搜档网
当前位置:搜档网 › 两端固接的奇异弹性梁方程正解的存在唯一性

两端固接的奇异弹性梁方程正解的存在唯一性

热传导方程的初值问题

§2热传导方程的初值问题 一维热传导方程的初值问题(或Cauchy 问题) ?? ???+∞<<∞-=>+∞<<∞-=??-??x x x u t x t x f x u a t u ),()0,(0 ,),,(2 2 2? () 偏导数的多种记号xx x t u x u u x u u t u =??=??=??22,,. 问题也可记为 ?? ?+∞ <<∞-=>+∞<<∞-=-x x x u t x t x f u a u xx t ),()0,(0 ,,),(2?. Fourier 变换 我们将用Fourier 变换法求解热传导方程的柯西问题.为此我们将着重介绍Fourier 变换的基本知识.Fourier 变换在许多学科中是重要使用工具. 可积函数,设)(x f f =是定义在),(+∞-∞上的函数, 且对任意A B <,()f x 在[,]A B 上 可积,若积分 ? +∞ ∞ -dx x f )(收敛,则称)(x f 在),(+∞-∞上绝对可积。 将),(+∞-∞上绝对可积函数形成的集合记为),(1 +∞-∞L 或),(+∞-∞L , 即{ } ∞<=+∞-∞=+∞-∞? +∞ ∞ -dx x f f L L )(| ),(),(1 ,称为可积函数空间. 连续函数空间: ),(+∞-∞上全体连续函数构成的集合,记为),(+∞-∞C , {}上连续在),(|),(+∞-∞=+∞-∞f f C , {}上连续在),(,|),(1+∞-∞'=+∞-∞f f f C 。 定义 若),(+∞-∞∈L f ,那么积分 ),(?)(21 λπ λf dx e x f x i =? +∞ ∞ -- 有意义,称为Fourier 变换, )(? λf 称为)(x f 的Fourier 变式(或Fourier 变换的象). ? +∞ ∞ --= =dx e x f f Ff x i λπ λλ)(21)(?)( 定理 (Fourier 积分定理)若),(),(1 +∞-∞?+∞-∞∈C L f ,那么我们有

解的存在唯一性

解的存在唯一性定理证明及其研究 专业名称:数学与数学应用 组长:赵亚平 组员:刘粉娟、王蓓、孙翠莲 指导老师:岳宗敏

解的存在唯一性定理证明及其研究 摘要 线性微分方程是常微分课本中的重要组成部分,线性微分方程组解的存在唯一性是最重要,也是不可或缺的一部分,通过课本所学知识运用逐步逼近法以及压缩映射原理分别对一阶,高阶线性微分方程组解的存在唯一性进行的详细的论述证明。对于线性方程组解的情况,主要是通过对增广矩阵进行初等行变换,了解其秩的情况,在运用克莱默法则,从而得出其解的存在唯一性的情况。 关键词:解的存在唯一性 线性微分方程组 线性方程组 (一)一阶微分方程的解的存在唯一性定理与逐步逼近法 存在唯一性定理 考虑初值问题 ),(y x f dx dy = 00)(y x y = (1) 其中f(x,y)在矩形区域R : b y y a x x ≤-≤-||,||00 (2) 上连续,并且对y 满足Lipschits 条件:即存在常数L>0(L 为利普

希茨常数),使不等式 |||),(),(|2121y y L y x f y x f -≤- 对所有R y x y x ∈),(),,(21都成立,则初值问题(1)在区间h x x ≤-||0上解存在且唯一,这里 |),(|max ),, min(),(y x f M M b a h R y x ∈== 证明思路: 1.初值问题(1)的解存在等价于求积分方程 ?+=x x dy y x f y y 0),(0 (3) 的连续解。 2.构造(3)所得解函数序列{)(x n ?},任取一连续函数)(0x ?, b y x ≤-|)(|00?代入(3)右端的y ,得 …… 2,1,))(,()(0 01=+=?+n dx x x f y x x x n n ?? 3.函数序列{)(x n ?}在|,|00h x h x +-上一致收敛到)(x ?。这里为 )(x n ?=dx x x f y n x x n ))(,(lim 1-00 ??∞ →+ dx x x f y x x f y x x x x n ??+ =+=∞ →0 ))(,()) (,(lim 01-n 0?? 4.)(x ?为(3)的连续解且唯一。首先在区间],[00h x x +是讨论,在错误!未找到引用源。上类似。 证明过程: 命题1 :初值问题(1)等价于积分方程

热传导方程的一点看法

关于热传导方程的一点看法 PB06001065 谢润之热传导方程是一个重要的偏微分方程,它描述一个区域内的温度如何随时间变化。 热传导在介质里的传播可用以下方程式表达显然这是一个抛物型方程。其中u =u(t, x, y, z) 表温度,它是时间变量t 与空间变量(x,y,z) 的函数。k决定于材料的热传导率、密度与热容。如果考虑的介质不是整个空间,则为了得到方程的唯一解,必须指定u 的边界条件。如果介质是整个空间,为了得到唯一性,必须假定解的增长速度有个指数型的上界。热方程的解具有将初始温度平滑化的特质,这代表热从高温处向低温处传播。一般而言,许多不同的初始状态会趋向同一个稳态。 为了确定一个具体的热传导过程,除了列出方程外,还必须知道物体的初始温度(初始条件)和在它的边界上所受到的外界的影响(边界条件)。初始条件: 边界条件,最通常的形式有三类。第一边界条件(或称狄利克雷条件): 即表面温度为已知函数。 第二边界条件:通过表面的热量已知。 第三边界条件:物体表面给定热交换条件。 方程和不同的边值条件构成了不同的定界问题。 基本解:基本解是点热源的影响函数。其为: 热传导方程的第一第二初值问题可经过叠加由基本解生成: 。 就技术上来说,热方程不是准确的,因为它的解表示:一个扰动可以在瞬间传播到空间各处。扰动在前方光锥外的影响被忽略了,但是若要为热传导推出一个合理的速度,则须转而考虑一个双曲线型偏微分方程。 一般而言,热传导的研究奠基于以下几个原理。首先注意到热流是能量流的一种形式,因此可以谈论单位时间内流入空间中一块区域的热量。

单位时间内流入区域V的热量由一个依赖于时间的量qt(V)给出。假设q有个密度Q(t,x)于是热流是个依赖于时间的向量函数H(x),其刻画如下:单位时间内流经一个面积为dS而单位法向量为n的无穷小曲面元素的热量是因此单位时间内进入V 的热流量也由以下的面积分给出。 其中n(x) 是在x点的向外单位法向量。 热传导定律说明温度对时间的梯度满足以下线性关系其中A(x)是个3×3实对称正定矩阵。利用格林定理可将之前的面积分转成一个体积分。 温度在x点对时间的改变率与流进无穷小体积元素的热量成比例,此比例常数与时间无关,而可能与空间有关,写作κ (x)。将以上所有等式合并,便获得支配热流的一般公式。

Picard存在和唯一性定理

Picard存在和唯一性定理 本节利用逐次逼近法,来证明微分方程 (2.1) 的初值问题 (2.2) 的解的存在与唯一性定理. 定理 2.2(存在与唯一性定理)如果方程(2.1)的右端函数在闭矩形域 上满足如下条件: (1) 在R上连续; (2) 在R上关于变量y满足李普希兹(Lipschitz)条件,即存在常数N,使对于R上任何一对点和有不等式: 则初值问题(2.2)在区间上存在唯一解 其中 在证明定理之前,我们先对定理的条件与结论作些说明: 1. 在实际应用时,李普希兹条件的检验是比较费事的.然而,我们能够用一个较强的, 但却易于验证的条件来代替它.即如果函数在闭矩形域R上关于y的偏导数 存在并有界,.则李普希兹条件成立,事实上,由拉格朗日中值定理有 其中满足,从而.如果在R上连续,它在R上当然就满足李普希兹条件.(这也是当年Cauchy证明的结果) 2.可以证明,如果偏导数在R上存在但是无界,则Lipschitz条件一定不满足,

但是Lipschitz 条件满足,偏导数不一定存在,如(,)||f x y y 。 3.现对定理中的数h 0做些解释.从几何直观上,初值问题(2.2)可能呈现如图2-5所示的情况. 这 时,过点 的积 图 2-5 分曲线 当 或 时,其中 , ,到 达R 的上边界 或下边界 .于是,当 时,曲线 便可能没有定义.由此可见,初值问题(2.2)的解未必在整个区间 上存在. 由于定理假定 在R 上连续,从而存在 于是,如果从点 引两条斜率分别等于M 和-M 的直线,则积分曲线 (如果存在的话)必被限制在图2-6的带阴影的两个区域内,因此,只要我们取 则过点 的积分曲线 (如果存在的话)当x 在区间上变化时,必位于R 之 中. 图 2-6

连续梁按弹性理论五跨梁内力系数及弯矩分配法

附表25:等截面等跨连续梁在常用荷载作用下按弹性分析的内力系数(五跨梁)。 弯矩分配法(弯矩分配法计算连续梁和刚架及举例) 一、名词解释 弯矩分配法在数学上属于逐次逼近法,但在力学上属于精确法的范畴,主要适用于连续梁和刚架的计算。在弯矩分配法中不需要解联立方程,而且是直接得出杆端弯矩。由于计算简便,弯矩分配法在建筑结构设计计算中应用很广。 (一)线刚度i 杆件横截面的抗弯刚度EI 被杆件的长度去除就是杆件的线刚度i : (a ) 当远端B 为固定支座时,对于A 点处,AB 杆的转动刚度 i S AB 4=; (b ) 当远端B 为铰支座时,对于A 点处,AB 杆的转动刚度i S AB 3=; (c ) 当远端B 为滑动支座时,对于A 点处,AB 杆的转动刚度 i S AB =; (d ) 当远端B 为自由端时,对于A 点处,AB 杆的转动刚度0=AB S 。 连续梁和刚架的所有中间支座在计算转动刚度时均视为固定支座。 (二)转动刚度S 转动刚度表示靠近节点的杆件端部对该节点转动的反抗能力。杆端的转动刚度以S 表示,等于杆端产生单位转角需要施加的力矩,θ/M S =。施力端只能发生转角,不能发生线位移。AB S 中的第一个 角标A 是表示A 端,第二个角标B 是表示杆的远端是B 端。AB S 表示AB 杆在A 端的转动刚度。 (三)分配系数μ

各杆A 端所承担的弯矩与各杆A 端的转动刚度成正比。 Aj μ称为分配系数,如AB μ表示杆AB 在A 端的分配系数。它表示AB 杆的A 端在节点诸杆中,承担反抗外力矩的百分比,等于杆AB 的转动刚度与交于A 点各杆的转动刚度之和的比值。总之,加于节点A 的外力矩,按各杆的分配系数分配于各杆的A 端。 (四)传递系数C ij C 称为传递系数。传递系数表示当近端有转角(即近端产生弯矩)时,远端弯矩与近端弯矩的比值。因此一般可由近端弯矩乘以传递系数C 得出远端弯矩。 当远端为固定的边支座或为非边支座2 1=C ; 当远端为滑动边支座 1-=C ; 当远端为铰支边支座 0=C 。 节点A 作用的外力矩M ,按各杆的分配系数μ分配给各杆的近端;远端弯矩等于近端弯矩乘以传递系数。 (五)杆端弯矩 弯矩分配法解题过程中所指的杆端弯矩是所有作用于杆端的中间计算过程的最后总的效果。 计算杆端弯矩的目的,是因为杆端弯矩一旦求出,则每相邻节点之间的“单跨梁”将可以作为一根静定的脱离体取出来进行该杆的内力分析。其上作用的荷载有外荷载,每一杆端截面上一般有一个剪力和一个弯矩,两端共有二个剪力和二个弯矩。这两个弯矩就是两端的杆端弯矩,既然它们已经求出,那么余下的两个剪力可由两个静力平衡方程解出。 (六)近端弯矩和远端弯矩

存在唯一性定理证明

存在唯一性定理 如(,)f x y 在R 上连续且关于y 满足利普希茨条件,则方程 (,),dy f x y dx =在区间0x x h -≤上存在唯一解00 (),()y x x y ??== ,其中 (,)min ,, max (,) x y R b h a M f x y M ∈? ?== ??? 逐步迫近法 微分方程(,)dy f x y dx =等价于积分方程0 0(,)x x y y f x y dx =+ ? 取00()x y ?= , 定义0 01()(,()), 1,2,x n n x x y f x x dx n ??-=+=? 可证明lim ()() n n x x ??→∞ =的 ()y x ?=满足积分方程。 通过逐步迫近法可证明解的存在唯一性。 命题1 先证积分方程与微分方程等价: 设()y x ?=是微分方程 (,)dy f x y dx =定义于区间00x x x h ≤≤+上满足初值条件 00()x y ?=的解,则()y x ?=是积分方程0 000(,), x x y y f x y dx x x x h =+≤≤+?定义于区 间0 0x x x h ≤≤+上的连续解。反之亦然。

证 因()y x ?=是微分方程 (,)dy f x y dx =的解,有 ()(,())d x f x x dx ??= 两边从0x 到0 x h +取定积分 000()()(,()), x x x x f x x dx x x x h ???-= ≤≤+? 代入初值条件00()x y ?=得 000()(,()),x x x y f x x dx x x x h ??=+ ≤≤+? 即()y x ?=是积分方程0 000(,), x x y y f x y dx x x x h =+ ≤≤+?定义于区间00x x x h ≤≤+上的连续解。 反之,则有 000()(,()), x x x y f x x dx x x x h ??=+ ≤≤+? 微分之 ()(,())d x f x x dx ??= 且当0x x = 时有00 ()x y ?=。即 () y x ?=是微分方程 (,) dy f x y dx =定义于区间 00x x x h ≤≤+上满足初值条件00()x y ?=的解。 现取00()x y ?=,构造逐步迫近函数序列 000001()1,2,()(,()), x n n x x y x x x h n x y f x x dx ???-=??≤≤+=? =+?? ? 命题2 对所有n ,函数序列()n x ?在0 0x x x h ≤≤+上有定义、连续且满足不等 式 0()n x y b ?-≤ 证 当1n =时0 100()(,)x x x y f x y dx ?=+ ?。显然1()x ?在0 0x x x h ≤≤+上有定义、 连续且有 0000()(,)(,)()x x n x x x y f x y dx f x y dx M x x M h b ?-= ≤ ≤-≤≤?? 命题2当1n =时成立。设命题2当n k =时成立,则对1n k =+

热传导方程傅里解

热传导方程傅里解

————————————————————————————————作者:————————————————————————————————日期:

热传导在三维的等方向均匀介质里的传播可用以下方程表达: 其中: ?u =u(t, x, y, z) 表温度,它是时间变量t 与空间变量(x,y,z) 的函数。 ?/是空间中一点的温度对时间的变化率。 ?, 与温度对三个空间座标轴的二次导数。 ?k决定于材料的热传导率、密度与热容。 热方程是傅里叶冷却律的一个推论(详见条目热传导)。 如果考虑的介质不是整个空间,则为了得到方程的唯一解,必须指定u 的边界条件。如果介质是整个空间,为了得到唯一性,必须假定解的增长速度有个指数型的上界,此假定吻合实验结果。 热方程的解具有将初始温度平滑化的特质,这代表热从高温处向低温处传播。一般而言,许多不同的初始状态会趋向同一个稳态(热平衡)。因此我们很难从现存的热分布反解初始状态,即使对极短的时间间隔也一样。 热方程也是抛物线偏微分方程最简单的例子。 利用拉普拉斯算子,热方程可推广为下述形式

其中的是对空间变量的拉普拉斯算子。 热方程支配热传导及其它扩散过程,诸如粒子扩散或神经细胞的动作电位。热方程也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与 Ornstein-Uhlenbeck 过程。热方程及其非线性的推广型式也被应用于影像分析。量子力学中的薛定谔方程虽然有类似热方程的数学式(但时间参数为纯虚数),本质却不是扩散问题,解的定性行为也完全不同。 就技术上来说,热方程违背狭义相对论,因为它的解表达了一个扰动可以在瞬间传播至空间各处。扰动在前方光锥外的影响通常可忽略不计,但是若要为热传导推出一个合理的速度,则须转而考虑一个双曲线型偏微分方程。 以傅里叶级数解热方程[编辑] 以下解法首先由约瑟夫·傅里叶在他于1822年出版的著作Théorie analytique de la chaleur(中译:解析热学)给出。先考虑只有一个空间变量的热方程,这可以当作棍子的热传导之模型。方程如下: 其中u = u(t, x) 是t和x的双变量函数。 ?x是空间变量,所以x∈[0,L],其中L表示棍子长度。

[整理]一阶微分方程解的存在定理.

第三章 一阶微分方程解的存在定理 [教学目标] 1. 理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的误差估计式。 2. 了解解的延拓定理及延拓条件。 3. 理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程 dy dx =过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2 y x =或更一般地,函数 2 0 0() c<1x c y x c x ≤≤?=?-≤? 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性 和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。 1.存在性与唯一性定理: (1)显式一阶微分方程 ),(y x f dx dy = (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2)

Banach空间中常微分方程解的存在与唯一性定理(参考模板)

Banach 空间中常微分方程解的存在唯一性定理 魏婷婷 (天水师范学院 数学与统计学院,甘肃,天水,741000) 摘要: 在Banach 空间中, 常微分方程解的存在唯一性定理中},1min{M b L h =,初值问 题的解)(t y 的变量t 在h t t h t +≤≤-00上变化,把t 的变化范围扩大为 M b t t M b t +≤≤-00,为此给出t 变化范围后的Banach 空间中常微分方程解的存在唯一 性定理,并对定理给予明确的证明. 关键词: 存在唯一;常微分方程;数学归纳法;皮卡逐步逼近法;Banach 空间 引言 常微分方程解的存在唯一性定理明确地肯定了在一定条件下方程的解的存在性和唯一性,它是常微分方程理论中最基本且实用的定理,有其重大的理论意义,另一方面,它也是近似求解法的前提和理论基础.对于人们熟知的Banach 空间中常微分方程解的存在唯一性定理,解的存在区间较小, 只限制在一个小的球形邻域内,(球形邻域的半径若为δ,还需满足1<δL ,且解只在以0y 为中心以δ为半径的闭球 δδ≤-∈=00)(y y X y y B 存在唯一,其中X 是Banach 空间)因此在应用过程中受到了一定的限制.如今我们尝试扩大了解的存在范围,从而使此重要的定理今后有更加广泛的应用. 1 预备定理 我们给出Banach 空间中常微分方程解的存在唯一性定理如下 设X 是Banach 空间, X U ?是一个开集. X U f →:上关于y 满足利普希茨 )(Lipschitz 条件,即存在常数0>L ,使得不等式2121),(),(y y L y t f y t f -≤-,对于所有U y y ∈21,都成立.取U y ∈0,在U 内,以0y 为中心作一个半径为b 的闭球 b y y X y y B b ≤-∈=00)(,对所有的)(0y B y b ∈都成立,且有M y f ≤)(,取 },1min{M b L h =,则存在唯一的1C 曲线)(t y ,使得在h t t h t +≤≤-00上满足)(0y B y b ∈, 并有),(y t f y =',00)(y t y =.

一维热传导方程

一维热传导方程Last revision on 21 December 2020

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;Γ=G --G 是网格界点集合。

三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,22111j k j k j k j k j k j f h u u u a u u ++-=--++τ )(j j x f f =, )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1。以2/h a r τ=表示网比。则方程(5)可以改写为: 易知向前差分格式是显格式。 2. 向后差分格式 (6) ,11111)21(j k j k j k j k j f u ru u u ru τ+=-++-+-+++ )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1,易知向前差分格式是显格式。 3. 六点对称格式(Grank-Nicolson 格式) 将向前差分格式和向后差分格式作算术平均,即得到六点对称格式: (7) 111112)1(2+-+++-++-k j k j k j u r u r u r =j k j k j k j f u r u r u r τ++-+-+112 )1(2 利用0j u 和边值便可逐层求到k j u 。六点对称格式是隐格式,由第k 层计算第k+1层时需解线性代数方程组(因系数矩阵严格对角占优,方程组可唯一求解)。

3热传导方程的初边值问题

例4 周期初始温度分布 求解热传导方程t xx u u =,(,0)x t -∞<<+∞>给定初始温度分布 (,0)1cos 2,()u x x x =+-∞<<+∞。 解 4(,)1cos2t u x t e x -=+. 初始高斯温度分布 例 5求解定解问题22 22 0,(,0) (,0),()kx u u a x t t x u x e x -???-=-∞<<+∞>?????=-∞<<+∞? , 其中常数0k >. 解 22()4(,)()x s a t u x t s e ds ?-- +∞ -∞ = ? 22 2()4x s ks a t e e ds -- +∞ --∞ = ? 222 2(41)24ka t s xs x a t e ds +-+- +∞ -∞ = ? 222 22224(41)()41414x ka t ka t s x ka t ka t a t e ds +- +++- +∞ -∞ = ? 22 2 222(41)()41 441 k ka t x x s ka t a t ka t e e ds +---+∞ ++-∞ = ? 2241 k x ka t e - += 2241 k x ka t - += . §3初边值问题 设长度为l ,侧表面绝热的均匀细杆,初始温度与细杆两端的温度已知,则杆上的温度分布 ),(t x u 满足以下初边值问题 ?? ? ??≤<==≤≤=<<<<=-T t t g t l u t g t u l x x x u T t l x t x f u a u xx t 0),(),(),(),0(,0), ()0,(0,0),,(212? 对于这样的问题,可以用分离变量法来求解. 将边值齐次化

解的存在唯一性定理证明

解的存在唯一性定理 利用逐次逼近法,来证明微分方程(,),dy f x y dx =的初值问题00(,)()dy f x y dx y y x ==??? 的解存在与唯一性定理。 一、【存在、唯一性定理叙述】 如果方程 (,),dy f x y dx =的右端函数(,)f x y 在闭矩形区域0000:,R x a x x a y b y y b -≤≤+-≤≤+上满足如下条件: (1)、在R 上连续; (2)、在R 上关于变量y 满足利普希茨条件,即存在常数N ,使对于R 上任何一点(),x y 和() ,x y 有以下不等式:() |(,),|||f x y f x y N y y -≤-。 则初值问题00 (,)()dy f x y dx y y x ==??? 在区间0000x h x x h -≤≤+上存在唯一解00(),()y x x y ??==, 其中0 (,)min ,,max (,)x y R b h a M f x y M ∈?? == ??? 二、【证明】 逐步迫近法:

微分方程 (,)dy f x y dx =等价于积分方程00(,)x x y y f x y dx =+?。 取00()x y ?=,定义0 01()(,()),1,2,3, (x) n n x x y f x x dx n ??-=+=? 可证明lim ()()n n x x ??→∞ =的()y x ?=满足积分方程。 通过逐步迫近法可证明解的存在唯一性。 命 题 1:先证积分方程与微分方程等价: 设()y x ?=是微分方程 (,)dy f x y dx =定义于区间0000x h x x h -≤≤+上满足初值条件 00()x y ?=的解,则()y x ?=是积分方程0 0(,), x x y y f x y dx =+?定义于区间0000x h x x h -≤≤+上的连续解。 反之亦然。 证: 因()y x ?=是微分方程 (,)dy f x y dx =的解,有'() ()(,())d x x f x x dx ???== 两边从0x 到x 取定积分,得:0 00000()()(,()), x x x x f x x dx x h x x h ???-=-≤≤+? 代入初值条件00()x y ?=得:0 00000()(,()), x x x y f x x dx x h x x h ??=+-≤≤+? 即()y x ?=是积分方程0 0(,)x x y y f x y dx =+?定义于区间0000x h x x h -≤≤+上的连续解。 反之,则有0 00000()(,()), x x x y f x x dx x h x x h ??=+-≤≤+? 微分得: () (,())d x f x x dx ??= 且当0x x =时有00()x y ?=。即()y x ?=是微分方程(,)dy f x y dx =定义于区间0000x h x x h -≤≤+上满足初 值条件00()x y ?=的解。 现取00()x y ?=,代入积分方程0 0(,)x x y y f x y dx =+?的右端,所得函数用1()x ?表示,则 100()(,)x x x y f x y dx ?=+?,再将1()x ?代入积分方程0 0(,)x x y y f x y dx =+?的右端,所得函数用2()x ?表示,则 0201()(,())x x x y f x x dx ??=+?,以上1()x ?称为1次近似, 2()x ?称为2次近似。以此类推得到n 次近似 01()(,())x n n x x y f x x dx ??-=+?。 从而构造逐步迫近函数序列为:0000000 01()1,2,()(,()),x n n x x y x h x x h n x y f x x dx ???-=?? -≤≤+=?=+?? ? 命 题 2:对所有n ,函数序列()n x ?在0000x h x x h -≤≤+上有定义、连续且满足不等式 证:当1n =时, 100()(,)x x x y f x y dx ?=+?。显然1()x ?在0000x h x x h -≤≤+上有定义、连续且有

一阶线性微分方程组第一讲一阶微分方程组与解的存在唯一性定理

第一讲 一阶微分方程组及解的存在惟一性定理(2课时) 一、 目的与要求: 了解高阶微分方程与一阶微分方程组的 等价关系, 理解用向量和矩阵来研 究一阶微分方程组的作用, 了解微分方程组解的存在唯一性定理. 二、重点:一阶微分方程组的向量和矩阵表示及解的存在唯一性定理. 三、难点:向量和矩阵列的收敛性的定义, 二者的范数定义及其相关性质. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 课题引入 在前两章里,我们研究了含有一个未知函数的常微分方程的解法及其解的性质.但是,在很多实际和理论问题中,还要求我们去求解含有多个未知函数的微分方程组,或者研究它们的解的性质. 例如,已知在空间运动的质点(,,)P x y z 的速度与时间t 及该点的坐标的关系为(,,)x y z v v v v = 且质点在时刻0t 经过点000(,,)x y z ,求该质点的运动轨迹。 因为,x y dx dy v v dt dt ==和z dz v dt =, 所以这个问题其实就是求 一阶微分方程组 的满足初始条件

的解(),(),()x t y t z t . 另外,在n 阶微分方程 (1.12)()(1)(,,,,)n n y f x y y y -'= 中,令(1)121,,,n n y y y y y y --'''===就可 以把它化成等价的一阶微分方程组 注意,这是一个含n 个未知函数11,, ,n y y y - 的一阶微分 方程组. 含有n 个未知函数12,, ,n y y y 的一阶微分方程组的一般形式为: 11122112112(,,,,) (,,,,)(,,,,)n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ?=???=?????=? ? (3.1) 如果方程组(3.1)右端函数不显含x , 则相应的方程称为是自治的. 方程组(3.1)在[,]a b 上的一个解,是这样的一组函数 使得在[,]a b 上有恒等式 含有n 个任意常数12,,,n C C C 的解 称为(3.1)的通解. 如果通解满足方程组 则称后者为(3.1)的通积分.

解的存在唯一性定理

一阶微分方程解的存在性定理的其它证明方法 姜旭东 摘要 本文在文[1]对一阶微分方程初值问题解得存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法. 关键词 一阶微分方程 不动点定理 解的存在性 唯一性 1、引言 微分方程来源于生活实际,研究微分方程的目的在于掌握它所反映的客观规律。在文[1]第二章里,介绍了能用初等解法求解的一阶方程的若干类型,但同时指出,大量的一阶方程一般是不能用初等解法求解它的通解,而实际问题需要的往往是要求满足某种初始条件的解. 本文在文[1]对一阶微分方程初值问题解的存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解的存在唯一性定理的其它几种证法. 考虑一阶微分方程 (,)dy f x y dx = (1.1) 这里(,)f x y 是在矩形区域 00:||,||R x x a y y b -≤-≤ (1.2) 上的连续函数. 函数(,)f x y 在R 上满足Lipschitz 条件,即存在常数L >0,使得不等式 1212|(,)(,)|||f x y f x y L y y -≤- (1.3) 对所有12(,),(,)x y x y R ∈都成立, L 称为Lipschitz 常数。 定理1.1、如果(,)f x y 在R 上连续且关于y 满足Lipschitz 条件,则方程(1.1)存在唯一的解 ()y x ?=,定义于区间0||x x h -≤上,连续且满足初始条件 00()x y ?= 这里min(, )b h a M =,(,)max |(,)|x y R M f x y ∈=. 文[1]中采用皮卡逐步逼近法来证明这个定理.为了简单起见,只就区间00x x x h ≤≤+来讨论,对于

弹性波和塑性波

第一题:推导波动方程,简述弹性波和塑性波的主要区别?要求给出主要的推导步骤,主要的方程,以及弹性波和塑性波的本质区别。 圆柱杆中的弹性波的传播,如图所示为撞击杆以速度V 撞击长圆柱杆,并在圆柱杆中产生了自左向右传播的压缩应力波。T 时刻,这个扰动的波阵面在x 位置处。分析时忽略横向即杆Oy 方向的应变和惯性。在t 时刻,考察波阵面在截面AB 和A`B`的情况,截面A`B`离起始位置的距离为x+δx,对AA ’BB ’部分。 这里需要设定几个假设: 1、忽略细长杆的横向应变和横向惯性效应; 2、忽略杆的重力和材料阻尼; 3、变形前后横截面为平面,即平截面假定。 应用牛顿第二定律,有 图:波在杆中的传播 (a )冲击前;(b )冲击后 F ma = 22x A A x A x x t σσσδρδ??????--+= ???????? ? 22u x t σρ??=?? 而变形是弹性的且假定满足胡克定律:

=E σε 其中ε为应变,定义为/u x ??,负号表示压应变,因此有 22u u E x x t ρ?????=??????? 和 2222u E u t x ρ??=?? 上式即为弹性波的波动方程,其中0E C ρ=为波速。 二、弹性波和塑性波的区别 当物体某部分突然受力时,该处将产生弹性变形,并以波的形式向周围传播,使整个物体产生弹性变形,这种波称为弹性波。 当物体受到超过弹性极限的冲击应力扰动后产生的应力和应变的传播、反射,并使得物体产生塑性变形,这种波称为塑性波。 由于固体材料弹性性质和塑性性质的不同,因此在均匀的弹塑性介质中传播的塑性波和弹性波是有区别的,主要表现在: 1、塑性波波速与应力有关,它随着应力的增大而减小,较大的变形将以较小的速度传播,而弹性波的波速与应力大小无关; 2、在应力σ和应变ε的关系满足()σσε=时,塑性波波速总比弹性波波速小; 3、塑性波在传播的过程中波形会发生变化,而弹性波则保持波形不变。 弹性波和塑性波的这些本质区别可以从波动方程中看出,在波动方程中的C 表示的就是应力波的传播速度,其中 弹性波的波速为:001d C C d σε ρ==,,Y d d E σσε≤= 塑性波的波速为:001d C C d σερ= <,,Y d d E σσε>< 其中Y 表示材料的屈服强度,E 表示材料的弹性模量。 从上式中我们很容易看出,无论的弹性波还是塑性波的波速都取决于材料的应力—应变曲线的斜率d d σε,显然在弹性阶段和塑性阶段是不同的。塑性波的波速是应变的函数,它

一维热传导方程

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1),0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程 (1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?=∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程 (1)(l x << 0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ ,其 中N,M 都是正整数。用两族平行直线: 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;h Γ=h G --h G 是网格界点集合。 三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,221 11j k j k j k j k j k j f h u u u a u u ++-=--++τ

弹性波理论

地震波交错网格高阶差分数值模拟研究 摘要: 地震波数值模拟技术是勘探地球物理学中的重要组成部分,研究通过弹性波一阶速度——应力方程,采用交错网格高阶有限差分法实现了地震波在各向同性介质中的高精度的数值模拟,并采用完全匹配层( PML) 吸收边界来消除边界反射,可取得较好的效果。通过模型的正演计算和复杂模型的处理结果表明,交错网格高阶有限差分法数值模拟是一种快速有效的地震波数值模拟方法。 关键词: 地震勘探; 交错网格; 有限差分; 数值模拟 引言 地震数值模拟是模拟地震波在介质中传播的一种数值模拟技术,随着地震波理论在天然地震和地震勘探中的应用,地震模拟技术便应运而生,并随着地震波理论和计算机技术的发展,地震数值模拟技术自20世纪60年代以来也得到了飞速发展,形成了目前具有有限差分法、有限元法、虚谱法和积分方程法等各种数值模拟方法的现代地震数值模拟技术。 有限差分法是偏微分方程的主要数值解法之一。在各种地震数值模拟方法中,最早出现的数值模拟方法是有限差分法。Alterman和Karal(1968)首先将有限差分法应用于层状介质弹性波传播的数值模拟中。此后,Boore(1972)又将有限差分法用于非均匀介质地震波传播的模拟。Alford等(1974)研究了声波方程有限差分法模拟的精确性。Kelly等(1976)研究了用有限差分法制作人工合成地震记录的方法。Virieux(1986)提出了应用速度——应力一阶方程交错网格有限差分法模拟P——SV波在非均匀介质中的传播。交错网格方法提高了地震模拟的精度和稳定性,并消除了部分假想。 有限元法也是偏微分方程的数值解法之一。Lysmer和Drake(1972)最早将有限元法应用于地震数值模拟。Marfurt(1984)研究对比了模拟弹性波传播的有限差分法和有限元法的精度。Seron等(1990,1996)给出了弹性波传播有限元模拟方法。Padovani等(1994)研究了地震波模拟的低阶和高阶有限元法。Sarma等(1998)给出了三维声波模拟的虚谱法。 积分方程法是建立在波动方程的积分表达式的基础上的,其理论基础是惠更斯原理。积分方程法也是有限元法之后发展起来的一种地震数值模拟方法。Pao 和Varatharajulu(1976)提出了弹性波散射的积分表达式。Bennett和Mieras(1981)给出了流体目标声波散射的时间域积分方程解。Bouchon(1987)给出了裂隙或孔洞弹性波绕射的离散波数法模拟方法。Bouchon等(1989)研究了具有不规则界面的多层介质中波传播的边界积分方程——离散波数法。Bakamjian(1992)给出了三维地震波传播模拟的边界积分方程法。符力耘和牟永光(1994)提出了弹性波正演模拟的边界元法。符力耘等(1997)提出了非线性Fredholm积分方程的正演问题。符力耘(2003)给出了含起伏地表的广义Lipmann—Schwinger积分方程的数值模拟方法。 射线追踪方法是建立在波动方程的高频近似基础上的一种地震数值模拟方法(cerveny等,1977)。这种方法实际只计算了最奇异部分的解,即旅行时和振幅函数的特征曲线,它们分别是程函方程和传播方程的解。这种方法计算效率高。但是,一些复杂的本构方程由于积分方程法和射线追踪法不满足假设条件而限制

第三章 一阶线性微分方程组 第一讲一阶微分方程组及解的存在唯一性定理

第一讲 一阶微分方程组及解的存在惟一性定理(2课时) 一、 目的与要求: 了解高阶微分方程与一阶微分方程组的 等价关系, 理解用向量和矩阵来研 究一阶微分方程组的作用, 了解微分方程组解的存在唯一性定理. 二、重点:一阶微分方程组的向量和矩阵表示及解的存在唯一性定理. 三、难点:向量和矩阵列的收敛性的定义, 二者的范数定义及其相关性质. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 课题引入 在前两章里,我们研究了含有一个未知函数的常微分方程的解法及其解的性质.但是,在很多实际和理论问题中,还要求我们去求解含有多个未知函数的微分方程组,或者研究它们的解的性质. 例如,已知在空间运动的质点(,,)P x y z 的速度与时间t 及该点的坐标的关系为(,,)x y z v v v v

123(,,,)(,,,) (,,,)x y z v f t x y z v f t x y z v f t x y z =??=??=? 且质点在时刻0t 经过点000(,,)x y z ,求该质点的运动轨迹。 因为,x y dx dy v v dt dt ==和z dz v dt =, 所以这个问题其实就是求 一阶微分方程组 123(,,,)(,,,) (,,,)x f t x y z y f t x y z z f t x y z =??=??=? 的满足初始条件 00(),x t x = 00(),y t y = 00()z t z = 的解(),(),()x t y t z t . 另外,在n 阶微分方程 (1.12) ()(1)(,,,,)n n y f x y y y -'= 中,令(1)121,, ,n n y y y y y y --'''===就可以把它化成等价的一阶微分方程组

相关主题