搜档网
当前位置:搜档网 › 九年级物理电生磁知识点

九年级物理电生磁知识点

九年级物理电生磁知识点

九年级物理电生磁知识点

1、通电导线的周围有磁场,磁场的方向跟电流的方向有关,这种现象叫做电流的磁效应。这一现象是由丹麦物理学家奥斯特在1820年发现的。

2、把导线绕在圆筒上,做成螺线管,也叫线圈,在通电情况下会产生磁场。通电螺线管的磁场相当于条形磁体的磁场。

3、通电螺线管的磁场方向与电流方向以及螺线管的绕线方向有关。磁场的强弱与电流强弱、线圈匝数、有无铁芯有关。

4、在通电螺线管里面加上一根铁芯,就成了一个电磁铁。可以制成电磁起重机、排水阀门等。

5、判断通电螺线管的磁场方向可以使用右手定则:将右手的四指顺着电流方向抓住螺线管,姆指所指的方向就是该螺线管的北极。

物理学习方法

兴趣

伴随着有趣的演示实验和动手实验,一个个意想不到的现象吸引你走入深奥的物理世界,但更多时候,老师为了讲清某一物理规律或物理情景,考虑到知识的整体性和逻辑性,经常会进行大段讲解。这是理解较高层次的知识所必需的,也是物理的“理”性所在,因此课堂气氛可能不象小学时那样“热烈”,随着学习的深入,物理的简洁美、逻辑美、对称美、统一美等更高层次的魅力就会吸引你欲罢不能,对这一过程同学们应该有思想准备,同时自己要尽快养成这种严谨的思维习惯和分析问题的方法。

主动

身心处于积极主动状态的同学,能够在课前主动预习,发现自己学习的困难点,课堂上注意力集中,大脑要高速运转,对老师提出的一些问题,要自己去考虑,主动发言,不要等老师去“灌输”。在学习中要善于提出问题,发表自己的看法,同时学会对知识进行梳理和重新整合,把杂乱的知识条理化、系统化,将它变成自己的东西。

独立

一定要独立完成作业。要独立地(指不依赖他人),保质保量地做一些题。题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。任何人学习数理化不经过这一关是学不好的。独立解题,熟能生巧,这是任何一个初学者走向成功的必由之路。

光现象知识点

1、自身能够发光的物体叫做光源。光源分为天然光源和人造光源。

2、白色光是不是单纯的光,是复色光,它是由红、橙、黄、绿、蓝、靛、紫七种不同的色光组成,当太阳光通过三棱镜后,会分解成七色光的现象叫光的色散。首先用实验研究光的色散现象的是英国物理学家牛顿。

3、光的三原色是指红、绿、蓝。颜料的三原色是指红、黄、蓝。

4、通过对比色光的混合和颜料的混合是不同的。

5、有色的透明物体只能透过和它颜色相同的色光,即透明物体的颜色是由它所透过的色光决定的。

6、有色的不透明物体只能反射和它颜色相同的色光,即不透明物体的颜色是由它所反射的色光决定的。

7、光具有的能量叫光能。太阳的热主要是以红外线的形式传送到地球上来的。

8、光按照可见与不可见分成可见光和不可见光两类。紫外线和红外线都属于不可见光。

9、红外线能使被照射的物体发热,因此它具有热效应;紫外线最显著的性质是它能使荧光物质发光。

10、光在传播的过程中,如果遇到不透明的物体,在物体的后面不能到达的区域便产生了影子,这说明光是沿直线传播的。

11、把手放在发光的电灯和墙之间,墙上便出现了一个暗的影子,这一现象说明了光是沿直线传播的。

12、光在真空中的传播速度最大,其值是3×108m/s=3×105Km/s,光在空气中的速度与此值近似相等。在其他介质中的传播速度要比真空中要慢:

v真 v空 v水 v玻

13、熟悉一些可以用光的直线传播解释的现象:激光准直、激光测距、影子的形成、小孔成像、三点一线射击、排队看齐、太阳光斑、立竿见影、日食月食、针孔照相机等。

14、光在同种、均匀介质中沿直线传播。

15、表面是平滑的镜子叫平面镜.平面镜的成像特点是:①平面镜所成的像不能呈现在白纸上,是虚像。②像的大小与物体的大小相等。③像与物的连线与镜面垂直④像到镜的距离与物到镜的距离相等。⑤像与物以镜面对称的。

16、在“研究平面镜成像的特点”实验中,在桌面竖立一块玻璃作为平面镜。实验时,要使镜后的物体与镜前物体成的像重合,这是为了找到像的位置,从而发现平面镜成的像有大小相等的特点;如果用尺量出物、像到平面镜的距离则发现等距的规律;如果用笔画出物、像对应点的连线,则发现物、像对应点的连线与镜面垂直;平面镜成的是正立、等大的虚像。

17、平面镜成像的作图方法为对称法。

18、平面镜的主要应用有:(1)、利用平面镜成像;例:照镜子、利用平面镜扩大视野、牙医用来诊断病情的反光镜。(2)、利用平面镜改变光路,例:潜望镜等。

19、平面镜使用不当可能带来麻烦或光污染。例:夜间行车时,车内的景物在挡风玻璃上成的像干扰了驾驶员的视线。

20、凸面镜能扩大视野。例:汽车的后视镜、街头拐弯处的反光镜等。

21、光射到物体表面上时,有一部分光会被物体表面反射回来,这种现象叫做光的反射,我们能看见本身不发光的物体、平面镜成像都与光的反射有关。

22、在“研究光的反射定律”的实验中:第一步,改变入射光线的方向,观察反射光线方向怎样改变,实验结论是:反射角等于入射角;第二步,把纸板的右半面F向前折或向后折,观察是

否还能看到反射光线,实验结论是:反射光线、法线、入射光线在同一平面内,

23、光的反射定律是:反射光线、法线、入射光线在同一平面内;反射光线、入射光线分居法线的两侧;反射角等于入射角。

24、平面镜成虚像的根本原因是:它不是由实际光线会聚形成的,而是由反射光线的反向延长线会聚形成的,所以不能用光屏来承接。

25、一束平行光射到平面镜上,反射光仍是平行的,这种反射叫做镜面反射;一束平行光射到凹凸不平的表面上,反射光射向各个不同的方向,这种反射叫做漫反射。镜面反射和漫反射都遵循光的反射定律。我们在各个不同的方向看见被照亮的物体,正是借助于漫反射。

九年级物理知识点

九年级物理电与磁知识点

九年级物理电与磁知识点 九年级物理电与磁知识点 第二十章电与磁 第一节磁现象磁场 1、磁现象: 磁性:物体能够吸引钢铁、钴、镍一类物质(吸铁性)的性质叫磁性。 磁体:具有磁性的物体,叫做磁体。磁体具有吸铁性和指向性。 磁体的分类:①形状:条形磁体、蹄形磁体、针形磁体;②来源:天然磁体(磁铁矿石)、人造磁体;③保持磁性的时间长短:硬磁体(永磁体)、软磁体。 磁极:磁体上磁性最强的部分叫磁极。磁极在磁体的两端。磁体两端的磁性最强,中间的磁性最弱。 磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。 无论磁体被摔碎成几块,每一块都有两个磁极。 磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。(若两个物体互相吸引,则有两种可能:①一个物体有磁性,另一个物体无磁性,但含有钢铁、钴、镍一类物质;②两个物体都有磁性,且异名磁极相对。) 磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。 钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。所以钢是制造永磁体的好材料。 2、磁场: 磁场:磁体周围的空间存在着磁场。 磁场的基本性质:磁场对放入其中的磁体产生磁力的作用。磁体间的相互作用就是通过磁场而发生的。 磁场的方向:把小磁针静止时北极所指的方向定为那点磁场的方向。 磁场中的不同位置,一般说磁场方向不同。

磁感线:在磁场中画一些有方向的曲线,任何一点的曲线方向都跟放在该店的磁针北极所指的方向一致。这样的曲线叫做磁感线。 对磁感线的认识: ①磁感线是在磁场中的一些假想曲线,本身并不存在,作图时用虚线表示; ②在磁体外部,磁感线都是从磁体的N极出发,回到S极。在磁体内部正好相反。 ③磁感线的疏密可以反应磁场的强弱,磁性越强的地方,磁感线越密,磁性越弱的地方,磁感线越稀; ④磁感线在空间内不可能相交。 典型的磁感线: 3、地磁场: 地磁场:地球本身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。 地磁场的北极在地理南极附近;地磁场的南极在地理北极附近。 小磁针能够指南北是因为受到了地磁场的作用。 地理的两极和地磁的两极并不重合,磁针所指的南北方向与地理的南北极方向稍有偏离(地磁偏角),世界上最早记述这一现象的人是我国宋代的学者沈括。(《梦溪笔谈》) 第二节电生磁 1、奥斯特实验: 最早发现电流磁效应的科学家是丹麦物理学家奥斯特。 奥斯特实验: 对比甲图、乙图,可以说明:通电导线的周围有磁场; 对比甲图、丙图,可以说明:磁场的方向跟电流的方向有关。 2、通电螺线管的磁场: 通电螺线管外部的磁场方向和条形磁体的磁场一样。通电螺线管的两端相当于条形磁体的两个极,通电螺线管两端的极性跟螺线管中电流的方向有关。

九年级物理家电与磁第二节电生磁最全笔记

电生磁 一、电流的磁效应 探究归纳:①电流周围存在磁场;②电流的磁场方向跟电流的方向有关。 注意:①试验中,导线应放在小磁针上方并且两者平行,若两者垂直,通电时小磁针不会偏转。 ②采用“触接”的方式给导线通电。 ③用电源短路的形式可以在导线中获得较大的电流,使通电导线周围的磁场更强些,小磁针偏转更明显,但要注意闭合电路的时间一定要短,否则会烧坏电源。 ④通电导线周围的磁场是一种看不见、摸不着的物质,把小磁针放在通电导线附近,通过小磁针的偏转来反映磁场的存在,这种方法在物理学中了叫做转换法。 2、电流的磁效应:通电导线周围存在与电流方向有关的磁场,这种现象叫做电流的磁效应。 知识拓展:电流的磁效应是丹麦物理学家奥斯特通过实验首先发现的。奥斯特实验揭示了电现象和磁现象不是彼此孤立的而是密切联系的,奥斯特实验是世界上第一个揭示电和磁有联系的实验。 二、通电螺线管的磁场 1、把导线绕在圆筒上,就做成了一个螺线管,也叫线圈。给螺线管通电后,各圈导线产生的磁场叠加在一起,通电螺线管的周围就会产生较强的磁场。 2、通电螺线管外部的磁场分布 ①通电螺线管外部的磁场与条形磁体外部的磁场相似,通电螺线管的两端相当于条形磁体的两个磁极。 ②通电螺线管两端的极性跟螺线管中电流的方向有关。 注意:实验中,为使磁场加强,可以在螺线管中插入一根铁棒;可以在条件允许的情况下增大通电螺线管中的电流。 2、实验探究:通电螺线管两端的极性与环绕螺线管的电流方向之间有什么关系? 取绕向不同的螺线管,依次设计并进行实验:向螺线管内通入不同方向的电流,用小磁针验证它的N、S极,实验现象如下表: 甲乙 丙丁

探究归纳:通电螺线管两端的极性与环绕螺线管的电流方向有关。 3、通电螺线管的周围存在着磁场,其外部的磁场与条形磁体的磁场相似,通电螺线管的两端与条形磁体一样有两个磁极。在通电螺线管外部,磁感线从通电螺线管的N 极出来回到S 极;在通电螺线管的内部,磁感线从S 极到N 极,若改变电路方向,通电螺线管的N 极和S 极对调。 三、安培定则 内容 判断方法 应用 用右手握住螺 线管,让四指指 向螺线管中电 流的方向,则拇 指所指的那端 就是螺线管的 N 极。 ①标出螺线管上的电流环绕方向 ②用右手握住螺线管,让弯曲四指与电流方向一致 ③拇指所指的那端就是通电螺线管的N 极。如下图所示 ①根据螺线管中电流的方向,判断通电螺线管两端的极性 ②由通电螺线管两端的极性,判断螺线管中电流方向 ③根据通电螺线管的南、北极以及电源的正负极,画出螺线管的绕线 注意:应用安培定则时应注意以下三点: ①决定通电螺线管两端极性的根本因素是通电螺线管上电流的环绕方向,而不是通电螺线管上导线的绕法和电源的正负极的接法。当两个通电螺线管中电流的环绕方向一致时,这两个通电螺线管两端的极性就相同。 ②四指的环绕方向必须是通电螺线管上电流的环绕方向。 ③N 极和S 极一定在通电螺线管的两端。 条形磁体 通电螺线管 相同点 磁场 在两端有N 极和S 极 磁性 具有吸铁性、指南性、磁化性,两极磁性最强 不通电 磁场 磁极不变 N 极和S 极随螺线管中电流方向的改变而改变 磁性 磁性不变 只有通电时才具有磁性,且磁性随电流的大小而变化 3、利用安培定则解决三类问题的方法 (1)已知电流方向来确定通电螺线管的N 、S 极 ①现在螺线管上标明导线中的电流方向。 ②用右手握住螺线管,让四指指向螺线管中电流的 方向。 ③拇指所指的那端为N 极。 (2)已知磁极位置来确定电流的方向, ①先用右手握住螺线管,拇指指向N 极。 ②四指的指向就是电流的方向。 ③按照四指所指的方向在螺线管上标出电流方向 (3)已知电流方向和磁极来确定通电螺线管的绕线

物理电生磁知识点

物理电生磁知识点 物理电生磁知识点 电磁铁是通电螺线管的实际应用,是利用电流的磁效应工作的,以下是店铺为大家提供的物理电生磁知识点,希望大家能谨记呦! 物理电生磁知识点1 电磁铁是通电螺线管的实际应用,是利用电流的磁效应工作的,以下是为大家提供的九年级物理电生磁知识点,希望大家能谨记呦!! 1、奥斯特实验证明:通电导线的周围存在着磁场,磁场的方向跟电流的方向有关,这种现象叫做电流的磁效应。这一现象是由丹麦物理学家奥斯特在1820年发现的... 1、判断通电螺线管的磁场方向可以使用安培(右手)定则:将右手的四指顺着电流方向抓住螺线管,姆指所指的方向就是该螺线管的N 极。 2、把导线绕在圆筒上,做成螺线管,也叫线圈,在通电情况下会产生磁场。通电螺线管的磁场相当于条形磁体的磁场,通电螺线管的两端相当于条形磁体的两个磁极。 3、通电螺线管的磁场方向与电流方向有关。磁场的强弱与电流强弱、线圈匝数、有无铁芯有关。 4、在通电螺线管里面加上一根铁芯,就成了一个电磁铁。电磁铁磁场的强弱与电流的强弱、线圈的匝数、铁芯的有无有关。可以制成电磁起重机、扬声器和吸尘器等。 物理电生磁知识点2 1.电磁感应:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生电流,这种现象叫电磁感应,产生的电流叫感应电流。应用:发电机 2.产生感应电流的条件:①电路必须闭合;②只是电路的一部分导体在磁场中;③这部分导体做切割磁感线运动。 3.感应电流的方向:跟导体运动方向和磁感线方向有关。 4.发电机的原理:电磁感应现象。结构:定子和转子(线圈、磁

极、电刷)。它将机械能转化为电能。 5.分类:交流发电机和直流发电机 6.交流电:周期性改变电流方向的电流。 我国交流电的周期:0.02S 频率:50HZ,1S钟内改变电流方向100次 7.直流电:电流方向不改变的电流。 上面对物理学磁生电知识点的讲解内容,希望同学们都能很好的掌握,相信同学们一定会考出好成绩的,加油。 物理学习方法 兴趣 伴随着有趣的演示实验和动手实验,一个个意想不到的现象吸引你走入深奥的物理世界,但更多时候,老师为了讲清某一物理规律或物理情景,考虑到知识的整体性和逻辑性,经常会进行大段讲解。这是理解较高层次的知识所必需的,也是物理的“理”性所在,因此课堂气氛可能不象小学时那样“热烈”,随着学习的深入,物理的简洁美、逻辑美、对称美、统一美等更高层次的魅力就会吸引你欲罢不能,对这一过程同学们应该有思想准备,同时自己要尽快养成这种严谨的思维习惯和分析问题的方法。 主动 身心处于积极主动状态的同学,能够在课前主动预习,发现自己学习的困难点,课堂上注意力集中,大脑要高速运转,对老师提出的一些问题,要自己去考虑,主动发言,不要等老师去“灌输”。在学习中要善于提出问题,发表自己的看法,同时学会对知识进行梳理和重新整合,把杂乱的知识条理化、系统化,将它变成自己的东西。 独立 一定要独立完成作业。要独立地(指不依赖他人),保质保量地做一些题。题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。任何人学习数理化不经过这一关是学不好的。独立解题,熟能生巧,这是任何一个初学者走向成功的必由之路。 光现象知识点

新人教版九年级物理《第二十章-电与磁》知识点汇总含答案

人教版九年级物理《第二十章电与磁》知识点汇总 第一节磁现象磁场 1、磁现象: 磁性:物体能够吸引钢铁、钴、镍一类物质(吸铁性)的性质叫磁性。 磁体:具有磁性的物体,叫做磁体。磁体具有吸铁性和指向性。 磁体的分类:①形状:条形磁体、蹄形磁体、针形磁体;②来源:天然磁体(磁铁矿石)、人造磁体; ③保持磁性的时间长短:硬磁体(永磁体)、软磁体。 磁极:磁体上磁性最强的部分叫磁极。磁极在磁体的两端。磁体两端的磁性最强,中间的磁性最弱。 磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。 无论磁体被摔碎成几块,每一块都有两个磁极。 磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。(若两个物体互相吸引,则有两种可能:①一个物体有磁性,另一个物体无磁性,但含有钢铁、钴、镍一类物质;②两个物体都有磁性,且异名磁极相对。) 磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。 钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。所以钢是制造永磁体的好材料。 2、磁场: 磁场:磁体周围的空间存在着磁场。 磁场的基本性质:磁场对放入其中的磁体产生磁力的作用。磁体间的相互作用就是通过磁场而发生的。 磁场的方向:把小磁针静止时北极所指的方向定为那点磁场的方向。 磁场中的不同位置,一般说磁场方向不同。 磁感线:在磁场中画一些有方向的曲线,任何一点的曲线方向都跟放在该店的磁针北极所指的方向一致。这样的曲线叫做磁感线。 对磁感线的认识: ①磁感线是在磁场中的一些假想曲线,本身并不存在,作图时用虚线表示; ②在磁体外部,磁感线都是从磁体的N极出发,回到S极。在磁体内部正好相反。 ③磁感线的疏密可以反应磁场的强弱,磁性越强的地方,磁感线越密,磁性越弱的地方,磁感线越稀; ④磁感线在空间内不可能相交。 典型的磁感线 : 3、地磁场: 地磁场:地球本身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。 地磁场的北极在地理南极附近;地磁场的南极在地理北极附近。 小磁针能够指南北是因为受到了地磁场的作用。 地理的两极和地磁的两极并不重合,磁针所指的南北方向与地理的南北极方向稍有偏离(地磁偏角),世界上最早记述这一现象的人是我国宋代的学者沈括。(《梦溪笔谈》) 第二节电生磁 1、奥斯特实验: 最早发现电流磁效应的科学家是丹麦物理学家奥斯特。 奥斯特实验: 对比甲图、乙图,可以说明:通电导线的周围有磁场; 对比甲图、丙图,可以说明:磁场的方向跟电流的方向有关。 2、通电螺线管的磁场: 通电螺线管外部的磁场方向和条形磁体的磁场一样。通电螺线管的两端相当于条形磁体的两个极,通电螺线管两端的极性跟螺线管中电流的方向有关。 3、安培定则:用右手握螺线管,让四指指向螺线管中电流的方向,则大拇指所指的那端就是螺线管的N 极。 第三节电磁铁电磁继电器 1、电磁铁: 定义:插有铁芯的通电螺线管。

人教版九年级物理知识点总结:第二十章电与磁

第二十章电与磁 本章知识结构图: 一、磁现象磁场 1.磁现象 (1)能吸引铁、钴、镍的性质叫做磁性。 (2)具有磁性的物体叫做磁体。 (3)磁极:磁体上磁性最强的部分。北极(N),南极(S)。同极相斥,异极相吸。(4)磁化:物体在磁体或电流作用下获得磁性的现象。 2.磁体与带电体的异同: (1)带电体:能吸引轻小物体,有正、负电荷之分,同种电荷相互排斥,异种电荷相互吸引,电荷能单独存在。 (2)磁体:吸引磁性物质,有南、北极之分,但磁极不能单独存在。同名磁极相互排斥,异名磁极相互吸引。 3.磁场 (1)磁场:磁体周围存在的一种物质,叫做磁场。对放入其中的铁、钴、镍等物体有力的作用。方向:放在某点的小磁针静止时N极指向。 (2)磁感线:不是客观存在的,只是为了描述磁场而引入的。磁感线不是磁场。

(3)磁感线的分布特点: a.在磁体外部,从N极出发,回到S极; b.磁体周围的磁感线的分布都是立体的,而不是平面的; c.磁体两极处磁感线最密,表示两极处磁场最强,中间弱; d.空间中的任何两条磁感线绝对不会相交。 4.地磁场: (1)概念:地球本身是一个巨大的磁体,它周围存在着磁场——地磁场。 (2)地磁场的分布特点:地磁场的形状跟条形磁体的磁场相似,地磁的北极在地理的南极附近(稍有偏离),地磁的南极在地理的北极附近(稍有偏离),但是地理的两极和地磁的两极并不重合。 (3)指南针工作原理:由于受到地磁场的作用,小磁针静止时南极总是指向南方(地磁北极),北极总是指向北方(地磁南极)。 二、电生磁 1.电流的磁场: (1)奥斯特实验:1820年,丹麦物理学家奥斯特通过实验证实了通电导体和磁体一样,周围存在磁场,从而揭示了电和磁之间的联系。 (2)电流的磁场方向跟电流的方向有关。电流方向改变,则磁场方向改变。 (3)电流的磁效应:任何导体中有电流通过时,其周围空间均会产生磁场,这种现象叫做电流的磁效应。 2.通电螺线管的磁场和安培定则 (1)通电螺线管的磁场: 通过螺线管周围存在着磁场,通电螺线管的磁感线方向在螺线管外部是从N极到S极,在

初中九年级物理电与磁知识点全汇总(优选.)

电与磁 一、磁现象 1.磁性:磁铁能吸引铁、钴、镍等物质,磁铁的这种性质叫做磁性。 2.磁体:具有磁性的物质叫做磁体。 3.磁极:磁体上磁性最强的部分(任一个磁体都有两个磁极且是不可分割的) (1)两个磁极:南极(S)指南的磁极叫南极,北极(N)指北的磁极叫北极。 (2)磁极间的相互作用规律:同名磁极互相排斥,异名磁极互相吸引。 4.磁化:使原来没有磁性的物体获得磁性的过程。 二、磁场 1.磁场 (1)概念:在磁体周围存在的一种物质,能使磁针偏转,这种物质看不见,摸不到,我们把它叫做磁场。(2)基本性质:磁场对放入磁场中的磁体产生磁力的作用。 (3)磁场的方向: 规定——在磁场中的任意一点,小磁针静止时,N即所指的方向就是那点的磁场方向。 注意——在磁场中的任意一个位置的磁场方向只有一个。 2.磁感线 (1)概念:为了形象地描述磁场,在物理学中,用一些有方向的曲线把磁场的分布情况描述下来,这些曲线就是磁感线。 (2)方向:为了让磁感线能反映磁场的方向,我们把磁感线上都标有方向,并且磁感线的方向就是磁场方向。(3)特点:①磁体外部的磁感线从N极出发回到S极,内部从S极出发回到N极。 ②磁感线是有方向的,磁感线上任何一点的切线方向与该点的磁场方向一致。 ③磁感线的分布疏密可以反映磁场磁性的强弱,越密越强,反之越弱。 ④磁感线是空间立体分布,是一些闭合曲线,在空间不能断裂,任意两条磁感线不能相交。 ⑤磁感线是为了描述磁场而假想出来的,实际上不存在。 3.地磁场 (1)概念:地球周围存在着磁场叫做地磁场。(2)磁场的N极在地理的南极附近,磁场的S极在地理的北极附近。(3)磁偏角:首先由我国宋代的沈括发现的。 三、电生磁 1.电流的磁效应 (1)1820年,丹麦的科学家奥斯特第一个发现电与磁之间的联系。(2)由甲、乙可知:通电导体周围存在磁场。(3)由甲、丙可知:通电导体的磁场方向跟电流方向有关。 (4)电流的磁效应对应的图

物理电生磁的知识点九年级

物理电生磁的知识点九年级物理电生磁的知识点 在九年级的物理学中,电生磁是一个重要的知识点。本文将从电的基本特性、电路和磁场等方面来探讨这一知识点。 1. 电的基本特性 电是一种常见的自然现象,存在于我们生活中的各个方面。电具有三个基本特性:电荷、电流和电压。电荷是电的基本单位,包括正电荷和负电荷。当正电荷和负电荷相互吸引时,会形成电场。当电荷在导体中流动时,就形成了电流。电压是电力的一种度量,表示电流在电路中的能量转换。 2. 电路 电路是电流从电源流过的路径。电路中常用的元件有电源、导线、电阻和开关等。电流经过电源,从正极流出,经过导线传输到负极,最后返回电源,形成一个闭合回路。电流在导线中的传递受到电阻的影响,电阻越大,电流就越小。而开关可以控制电路中的电流是否通路。

3. 电阻与电流 电阻是电流流过的一种阻碍物。电阻的大小用欧姆(Ω)来表示。根据欧姆定律,电流与电压和电阻之间存在着密切关系。具 体来说,当电压一定时,电阻越大,电流就越小;当电阻一定时,电压越大,电流就越大。这种关系可以用公式I=U/R来表示。 4. 电磁感应 电磁感应是指磁场与导体相互作用时产生电流的现象。根据法 拉第电磁感应定律,当导体与磁场相对运动时,导体中会产生感 应电流。这种现象常见于电动机和发电机等装置中。电磁感应的 原理被广泛应用于电力工业和通讯技术中。 5. 磁场与磁力 磁场是指磁力的作用空间。在磁场中,磁力线由一个磁南极指 向一个磁北极,形成一个闭合的环路。磁力的大小与两个磁体之 间的距离和磁体的磁强度有关。磁场是由电流、电磁感应和磁物 质等产生的。 6. 磁场对电流的影响

新人教版九年级物理电与磁知识点全面总结

⎪⎪⎪⎪ ⎩⎪ ⎪⎪ ⎪⎨⎧⎩⎨⎧⎩⎨ ⎧⎩⎨ ⎧软磁体(极易失磁)硬磁体(永磁体)按磁性的保持时间分人造磁体天然磁体(铁矿石)按磁体来源分蹄形磁体条形磁体按磁体形状分磁体的分类述三种三种方式 常见见的磁体类别可按 20 电与磁 第1节 磁现象 磁场 一、磁现象 1、磁性:若物体能够吸引铁、钴、镍等物质;我们就说该物体具有磁性.. 铁、钴、镍等物质称为磁性材料..具有磁性的物体有两个特点:一是能吸引磁性材料;非磁性材料不能被吸引;如磁体不能吸引铜、铝、纸、木材等;二是吸引磁性材料时;可不直接接触;如隔着薄木板;磁体也能吸住铁块.. 2、磁体:具有磁性的物体称为磁体.. 3、磁极:磁体上磁性最强的部位叫做磁极;任何 一个磁体;无论其形状如何;都只有两个磁极;其中一个是南极S 极;另一个是北极N 极..磁极是磁体上磁性最强的部位.. 知识拓展:自然界中不存在只有单个磁极的磁体;磁体上的磁极总是成对出现的;而且一个磁体也不能 有多于两个的磁极.. 4、磁极间的相互作用 1同名磁极相互排斥;异名磁极相互吸引.. 2判断物体是否具有磁性的方法 ①根据磁体的吸铁性判断:将被测物体靠近铁屑;若能够吸引铁屑;说明该物体具有磁性;否则便没有磁性.. ②根据磁体的指向性判断:将被测物体用细线吊起;若静止时总是指南北方向;说明该物体具有磁性;否则便没有磁性.. ③根据磁极间的相互作用规律判断:将被测物体的一端分别靠近静止小磁针的两极;若发现有一段发生排斥现象;说明该物体具有磁性;若与小磁针的两极均表现为相互吸引;则说明该物体没有磁性.. ④根据磁极的磁性最强判断:若有A 、B 两个外形完全相同的钢棒;已知一个有磁性;另一个没有磁性;区分它们的方法是:将A 的一端从B 的左端向右端滑动;若在滑动过程中发现吸引力的大小不变;则说明A 有磁性;若发现A 、B 间的作用力有大小变化;则说明B 有磁性.. 3磁体和带电体的对比 磁体 带电体 能吸引磁性材料 能吸引轻小物体

九年级物理电生磁知识点

电生磁是物理学中的一个重要分支,主要研究电流和磁场之间的相互 作用关系。下面是九年级物理中电生磁的一些基本知识点: 1.电荷和电流 -电荷:电荷是物体的一种基本性质,可以为正电荷或负电荷。同性 电荷相互排斥,异性电荷相互吸引。 -电流:电荷在单位时间内通过导体的流动,单位为安培(A)。电流 的方向与正电荷的流动方向相反。 2.电路和电路符号 -电路:由电源、导线和电器组成的路径,用于电流的传输和电器的 工作。 -电路符号:用来表示电器元件(如电池、电灯、电阻等)的图形符号,便于电路的绘制和分析。 3.电阻和电阻定律 -电阻:导体对电流的阻碍作用,单位是欧姆(Ω)。 -电阻定律:欧姆定律表达了电流、电压和电阻之间的关系,即U=IR,其中U代表电压,I代表电流,R代表电阻。 4.串联和并联电路 -串联电路:电器元件按照一个接一个的方式连接,电流只有一条通 路流过所有元件。 -并联电路:电器元件按照平行连接的方式连接,电流在元件之间分流。

5.磁场和磁力线 -磁场:磁场是磁物体周围存在的一种力场,可以使磁铁与其他磁性 物体发生相互作用。 -磁力线:用来表示磁场的图线,从磁南极指向磁北极,磁力线的密 度表示磁场的强弱。 6.磁力和磁场力线之间的关系 -磁力:磁场对带电物体或者具有磁性的物体产生的力,有吸引和排 斥两种表现形式。 -磁场力线:磁力线是描述磁场分布的线条,磁场力线越密集,磁场 越强。 7.直流电动机和发电机 -直流电动机:将直流电能转化为机械能的设备,包括电刷和电枢两 个部分。 -直流发电机:将机械能转化为直流电能的设备,通过旋转磁场使导 线产生电动势。 8.电磁感应和发电机定律 -电磁感应:磁场发生变化时,会在导体中产生感应电流和感应电动势。 - 发电机定律:法拉第电磁感应定律描述了磁通量变化导致的感应电 动势,即ε = -N(dΦ/dt),其中ε代表感应电动势,N代表线圈的匝数,Φ代表磁通量。

九年级物理电生磁知识点

九年级物理电生磁知识点 九年级物理电生磁知识点 1、通电导线的周围有磁场,磁场的方向跟电流的方向有关,这种现象叫做电流的磁效应。这一现象是由丹麦物理学家奥斯特在1820年发现的。 2、把导线绕在圆筒上,做成螺线管,也叫线圈,在通电情况下会产生磁场。通电螺线管的磁场相当于条形磁体的磁场。 3、通电螺线管的磁场方向与电流方向以及螺线管的绕线方向有关。磁场的强弱与电流强弱、线圈匝数、有无铁芯有关。 4、在通电螺线管里面加上一根铁芯,就成了一个电磁铁。可以制成电磁起重机、排水阀门等。 5、判断通电螺线管的磁场方向可以使用右手定则:将右手的四指顺着电流方向抓住螺线管,姆指所指的方向就是该螺线管的北极。 物理学习方法 兴趣

伴随着有趣的演示实验和动手实验,一个个意想不到的现象吸引你走入深奥的物理世界,但更多时候,老师为了讲清某一物理规律或物理情景,考虑到知识的整体性和逻辑性,经常会进行大段讲解。这是理解较高层次的知识所必需的,也是物理的“理”性所在,因此课堂气氛可能不象小学时那样“热烈”,随着学习的深入,物理的简洁美、逻辑美、对称美、统一美等更高层次的魅力就会吸引你欲罢不能,对这一过程同学们应该有思想准备,同时自己要尽快养成这种严谨的思维习惯和分析问题的方法。 主动 身心处于积极主动状态的同学,能够在课前主动预习,发现自己学习的困难点,课堂上注意力集中,大脑要高速运转,对老师提出的一些问题,要自己去考虑,主动发言,不要等老师去“灌输”。在学习中要善于提出问题,发表自己的看法,同时学会对知识进行梳理和重新整合,把杂乱的知识条理化、系统化,将它变成自己的东西。 独立 一定要独立完成作业。要独立地(指不依赖他人),保质保量地做一些题。题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。任何人学习数理化不经过这一关是学不好的。独立解题,熟能生巧,这是任何一个初学者走向成功的必由之路。

初中物理 电生磁

20 电生磁 【知识要点】 一、直线电流的磁场 1.探究 (1)在小磁针的上方拉一根与小磁针平行的直导线,当直导线通电时(如 图所示)你观察到了什么现象? . 改变电流的方向,观察小磁针的偏转方向有什么变化? . (2)在有机玻璃板上穿一个孔,一根直导线垂直穿过小孔,在玻璃板上均匀 地撒上一些铁屑.给直导线通电后,轻敲玻璃板,观察铁屑的分布情况.(如图 所示) 实验表明:通电导线的周围和磁铁一样也存在磁场.电流的磁场与电流方 向有关,改变电流方向,磁场的方向也随之改变. 直线电流磁场的分布规律是:. 2.奥斯特实验 1820年,丹麦物理学家奥斯特最早做了上述实验,由电流产生了磁场. (1)奥斯特实验表明:通电导体和磁体一样,周围存在着磁场. (2)电流的磁场方向跟电流的方向有关 (3)电流的磁效应:任何导体中有电流通过时,其周围空间均会产生磁场, 这种现象叫电流的磁效应. (4)直线电流的磁场的磁感线,是分布在与电流垂直的平面上的一系列同心圆,各个同心圆由内到外,越来越稀疏,如图所示.磁感线的方向可由安培定则确定. 二、通电螺线管的磁场 探究1 (1)用导线绕成螺线管后通电,观察是否能吸引大头针. (2)在螺线管中插入一根铁棒或一枚铁钉,再观察吸引大头针的现象. 思考:比较两次实验的结果,想一想这说明了什么问题. 探究2

在穿过螺线管的有机玻璃板上均匀地撒上铁屑(如图所示).通电后轻敲玻璃板, 观察铁屑的分布规律. 改变电流方向,用小磁针探测螺线管的磁极有无变化. 通电螺线管的磁场(如图所示) (1)特点:通电螺线管外部的磁场和条形磁场一样,通电螺线管的两端相当于条形磁体的两个磁极. (2)通电螺线管两端的极性跟螺线管中电流方向有关,它们的关系可用右手螺旋定则来判定. 三、右手螺旋定则 (1)内容:用右手握住螺线管,让四指弯向螺线管中电流的方向,则大拇指所指的那端就是螺线管的北极. (2)判断方法:①标出螺线管上电流的环绕方向. ②用右手握住螺线管,让四指弯向电流的方向. ③大拇指所指的那端就是通电螺线管的北极. 四、影响通电螺线管磁性强弱的因素 探究 通电螺线管的磁性除了是否带铁芯之外,还跟哪些因素有关呢?请你猜测. 影响电磁铁磁性强弱的因素:①是否带铁芯;② ;③ ;④ ;⑤ …… 影响因素那么多,如何进行研究呢?采取的基本研究方法是 变量法. 1.研究电磁铁磁性与电流大小的关系. (1)研究的方法是:让 、 、 不变,改变线圈中的电 流大小研究当电流逐渐变大时,电磁铁的磁性如何变化. (2)根据实验要求设计的电路图如图所示.改变滑动变阻器的阻值判断电 磁铁磁性强弱变化. 实验现象记录: . 2.研究电磁铁磁性与 的关系. 请你按上面的研究方法分别进行设计与实验. 影响电磁铁磁性强弱的因素有: (1)与是否插入铁芯有关,插入铁芯时强,不插入铁芯时磁性弱. (2)通入电磁铁的电流越大,磁性越强. (3)在电流一定时,外形相同的螺线管,线圈的匝数越多,它的磁性越强. 实验电路图

九年级物理《电与磁》知识点总结

九年级物理《电与磁》知识点总结 九年级物理《电与磁》知识点总结 知识梳理: 1.磁现象 (1)磁性:磁体具有吸引铁和指南北的性质。 (2)磁极:磁体吸引钢铁能力最强的部位。 磁极间相互作用:同名磁极相互排斥,异名磁极相互吸引。 (3)磁化:一些物体在磁体或电流的作用下会获得磁性,使原来没有磁性的物体获得磁性的过程叫做磁化。 2.磁场 (1)磁体周围空间存在磁场。在物理学中,我们把放人磁场中的小磁针静止时北极所指的方向定为那点磁场的方向。 (2)磁感线可以方便、形象地描述磁场和磁场的方向。每一点的磁感线方向都与该点磁场的方向一致。磁感线都是从磁体的N极出发,回到S极。 (3)地球是一个大磁体,周围存在着磁场.地磁南极在地理北极附近,地理的两极与地磁的两极并不重合。 3.电生磁 (1)电流的磁效应:通电导线的周围空间存在磁场,磁场的方向跟电流的方向有关 (2)通电螺线管外部的磁场与条形磁体的磁场相似。

(3)判断通电导线的电流方向和磁场方向的关系用安培定则。 4.电磁铁 (1)电磁铁是带有铁芯的螺线管,当有电流通过时它具有磁性,没有电流时失去磁性。电磁铁的特点:可控、可调、可变。 (2)影响一定形状的电磁铁磁性强弱的因素有:电流的大小、线圈匝数的多少和铁芯情况。 5.电磁继电器、扬声器 (1)电磁继电器是利用低龟压、弱电流电路的通断,来间接控制高电压、强电流电路的装置;是利用电磁铁来控制工作电路的一种开关。(2)扬声器是把电信号转换成声信号的装置;主要由固定的永久磁体、线圈和锥形纸盆构成。当线圈中通入携带声音信息、时刻变化的电流时,周围产生不同方向的磁场,与永久磁体磁场相互作用,线圈就带着锥形纸盆振动起来,发出声音。 6.电动机 (1)磁场对通电导线有力的作用,力的方向跟电流方向、磁感线方向有关,当电流方向或者磁感线方向变得相反时,通电导线的受力方向也变得相反。 (2)电动机由定子和转子两部分组成,是利用通电线圈在磁场里受力的原理制成的。 (3)通电导线在磁场里受力运动的过程中电能转化为机械能。 7.磁生电

人教版九年级物理《第二十章电与磁》的知识点汇总

第一节磁现象磁场 1、磁现象: 磁性:物体能够吸引钢铁、钴、镍一类物质(吸铁性)的性质叫磁性。 磁体:具有磁性的物体,叫做磁体。磁体具有吸铁性和指向性。 磁体的分类:①形状:条形磁体、蹄形磁体、针形磁体;②来源:天然磁体(磁铁矿石)、人造磁体;③保持磁性的时间长短:硬磁体(永磁体)、软磁体。 磁极:磁体上磁性最强的部分叫磁极。磁极在磁体的两端。磁体两端的磁性最强,中间的磁性最弱。 磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。 无论磁体被摔碎成几块,每一块都有两个磁极。 磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。(若两个物体互相吸引,则有两种可能:①一个物体有磁性,另一个物体无磁性,但含有钢铁、钴、镍一类物质;②两个物体都有磁性,且异名磁极相对。) 磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。 钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。所以钢是制造永磁体的好材料。 2、磁场: 磁场:磁体周围的空间存在着磁场。 磁场的基本性质:磁场对放入其中的磁体产生磁力的作用。磁体间的相互作用就是通过磁场而发生的。 磁场的方向:把小磁针静止时北极所指的方向定为那点磁场的方向。 磁场中的不同位置,一般说磁场方向不同。 磁感线:在磁场中画一些有方向的曲线,任何一点的曲线方向都跟放在该店的磁针北极所指的方向一致。这样的曲线叫做磁感线。 对磁感线的认识: ①磁感线是在磁场中的一些假想曲线,本身并不存在,作图时用虚线表示; ②在磁体外部,磁感线都是从磁体的N极出发,回到S极。在磁体内部正好相反。 ③磁感线的疏密可以反应磁场的强弱,磁性越强的地方,磁感线越密,磁性越弱的地方,磁感线越稀; ④磁感线在空间内不可能相交。 典型的磁感线: 3、地磁场: 地磁场:地球本身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。 地磁场的北极在地理南极附近;地磁场的南极在地理北极附近。 小磁针能够指南北是因为受到了地磁场的作用。 地理的两极和地磁的两极并不重合,磁针所指的南北方向与地理的南北极方向稍有偏离(地磁偏角),世界上最早记述这一现象的人是我国宋代的学者沈括。(《梦溪笔谈》) 第二节电生磁

物理九年级电生磁知识点

物理九年级电生磁知识点 电生磁是物理学中重要的一门学科,它研究了电与磁之间的相 互关系以及它们所产生的现象和规律。对于九年级的学生来说, 理解电生磁知识点至关重要。本文将为您讲解九年级电生磁的基 础知识,帮助您更好地理解这一领域。 一、电的基本概念 电是一种基本的物理量,我们常见的电现象包括电流、电压和 电阻。电流是指电荷的流动,其单位是安培(A)。电压是电势差,它驱动电荷在电路中流动,其单位是伏特(V)。电阻是指物质对电流的阻碍程度,其单位是欧姆(Ω)。 二、电流和电路 电流的方向是由正电荷流向负电荷的方向,电路是指电流在闭 合导线中的路径。电路可以分为串联电路和并联电路两种。在串 联电路中,电流只能沿着一个方向流动,而在并联电路中,电流 可以在多个支路中同时流动。 三、电阻和欧姆定律

欧姆定律描述了电流、电压和电阻之间的关系。欧姆定律的数 学表达式为V=IR,其中V代表电压,I代表电流,R代表电阻。 根据欧姆定律,电阻越大,电流越小;电压越大,电流越大。 四、磁场和磁铁 磁场是一种特殊的物理场,它可以使磁性物质受到力的作用。 磁铁具有吸引铁磁物质的性质,它有北极和南极之分。磁场的单 位是特斯拉(T)。 五、洛伦兹力 洛伦兹力是电荷在磁场中受到的力,它是电场力和磁场力的综 合效果。洛伦兹力的方向是垂直于电荷速度和磁场方向的方向。 洛伦兹力的数学表达式为F=qvB,其中F代表洛伦兹力,q代表电荷,v代表速度,B代表磁场强度。 六、电磁感应 电磁感应是指磁场相对运动或改变时,产生感应电流的现象。 法拉第电磁感应定律描述了感应电流的产生和大小与磁场变化的 关系。根据法拉第电磁感应定律,磁场变化越快,感应电流越大。

九年级物理电生磁知识点

九年级物理电生磁知识点 物理是一门研究物质和能量之间相互作用的科学。在九年级物 理学习中,电生磁是一个重要的知识点。本文将以电生磁为主题,介绍九年级物理中的关键知识点。 1. 电路基础 电路是电流在导体中流动时形成的通路。一个基本的电路包括 能源(电池或电源)、导体(线)和控制电流的元件(开关等)。电流的方向是从正极到负极。在串联电路中,电流依次通过电阻 或其他元件,而在并联电路中,电流分流通过各个分支。 2. 电阻和电阻定律 电阻是材料阻碍电流流动的能力。电阻的大小取决于材料和截 面积。欧姆定律规定了电阻、电流和电压之间的关系,即U = IR,其中U代表电压,I代表电流,R代表电阻。根据欧姆定律,我们 可以计算电路中的电流和电压。 3. 电能和功率

电能是电流通过电阻产生的功率。电能的计算公式为E = Pt, 其中E代表电能,P代表功率,t代表时间。功率是描述单位时间 内做功的量,它与电流和电压的乘积成正比。 4. 磁场和磁力 磁场是磁铁或电流产生的一种力场。磁铁的两极是南极和北极,相同极相斥,不同极相吸。电流通过导线时也会产生磁场,其方 向由右手定则确定。磁力是磁场对物体或电流施加的力,其大小 与磁场强度和物体或电流的关系有关。 5. 领磁感应和电磁感应 领磁感应是指磁场穿过导体时,在导体中产生感应电流。电磁 感应是指导体在磁场中运动时,在导体中产生感应电压。根据法 拉第电磁感应定律,当导体与磁场相对运动或磁场发生变化时, 导体中会产生感应电压。 6. 电磁感应中的发电机和电动机 发电机是利用电磁感应原理将机械能转化为电能的装置。它通 过转动线圈在磁场中产生感应电流。电动机则是利用电磁感应原

电与磁九年级知识点总结归纳

电与磁九年级知识点总结归纳电与磁是物理学中重要的概念和现象,也是我们日常生活中经常接触到的科学原理。在九年级的物理学学习中,我们需要对电与磁的相关知识进行深入了解和掌握。本文将对电与磁的九年级知识点进行总结归纳,帮助同学们更好地理解和应用这些知识。 一、电的基本性质 1. 电的产生:静电和电流。 静电是指由于电荷的分离而产生的电现象,主要包括物体的带电和静电的放电。 电流是指电荷在导体内的流动,产生电流的条件有导体的存在和电势差的作用。 2. 电荷和电场: 电荷分正负电荷,同性电荷相斥,异性电荷相吸,同时具有电量和质量等物理量。 电场是指电荷周围的空间中存在的电场力和电场能。 3. 电流和电阻:

电流强度的单位是安培,电阻的单位是欧姆。欧姆定律描述了电流、电阻和电压之间的关系,即I=U/R。 电阻受到温度和材料等因素的影响。 二、电路分析和电路图 1. 串联与并联: 串联电路是指电流只有一条路径可走,电阻依次相连;并联电路是指电流可分流,电阻同时连接。 串联电路中总电流相等,总电压等于各个电阻电压之和;并联电路中总电流等于各个电阻电流之和,总电压相等。 2. 电路图: 电路图是电路的图形表示,包括电源、导线和电器等元件,用符号表示。 常用的电路图符号有电池、电阻、电容、电感、开关等。 三、磁的基本性质 1. 磁场和磁力线: 磁场是指磁物质周围的空间中存在的磁力和磁能。

磁力线是用来表示磁场分布的线条,起点表示北极,止点表 示南极,彼此不相交。 2. 磁铁的吸引和斥力: 不同磁极之间相互吸引,相同磁极之间相互排斥。 磁极的命名规则是指北极吸引南极,南极吸引北极。 四、电磁感应和电磁场 1. 法拉第电磁感应定律: 当导体运动磁场中或磁场变化时,会感应出电流,进而产生 电磁现象。 电磁感应定律揭示了电磁感应的规律和电能转化为磁能的过程。 2. 楞次定律: 楞次定律描述了磁场和电场之间的相互关系,即电流的变化 产生感应电动势,从而形成自感和互感等现象。 3. 电磁场: 电磁场是电场和磁场的统称,是电荷和电流相互作用产生的。

九年级物理,第20章 电与磁知识点总结

第二十章电与磁 知识点一、磁现象磁场 1.磁现象 (1)磁性:物体吸引铁、镍、钴等物质的性质。 (2)磁体:具有磁性的物体叫磁体。它有吸铁性、指向性,指南北。 (3)磁极:磁体上磁性最强部分叫磁极。任何磁体都有两个磁极,一个是北极(N极);另一个是南极(S极)(4)磁极间的作用:同名磁极互相排斥,异名磁极互相吸引。 (5)磁化:一些没有磁性的物体,在磁体或电流的作用下获得磁性的过程叫磁化。 2.磁场 (1)磁体周围存在的,看不见、摸不着能使小磁针偏转的物质叫磁场。 (2)磁场的性质:对放入其中的磁体产生磁力的作用。磁极间的相互作用就是通过磁场发生的。 (3)磁场的方向:在磁场中的某一点,小磁针静止时北极所指的方向就是该点的磁场方向。 3.磁感线 (1)定义:描述磁场的强弱和方向而假想的、有方向的曲线。磁感线不是客观存在的。 (2)方向:磁体外部,磁感线从北极出来回到南极。在磁体内部,磁感线是从它南极出来,回到北极;磁感线上任何一点的切线方向,都与该点的磁场方向一致。 (3)特点: A.磁场是真实存在于磁体周围的一种特殊物质,但磁感线却不是真实存在的。 B.磁感线分布的疏密可以表示磁场的强弱,磁感线分布越密,磁场越强。 C.磁体周围的磁感线是立体的封闭曲线,用虚线表示,任何两条磁感线都不会相交。 (4)磁场中某点的磁场方向、磁感线方向、小磁针静止时北极指的方向相同。 4地磁场 (1)定义:地球是一个巨大的磁体,地球周围的磁场叫作地磁场。地磁场的形状和条形磁体的的磁场相似。(2)磁极:地磁的南极在地理的北极附近,地磁的北极在地理的极附近。 (3)磁偏角:地理的两极与地磁的两极相反,且并不完全重合。最早发现这一现象是我国宋代学者沈括。 知识点二、电生磁 1.电流的磁效应 (1)家奥斯特实验说明:通电导体周围存在着磁场叫电流的磁场,磁场方向与电流方向有关。 (2)电流的磁效应:电流周围存在与电流方向有关的磁场,这种现象叫电流的磁效应。 2.通电螺线管的磁场 (1)特点:通电螺线管外部的磁场与的条形磁体的磁场相似,它的两端相当于条形磁体的两个磁极。 (2)影响因素:通电螺线管两端的极性与电流的方向有关。 (3)安培定则:用右手握螺线管,让四指弯向螺线管中电流方向,则大拇指所指的那端就是螺线管的北极。知识点三、电磁铁电磁继电器 1.电磁铁

相关主题