小题,每小题6分,共36分) 1.方程lg x +lg(x +3)=1的解x 为 ( ) A .1 B .2 C .10 D .5 解析 B ∵lg x +lg(x +3)=lg 10,∴x (x +3)=10.∴x 2+3x -10=0. 解得x =2或-5(舍去). 2.“a =1”是“函数f (x )=lg(ax +1)在(0,+∞)上单调递增”的 ( ) A .充分必要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件 解析 C 显然函数f (x )=lg(x +1),g (x )=lg(2x +1)在(0,+∞)上均单调递增,所以“a =1”是“函数f (x )=lg(ax +1)在(0,+∞)上单调递增”的充分不必要条件. 则a ,b ,c 的大小关系是 ( ) A .a 1)的值域是 ( ) A .(-∞,-2] B .[-2,+∞) C .(-∞,2] D .[2,+∞) 解析 A ∵x + 1x -1+1=x -1+1 x -1 +2≥2(x -1)·1 x -1 +2=4,∴y ≤-2. 5.函数f (x )=2|log2x |的图象大致是 ( )

解析 C f (x )=2|log2x |=???? ? x ,x ≥1,1 x ,0≤-1,01 ,88x x x ,g(x)=x 2log , 则f(x)与g(x)两函数的 图象的交点个数为 ( ) A 1 B 2 C 3 D 4 答案:B 8.函数f(x)=x a log (a>0,a ≠1),若)()(21x f x f -=1,则)()(2 221x f x f -等于 ( ) A 2 B 1 C 2 1 D 2log a 答案A 二、填空题(本大题共3小题,每小题8分,共24分) 9.lg 25+lg 2×lg 50+(lg 2)2=________. 解析 lg 25+lg 2×lg 50+(lg 2)2=2lg 5+lg 2×(2-lg 2)+(lg 2)2=2lg 5+2lg 2=2(lg 5+lg 2)=2. 【答案】 2 10.已知0n) 11.已知f(x)=x 2log ,则)2 3 ()83(f f += 2 12.已知)2(log ax y a -=在[]1,0上是x 的减函数,则a 的取值范围是 ()2,1 13.设m 为常数,如果)34lg(2-+-=m x mx y 的定义域为R ,则m 的取值范围是(]4,0 14.函数f (x )=log 1 2(2x 2 -3x +1)的增区间是____________. 解析 ∵2x 2 -3x +1>0,∴x <1 2或x >1.∵二次函数y =2x 2-3x +1的减区间是 ? ????-∞,34, ∴f (x )的增区间是? ????-∞,12. 【答案】 ? ? ? ??-∞,12

对数函数及其性质经典练习题

对数函数及其性质(一) 班级_____________姓名_______________座号___________ 1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 2.函数y =x |x | log 2|x |的大致图象是( ) 3.若log a 2<1,则实数a 的取值范围是( ) A .(1,2) B .(0,1)∪(2,+∞) C .(0,1)∪(1,2) D .(0,12 ) 4.设a =2log 3,b =2 1log 6,c =6log 5,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c 5.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( ) 6.函数y =log 2x 在[1,2]上的值域是( ) A .R B .[0,+∞) C .(-∞,1] D .[0,1] 7.函数y =log 12(x -1)的定义域是________. 8.若函数f (x )=log a x (0≤???x x x x 则g [g (1 3)]=________. 10.f (x )=log 21+x a -x 的图象关于原点对称,则实数a 的值为________. 11.函数f (x )=log 12 (3x 2-ax +5)在[-1,+∞)上是减函数,求实数a 的取值范围.

带答案对数与对数函数经典例题.

经典例题透析 类型一、指数式与对数式互化及其应用 1.将下列指数式与对数式互化: (1);(2);(3);(4);(5);(6). 思路点拨:运用对数的定义进行互化. 解:(1);(2);(3);(4);(5); (6). 总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段. 举一反三: 【变式1】求下列各式中x的值: (1)(2)(3)lg100=x (4) 思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x. 解:(1); (2); (3)10x=100=102,于是x=2; (4)由. 类型二、利用对数恒等式化简求值 2.求值:解:. 总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三: 【变式1】求的值(a,b,c∈R+,且不等于1,N>0) 思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算. 解:. 类型三、积、商、幂的对数 3.已知lg2=a,lg3=b,用a、b表示下列各式. (1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15 解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a (3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b (5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a

举一反三: 【变式1】求值 (1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2 解: (1) (2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1 (3)原式=2lg5+lg2(1+lg5)+(lg2)2 =2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2. 【变式2】已知3a=5b=c,,求c的值. 解:由3a=c得: 同理可得 . 【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:. 证明: . 【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:. 证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb 即. 类型四、换底公式的运用 4.(1)已知log x y=a,用a表示; (2)已知log a x=m,log b x=n,log c x=p,求log abc x.

高一数学对数以及对数函数人教版

高一数学对数以及对数函数人教版 【同步教育信息】 一. 本周教学内容: 对数以及对数函数 二. 学习目标: 1. 理解对数的概念,了解对数运算与指数运算的互逆关系。 2. 能正确利用对数性质进行对数运算。 3. 掌握对数函数的图象性质。 4. 理解指数函数与对数函数的互逆关系。 三. 重点、难点: 1. 对数 (1)对数恒等式 ① b a b a =log (10≠,N 0>,则 ① N M MN a a a log log )(log += ② N M N M a a a log log log -= [例

(1)5lg 2lg 100lg 5lg 20lg 50lg 2lg -+ (2)4log ]18log 2log )3log 1[(6662 6÷?+- 解: (1)原式)2lg 1(2lg 2)2lg 1)(2lg 1()2lg 2(2lg ---++-= 1)2(lg 22lg 2)2(lg 1)2(lg 2lg 22 22=+--+-= (2)原式4log )]3log 1)(3log 1()3(log 3log 21[6662 66÷+-++-= 4log ])3(log 1)3(log 3log 21[62 6266÷-++-= 12 log 2 log 2log )3log 1(2662 66== ÷-= [例2] 已知正实数x 、y 、z 满足z y x 643==,试比较x 3、y 4、z 6的大小。 解:设t z y x ===643(1>t ),则t x 3log =,t y 4log =,t z 6log =,从而 4lg lg 43lg lg 3log 4log 34343t t t t y x -=-=-4 lg 3lg 3 lg 44lg 3lg ?-=t 0)3lg 4(lg 4 lg 3lg lg 43<-?= t 故y x 43< 又由6lg 4lg ) 4lg 36lg 2(lg 2)6lg lg 34lg lg 2(2)log 3log 2(26464?-=-=-=-t t t t t z y 6 lg 4lg ) 4lg 6(lg lg 232?-=t 而0lg >t ,04lg >,06lg >,3 2 4lg 6lg <,则上式0< 故z y 64<,综上z y x 643<< [例3] 已知m 和n 都是不等于1的正数,并且5log 5log n m >,试确定m 和n 的大小关系。 解:由n m n m 55log 1 log 15log 5log > ? >0log log log log 5555>?-?n m m n ???>?>-?0log log 0log log 5555n m m n 或???>>?1,1n m m n 或???<<<<<1 0,10n m m n 综上可得1>>m n 或10<<-+≥-0)32lg(03204222x x x x x ? ????±-≠>-<≥-≤?511322x x x x x 或或 则所求定义域为(∞-,51--)?(51--,3-)?),2[∞+ [例5](1)若函数)1lg(2 ++=ax ax y 的定义域为实数集R ,求实数a 的取值范围;(2)若函数)1lg(2 ++=ax ax y 的值域是实数集R ,求实数a 的取值范围。 解:

指数函数与对数函数关系的典型例题

经典例题透析 类型一、求函数的反函数 例1.已知f(x)=225x - (0≤x ≤4), 求f(x)的反函数. 思路点拨:这里要先求f(x)的范围(值域). 解:∵0≤x ≤4,∴0≤x 2≤16, 9≤25-x 2≤25,∴ 3≤y ≤5, ∵ y=225x -, y 2=25-x 2,∴ x 2=25-y 2.∵ 0≤x ≤4,∴x=225y - (3≤y ≤5) 将x , y 互换,∴ f(x)的反函数f -1(x)=225x - (3≤x ≤5). 例2.已知f(x)=21(0)1(0) x x x x +≥??-0)的图象上,又在它的反函数图象上,求f(x)解析式. 思路点拨:由前面总结的性质我们知道,点(4,1)在反函数的图象上,则点(1,4)必在原函数的图象上.这样就有了两个用来确定a ,b 的点,也就有了两个求解a ,b 的方程. 解: ? ?+?=+?=)2......(14)1......(4122b a b a 解得.a=-51, b=521,∴ f(x)=-51x+521. 另:这个题告诉我们,函数的图象若与其反函数的图象相交,交点不一定都在直线y=x 上. 例5.已知f(x)= ax b x c ++的反函数为f -1(x)=253 x x +-,求a ,b ,c 的值. 思路点拨:注意二者互为反函数,也就是说已知函数f -1(x)=253 x x +-的反函数就是函数f(x). 解:求f -1(x)=253 x x +-的反函数,令f -1(x)=y 有yx-3y=2x+5. ∴(y-2)x=3y+5 ∴ x=352y y +-(y ≠2),f -1(x)的反函数为 y=352x x +-.即ax b x c ++=352x x +-,∴ a=3, b=5, c=-2.

高中数学对数与对数函数知识点及例题讲解

对数与对数函数 1.对数 (1)对数的定义: 如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a N M =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N = b N a a log log (a >0,a ≠1, b >0,b ≠1,N >0). 2.对数函数 (1)对数函数的定义 函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢? 在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象 a <11)) 底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.

高一数学典型例题分析 对数函数

对数函数·例题解析 【例1】 (1)y =log (2)y =1 1log (a 0a 1)(3)f(x)[01]y =f[log (3x)]1 2 a 13 求函数的定义域.求函数>,且≠的定义域. 已知函数的定义域是,,求函数-的定义 32 21 x x x a ---+() 域. 解(1)由≥>≠≤>≠≤<或>≠log ()()1232210322102103221132210121210122312x x x x x x x x x x x x x x x -----?????? ????----????????--???? ? ????? 1 21122312231<≤<或>≠<≤x x x x x ???? ? ? ? ??? ∴所求定义域为<≤ {x|2 3 x 1} 解 (2)∵1-log a (x +a)>0,∴log a (x +a)<1. 当a >1时,0<x +a <a ,∴函数的定义域为(-a ,0). 当0<a <1时,x +a >a ,∴函数的定义域为(0,+∞). 解 (3)f(x)[01]y =f[log (3x)]13 ∵的定义域为,,∴函数-有意义, 必须满足≤-≤,即≤-≤,∴≤-≤,∴≤≤.故函数-的定义域为,. 0log (3x)1log log (3x)log 131 3 3x 12x y =f[log (3x)][2]13 13 13 1 3 13 1838 3 【例2】 y =10x 已知函数,试求它的反函数,以及反函数的定义110+x 域和值域.

解y= 10 y1y= 10 (1y)10=y10= y 1y 00y1 x x x x 已知函数的定义域为,∵∴≠,由得-,∴><<,即为函数的值域. R 110110 ++ - ? x x 由得,即反函数. 10= y 1y x=lg y 1y f(x)=lg x 1x x1 --- - 反函数的定义域为(0,1),值域为y∈R. 【例3】作出下列函数的图像,并指出其单调区间. (1)y=lg(-x),(2)y=log2|x+1| (3)y=|log(x1)|(4)y log(1x) 1 2 2 -,=-. 解(1)y=lg(-x)的图像与y=lgx的图像关于y轴对称,如图2.8-3所示,单调减区间是(-∞,0). 解(2)先作出函数y=log2|x|的图像,再把它的图像向左平移1个单位就得y=log2|x+1|的图像如图2.8-4所示. 单调递减区间是(-∞,-1). 单调递增区间是(-1,+∞). 解 (3)y=log x1y=log(x1) 1 2 1 2 把的图像向右平移个单位得到-的图像,保留其在x轴及x轴上方部分不变,把x轴下方的图像以x轴为 对称轴翻折到轴上方,就得到-的图像.如图.- x y=|log(x1)|285 1 2 所示. 单调减区间是(-1,2]. 单调增区间是[2,+∞). 解(4)∵函数y=log2(-x)的图像与函数y=log2x的图像关于y轴对称,故可先作y=log2(-x)的图像,再把y=log2(-x)的图像向右平移1个单位得到y=log2(1-x)的图像.如图2.8-6所示. 单调递减区间是(-∞,1).

相关主题