搜档网
当前位置:搜档网 › 水声聚焦相控阵列及其声场特性研究

水声聚焦相控阵列及其声场特性研究

水声聚焦相控阵列及其声场特性研究
水声聚焦相控阵列及其声场特性研究

声学的基本性质和室内声场

声学基础 第一章声音的基本性质 1.1 声音的产生与传播 声音是人耳通过听觉神经对空气振动的主观感受。 声音产生于物体的振动,例如扬声器的纸盆、拨动的琴弦等等。这些振动的物体称之为声源。声源发声后,必须经过一定的介质才能向外传播。这种介质可以是气体,也可以是液体和固体。在受到声源振动的干扰后,介质的分子也随之发生振动,从而使能量向外传播。但必须指出,介质的分子只是在其未被扰动前的平衡位置附近作来回振动,并没有随声波一起向外移动。介质分子的振动传到人耳时,将引起人耳耳膜的振动,最终通过听觉神经而产生声音的感觉。例如,扬声器的纸盆,当音圈通过交变电流时就会产生振动。这种振动引起邻近空气质点疏密状态的变化,又随即沿着介质依次传向较远的质点,最终到达接收者。可以看出,在声波的传播过程中,空气质点的振动方向与波的传播方向相平行,所以声波是纵波。 扬声器纸盒就相当于上图中的活塞 在空气中,声音就是振动在空气中的传播,我们称这为声波。声波可以在气体、固体、液体中传播,但不能在真空中传播。 1.2 声波的频率、波长与速度 当声波通过弹性介质传播时,介质质点在其平衡位置附近作来回振动。质点完成一次完全振动所经历的时间称为周期,记为T,单位是秒(s)。质点在1秒内完成完全振动的次数称为频率,记作f,单位为赫兹(Hz),它是周期的倒数,即: f=1/T 介质质点振动的频率即声源振动的频率。频率决定了声音的音调。高频声音是高音调,低频声音是低音调。人耳能够听到的声波的频率范围约在20—20000 Hz之间。低于20Hz的声波称为次声波,高于20000Hz的称为超声波。次声波与超声波都不能使人产生听感觉。 声波在其传播途径上,相邻两个同相位质点之间的距离称为波长,记为λ,单位是米(m)。或者说,波长是声波在每一次完全振动周期中所传播的距离。

一种新的水声目标辐射噪声特征提取模型

第16卷第6期2008年12月 鱼雷技术 TORPED07IECHNOIJoGY V01.16No.6 Dec.2008 一种新的水声目标辐射噪声特征提取模型 胡桥,郝保安,吕林夏,陈亚林,孙起 (中国船舶重工集团公司第705研究所,陕西西安,710075) 摘要:针对复杂环境中水声目标辐射噪声特征难以准确提取的问题,提出了一种新的基于第二代小波变换(sG—wT)、改进的经验模式分解(EMD)和Hilben包络解调分析(HEsA)的水声目标辐射噪声特征提取模型。首先,该模型利用sGwT滤除水声目标的非平稳辐射噪声信号中的噪声成分;其次,通过改进的EMD方法对滤波后的信号进行分解,提取信号的本征模式分量;最后,对这些本征模式分量进行HEsA处理,从而实现辐射噪声特征的提取。将该模型应用在仿真和实测的水声目标辐射噪声数据的特征提取中,测试结果表明,同常规的小波滤波和HEsA相比,该模型能够有效地提取出辐射噪声特征。 关键词:第2代小波变换(sGwT);改进的经验模式分解(EMD);Hilbert包络解调分析(HEsA);辐射噪声;特征提取 中图分类号:TN911.7;TN911.23文献标识码:A文章编号:1673-1948(2008)06JD038m6FeatureExtractionModelforU.nderwaterTargetRadiatedNoise HUQ娩吣,HAoBno—ml,Lvbn一戈io,CHENY8一l流,sUNQt (The705ResearchInstitute,chinashjpbuildingIndustrycorpomtion,xi7aIl710075,china) Abstract:Duetothedi妊icultyofcorrectlyextractingthefeaturesofundeMter target radiatednoiseincomplic砒eden、,ironment, anovel featureextractionmodelforunderwatertargetradiatednoise(UTRN)w黯proposedbasedonsecondgenerationwavelettransfo珊(SGWT),improvedempiricalmodedec锄position(EMD)andH拙ertenvelopespectn堋analysis(HESA).Firsdy,thenonstationaryuTRNwasfjlteredviasGWTtoremovemenoisecomponents.secondly,witlltheimprovedEMD,tllefilteredUTRNwasdecomposed协obtaintheintrinsicmodefunctions(IMFs).Fin曲,thefeatmsofuTRNcouJdbeextraetedby胍一SAoftheIMFs.7nlispmposedmodelwasappliedtothefeatureextractionofsimlllati鲫signalandrealradiated—noisedataofuIl—derwatertargets,andtheresultsshowthatthismodelcanmoreef绝c石velyext阳ctthefeatures矗{0mtheradiatednoisedata,com.paredwiththeconventionalwa_veletfiltrationandHESA. Keywords:secondgenerationwavelettransfo咖(SGWT);improvedenlpirical瓤)dedecomposition(EMD);Hilbertenvel叩espectmmanalysis(HESA);radjatednoise;featureextraction O引言 在复杂的海洋环境中,舰船等水声目标辐射噪声的产生和传播机理十分复杂,成分多样,既有宽带连续谱分量和较强的窄带线谱分量,又有明显的调制成分。由于受到各种丰富的背景噪声干扰,这些辐射噪声经过远程传播后,表现出的必然是一种低信噪比情况。同时由于水声信道的复杂多变以及水声信号传播的多途径效应,使水声信号也往往呈现出非高斯、非平稳和非线性的“三非”性质…。由于传统的快速傅立叶变换(FastF0uriertransf0砌,F订)和包络调制检测(DetectionofEnVelopeModul撕ononNoise,DEMON)分析等信号处理方法都是基于信号和噪声是线性平稳性的高斯随机过程这一假设的,随着水声目标减振降噪性能的提高以及在“三非”和低信噪比情况 收稿日期:2008-03-26;修回日期:2008J07旬9. 基金项目:中国博士后科学基金资助项且(20060400303). 作者简介:胡桥(1977一),男,博士后,研究方向为现代信号处理、水声目标检测及智能识别.万方数据

超声波特性

2.1 超声波的定义 波是由某一点开始的扰动所引起的,并按预定的方式传播或传输到其他点上。声波是一种弹性机械波。人们所感觉到的声音是机械波传到人耳引起耳膜振动的反应,能引起人们听觉的机械波频率在20Hz~20KHz ,超声波是频率大于20KHz 的机械波。 在超声波测距系统中,用脉冲激励超声波探头的压电晶片,使其产生机械振动,这种振动在与其接触的介质中传播,便形成了超声波。 2.2超声波的物理特性 当声波从一种介质传播到另一种介质时,在两介质的分界面上,一部分能量反射回原介质,称为反射波;另一部分能量透射过分界面,在另一个介质内部继续传播,称为折射波,如图2.1所示,图中L 为入射波,S ?为反射横波,L ?为反射纵波,L ?为折射纵波,S ?为折射横波。 L 图2.1超声波的反射、折射及其波形转换 这些物理现象均遵守反射定律、折射定律。除了有纵波的反射波折射波以外,还有横波的反射和折射。 因为声波是借助于传播介质中的质点运动而传播的,其传播方向与其振动方向一致,所以空气中的声波属于纵向振动的弹性机械波。在理想介质中,超声波的波动方程描述方法与电磁波是类似的。描述简谐声波向X 正方向传播的质点位移运动可表示为: ()cos()A A x t kx ω=+ (2.1) 0()ax A x A e -= (2.2) 式中,()A x 为振幅即质点的位移,0A 为常数,ω为角频率,t 为时间,x 为传播距离,2/k πλ=为波数,λ为波长,α为衰减系数。衰减系数与声波所在介质和频率关系: 2af α= (2.3)

式(2.3)中,a 为介质常数,f 为振动频率。 2.2.1超声波的衰减 从理论上讲,超声波衰减主要有三个方面: (1) 由声速扩展引起的衰减 在声波的传播过程中,随着传播距离的增大,非平面声波的声速不断扩展增大,因此单位面积上的声压随距离的增大而减弱,这种衰减称为扩散衰减。 (2) 由散射引起的衰减 由于实际材料不可能是绝对均匀的,例如材料中外来杂质金属中的第二相析出、晶粒的任意取向等均会导致整个材料声特性阻抗不均,从而引起声的散射。被散射的超声波在介质中沿着复杂的路径传播下去,最终变成热能,这种衰减称为散射衰减。 (3) 由介质的吸收引起的衰减 超声波在介质中传播时,内于介质的粘滞性而造成质点之间的内摩擦,从而使一部分声能转变成热能。同时,由于介质的热传导,介质的稠密和稀疏部分之间进行热交换,从而导致声能的损耗,以及由于分子驰豫造成的吸收,这些都是介质的吸收现象,这种衰减称为吸收衰减。 扩散衰减仅取决于波的几何形状而与传播介质的性质无关。对于大多数金属和固体介质来说,通常所说的超声波的衰减,即p(衰减系数)表征的衰减仅包括散射衰减和吸收衰减而不包括扩散衰减。因此,空气介质的衰减系数也由两部分组成,可由下式表示: 22222238211()3v P f f K C C C C πηπβρρ=++ (2.4) 式中:K :热传导系数 f :超声波频率 η:动力粘滞系数 C :超声波传播速度 v C :定容比热 p C :定压比热 ρ:传播介质密度 式(2.4)中第一项是由内摩擦引起的衰减系数,第二项是由热传导引起的衰减系数,由于后者比前者小得多,故在忽略热传导引起的超声波衰减的情况下,衰减系数可以由下式表示: 223 83f C πηβρ= (2.5) 把C = 2.5)可得: 3223 322283()M f R T β πηργ=?? (2.6) 由式(2.6)可知:温度一定时,η、 ρ、T 均一定,衰减系数与频率的平方成正比;频率越高,衰减的系数就越大,传播的距离也就越短。在实际应用中,一般选

声场设计依据数值

1.扩声系统设计指标 根据会议现场的建筑环境,节目类型及音源动态要求,现行的多功能厅,报告厅会议室等,都按照《厅堂扩声系统声学特性指标》 GYJ25-86 的语言兼音乐扩声一级标设计,设计的指标如下: 最大声压级(空场稳态,准峰值): 125~4000 Hz,平均≥98dB 传输频率特性:125~4000Hz,≤4dB 传声增益:125~4000Hz,≥8dB 声场不均匀度: 100Hz≤8dB, 1000 Hz~6300 Hz≤6dB 噪声级:≤NR25 (扩声系统) 2.专业扩声系统术语解释 由于电子技术的发展,扩声系统中电子设备的频率响应和相位响应处理技术已经达到很高的水平,影响扩声系统还原性能的主要瓶颈是换能器(扬声器)的失真,因此扬声器是决定扩声系统设计指标和品质因素的重点,换言之,扩声系统的预期指标与扬声器的规格参数息息相关。 3.频响范围 频响范围由频率范围与频率响应组成:频率范围 指电子设备最低有效重放信号频率与最高有效重放信 号频率之间的范围,一般采用图表形式表示音箱的相对幅 度和频率的函数关系(频率响应图)。左图是某音箱理想 的频率范围: 60Hz~20KHz@-3dB;频率响应指将一个恒 压输出的音频信号与系统相连接时,音箱产生的声压随频 率变化而发生增大或衰减,相位随频率发生变化的现象, 这种声压,相位频率的相关变化关系称为频率响应,单位 为分贝(dB)。

声压与相位滞后随频率变化的曲线称为频率特性。这是考察音箱性能优劣的一个重要指标,它与音箱的性价有着直接的关系,其分贝值越小说明音箱的频响曲线越平坦、失真越小、性能越高。人耳可分辨的频响不平坦程度因人及节目内容而异,大多数人对同一节目的频响变化如果小于 2~4dB就不易觉察。 选择音箱时应是扩音系统频响范围越大越好,但也必须是平坦的,两端衰减量不大于 3dB才有意义。 声压Sound Pressure:有声波产生时,传播媒质中的压力与静压的差值。单位为帕斯卡,简称帕(Pa)。 声功率:单位时间内通过某一面积的声能,单位为W(瓦)。 声压级Sound Pressure Level:声压与基准声压的比值以10为底的对数乘以2,通常以分贝(dB)为单位,基准声压必须指明。功放的功率Power:功放的单位是W(瓦),容量的大小与重放信号的大小、频率范围、负载阻抗、以及可承受的失真电平有关。为了制定功率的测试标准,联邦贸易委员会(FTC)颁布了以输入信号为20Hz~20KHz,失真低于1%的长时间测试标准,一种是使用“单音短脉冲触发”的方法在以下频率进行: 20Hz-0.05秒脉冲信号

超声波的声场特性

第二章超声波声场的特性 第一节波源辐射声场 超声检测或超声相控阵成像检测设备都是工作于主动检测方式。即由作为生源的超声换能器或阵列超声换能器向被检测物体内发射超声波,然后由接收换能器或阵列换能器接收载有被检测物体内缺陷或组织信息的超声回波信号,再通过信息提取与处理,实现对被检测物体内部缺陷或结构的评估与成像。 2.1 波动方程 物理声学中的波动方程是研究超声(或阵列)换能器的声场特性最基本的原理和方程。若被超声检测的物体为金属材质,大部分区域被认为各点的声速和密度是一致的,被认为是均匀体,只是对于缺陷或组织不均匀区域则是不一致的;若被检测物体为生物体,物体内各点的声速与密度存在起伏,并非均匀一致。本书只讨论在工程应用的超声相控阵成像检测技术,因此仅讨论在均匀介质中的声场。在声速与密度非均匀的介质中,声波传播过程用非均匀介质中声波方程来加以描述。非均匀介质中波动方程为 ?2P?1 C2e2P et2 =1 ρ ?ρ??P(式2-1) 式中,P是声强,ρ是介质密度,c是声波的速度,▽是梯度算子。假设声速和密度较之平均声速c0和平均密度ρ0有微小偏移,即 ρ=ρ0+?ρc=c0+?c 其中?ρ<<ρ0,?c<

会议室音响声场测试

会议室声场测试大纲 1测试工具 a)测试话筒1支 b)外置声卡1台 c)SIA Smaartlive软件1套 d)声压计1台 e)移动有源音箱1台 f)话筒线、卡侬头等1套 测试工具需选用高端专用工具,普通民用工具自身会产生很强的本底噪声,且声学特性较差,致使测试结果误差较大,失去测试的实际意义。 2声学指标 国家规定的GB50371-2006《厅堂扩声系统设计规范》中会议类声学指标如下: 3测试步奏 3.1设备连接准备

测试声卡U口或火线口连接电脑,1路输出给调音台线路输入,1路输入给测试话筒。调音台1路AUX输出给录音设备,记录整个测试过程。 测量音箱相位,保证音箱在正常工作状态。 校准Smaartlive声压级,在调音台上找出最大的可用传声增益状态(系统产生啸叫临界减去6dB)。 3.2测量 3.2.1现场环境参数测量 会议室内保持绝对安静状态,设备全部关闭,选出不少于5个点测量混响时间、现场环境噪声声压级。开启设备并将调音台主推子拉下,测量环境噪声声压级,得出系统运行本底噪声声压级。 3.2.2参数测量 以房间中线为基准,每2米选择一个点(不小于5个),作为测试点,依次测量传声增益、稳态声场不均匀度、传输频率特性等。 传声增益:扩声系统达到最高可用增益时(临界增益减去6dB增益余量),在指定的各听众位置上测得的平均声压级与话筒处声压级的dB数差值。 稳态声场不均匀度:当扩声系统处于最高可用增益时,在各点上测取最大声压级,取得的最大声压级的最高值与最低值的差值,即为声场不均匀度。 传输频率特性:选取125HZ、250HZ、500HZ、1kHZ、2kHZ和4kHZ这6个频率作为测量频率,依次在各测量点上得出声压级,根据测量数据得出传输频率特性。 感官测试:播放各类音乐感受语音可懂度(若设备允许,可测量谐波失真系数)及高、中、低频是否满足要求。 4测量结果记录 现场测量结果需将测量数据、测量图谱、测量环境(测试话筒摆放位置、高度等)保存,作为分析依据。 说明:现场装修的吸声系数(混响时间)及背景噪声需满足要求,否则会对声场产生很大影响,造成测量结果误差较大甚至失去测量意义。

EASE声场分析说明教学提纲

E A S E声场分析说明

声场分析 计算机模拟声场分析 (3) 1. EASE 4.3电脑设计系统简介 (3) 2. 分析依据: (3) 3. 电视电话会议室声场分析 (5) 4. 电视电话会议室分析结果 (12) 5. 作战指挥室声场分析 (13) 6. 作战指挥室分析结果 (20)

计算机模拟声场分析 为使武警水电会场声学方案设计更好地符合实际的效果,运用当代先进的计算机模拟技术,根据实际尺寸建立计算机建筑模型,对方案设计的音响效果进行计算机模拟验证,以确认设计的合理性,以及能满足技术要求,达到预期效果。 设计运用的是著名的声场分析软件——EASE4.3。 1.EASE 4.3电脑设计系统简介 EASE(全称ELECHO ACOUSTIC SIMNLATOR FOR ENGINEER)是由德国人在九十年代中期开发的通用数据库,现已成为世界上最为广泛使用的声学设计软件。 EASE是采用计算机CAD技术进行模拟声场的模型建设、声学设计、声学计算与声学分析的综合设计软件。 我们现在使用的是EASE 4.3版本,主要用它进行模拟验算的声学参数有: ?声场声压的分布——对声场的均匀度、频率响应及分布进行分析计算?声场清晰度的计算——对声音清晰度的分析计算 2.分析依据: 武警水电电视电话会议室以及作战指挥室扩声系统属厅堂扩声。声学特性指标采用广播电影电视部部分标准GYJ25-86<<厅堂电声系统声学特性指标>>中语言和音乐兼用的电声系统二级(语言扩声一级)声学特性指标。

RASTI----快速语言传输指数(rapid speech transmission index)是语言传输指数法(STI法)在某些条件下的一种简化形式,用来测定与可懂度有关的语言传输质量。在EASE中0.75~1(含0.75)为优,0.6~0.75(含 0.6)为良好,0.45~0.6(含0.6)为一般,0.3~0.45(含0.3)为较差,小于0.3为差.一般大于0.5为好. ALC-----辅音清晰度损失百分比(%ALCONS)是一种语言可懂度的度量方法。在EASE中0%~3.3%为优,3.3%~6.6%为良好,6.6%~14.7%为一 般,14.7%~33.6%为较差,33.6%以上为差.一般小于10%为好. 说明:以下六种图,前两种图表示设计者的音箱布置方式,后三种图是计算机模拟分析的结果。设计选择的音箱型号是软件数据库所具备的,所以其模拟分析的结果是有一定参考价值的。 建筑模型图——表示音箱的设计布置方式; 音箱声向图——表示音箱声线主轴所指向的位置;

第2章 超声波发射声场与规则反射体的回波声压

第二章超声波发射声场与规则 反射体的回波声压 超声波探头(波源)发射的超声场,具有特殊的结构。只有当缺陷位于超声场内时,才有有可能被发现。 由于液体介质中的声压可以进行线性叠加,并且测试比较方便。因此对声场的理论分析研究常常从液体介质入手,然后在一定条件下过渡到固体介质。 又由于实际探伤中广泛应用反射法,因此本章在讨论了超声波发射声场以后,还讨论了各种规则反射体的回波声压。 第一节纵波发射声场 一、圆盘波源辐射的纵波声场 1.波源轴线上声压分布 在不考虑介质衰减的条件下,图2.1所示的液体介质中圆盘源上一点波源ds辐射的球面波在波源轴线上Q点引起的声压为 式中 P o——波源的起始声压; d s——点波源的面积; λ——波长; r——点波源至Q点的距离; κ———波数,κ=ω/c=2π/λ; ω——圆频率,ω=2πf;‘ t——时间。 根据波的迭加原理,作活塞振动的圆盘波 源各点波源在轴线上Q点引起的声压可以线性迭加,所以对整个波源面积积分就可以得到波源轴线上的任意一点声压为 其声压幅值为 (2.1) 式中 R s—波源半径; χ——轴线上Q点至波源的距离。 上述声压公式比较复杂,使用不便,特作如下简化。 当χ≥2R,时,根据牛顿二项式将(2.1)式 简化为 (2.2) 根据sinθ≈θ(θ很小时)上式可简化为 (2.3) 式中 Fs——波源面积, (2.3)式表明,当χ≥3R;/A时,圆盘源轴线上的声压与距离成反比,与波源面积成正比。 波源轴线上的声压随距离变化的情况如图2.2所示。

(1)近场区:波源附近由于波的干涉而出现一系列声压极大极小值的区域,称为超声场的近场区,又叫菲涅耳区。近场区声压分布不均,是由于波源各点至轴线上某点的距离不同,存在波程差,互相迭加时存在位相差而互相干涉,使某些地方声压互相加强,另一些地方互相减弱,于是就出现声压极大极小值的点。 波源轴线上最后一个声压极大值至波源的距离称为近场区长度,用N表示。 声压P有极大值,化简得极大值对应的距 离为 式中n=O、1、2、3、……<(D s-一x)/2λ的正整数,共有n+1个极大值,其中n=0为最后一个极大值。因此近场长度为 (2.4) 声压P有极小值,化简得极小值对应的距离为 式中,n=0、1、2、3、……N的区域称为远场区,又叫富琅和费区。远场区轴线上的声压随距离增加单调减少。当x>3N时,声压与距离成反比,近似球面波的规律,P=PoFs/λx.这是因为距离χ足够大时,波源各点至轴线上某一点的波程差很小,引起的相位差也很小,这样干涉现象可略去不计。所以远场区轴线上不会出现声压极大极小值。 2.波束指向性和半扩散角 至波源充分远处任意一点的声压如图2.3所示。 点波源d s在至波源距离充分远处任意一点M(r,O)处引起的声压为 整个圆盘源在点M(r,θ)处引起的总声压幅值为 (2.5) 式中 r——点M(r,θ)至波源中心的距离; θ——r与波源轴线的夹角;

水声目标识别技术的现状与发展

Electronic Technology ? 电子技术 Electronic Technology & Software Engineering 电子技术与软件工程? 97 【关键词】水声目标识别 特点 目标识别算法 1 国内外水声目标识别特点及现状分析 随着科技的发展,水声目标身份识别在洋经济与军事活动中运用十分广泛。水声目标识别技术通常是利用各类型传感器收集目标信息并对其特征进行分析,通过比对已有信息库识别目标的类型。其工作原理主要是利用了声纳接收的被动目标辐射噪声、主动目标回波以及其他传感器信息提取目标特征并进行判断。 水声目标识别技术的现状与发展 文/章业成 水声目标主要包括声音、水流扰动和电磁辐射 等特征信息。不同水声目标的特征信息不同,例如舰艇和海底暗礁无论空间形态还是运动状态都有很大差异,通过差异化比对识别目标种类。 水声目标识别技术在军事上的运用主要是从20世纪60年代开始,其中以美、英、法等国为代表的军事强国,对水声目标识别技术进行了深入研究。 水声目标识别在国内起步较晚,但随着 海洋经济以及军事领域的发展,水声目标识别在国内的发展开始得到重视。多所高校及研究院均对水声目标物的甄别进行了大量探究,与此同时计算机技术、人工智能等新兴领域和前沿科技被吸收到水声目标的识别技术中,无论 是识别灵敏性还是准确度都有了巨幅的提升。 2 水声目标识别的传统识别方法 传统的水声目标识别方法通常包括通过以下几种方式进行: (1)通过噪声的不同特性进行识别。螺 旋桨和机械噪声通常可以作为水声目标辐射噪声能量的重要来源之一。研究者根据对不同类舰船的辐射噪声特性差异进行分析,实现水声目标分类; (2)通过水声目标的航行速度、加速度等运动状态及急剧变化等行为,预测出目标的后续行为及目的。此外,还可以通过对水声目标的行为、状态和类型进行分析,寻找出其内在关联,并通过模拟估计上述关联性特征预测目标的真实目的,从而实现目标分门别类; (3)根据不同目标船舰的排水量特征,通过分析不同型号的舰船在运行时,噪声强度与航速和排水量之间的关系,进行目标分类。 (4)根据目标所装备的主动声纳特征的不同来进行区别,由于不同的目标所装备的声纳型号有所差异,并且不同型号声波发射装置所发射声波的频率、强度等声波参数均不一样。 因此,根据探测目标说配备的主动声纳特征,能够判断出声纳的具体型号,排除掉不同类别的目标特征,减小鉴别难度更便于综合其他手段进行进一步的识别。 会进入区域1,并最终到达倒立平衡位置并相 对静止,起摆结束。2.2 稳摆算法 采用了PID 双闭环的方法,由于速度控制对于角度的控制是一种干扰,所以角度闭环输出减去速度闭环输出作用于电机来控制摆臂,进而控制摆杆倒立,两种控制作用在程序中进行耦合2.3 角度环 2.3.1 算法设计 通过STM32用adc 采集角位移传感器(WDD35D-4导电塑料电位器)的值,由之前学到的PID 控制算法理论可以得出,通过控制电机的转动与PWM 的值来使倒立摆达到我们所希望的角度。根据所需要的系统要求,只需要让其达到所期望的角度,历史的差值对其影响并不大,所以只需要PD 调节即可完成所需。2.3.2 参数整定 KP :逐渐增大KP 的值,直到出现反向或者低频抖动的情况; KD :微分控制,用来抑制转动惯量(即转动过猛)。2.4 位置环 单纯进行角度环的控制,会稳定一段时间,但是最终会朝一个方向运动下去,因此还必须加上位置环的控制位置环就是尽可能的让转动的轴不要移动。 3 测试方案及结果 3.1 测试方案一 先使摆杆静止使其保持铅锤状态,选择模式一开始同时使用STM32F407调试窗口观察旋转编码器返回的脉冲数计算其角度,看是否达到要求,并测量实际摆杆摆动角度,看是否一致。如表1所示。3.2 测试方案二 先使摆杆静止使其保持铅锤状态,选择模式二开始同时观察实际情况下摆臂控制摆杆的摆动,摆杆是否做圆周摆。如表2所示。3.3 测试方案三 用手将摆杆轻触到165度附近,松手。选择模式三开始计时,观察摆杆能否在极短时间内调整到倒立状态,并观察摆臂摆动角度是否小于90度。如表3所示。 <<上接96页 4 结论 从测试结果反映,整个旋转倒立摆能够完成基本要求,其能在短时间内实现摆杆摆动及圆周运动,并在受到外力的情况下迅速回到正常状态,整个旋转倒立摆稳定性好,抗干扰能力强。 参考文献 [1]佟远,张莎.基于PID 双闭环的 旋转倒立摆控制系统[J].测控技术,2016,35(8):85-88. [2]吴爱国,张小明,张钊.基于Lagrange 方程建模的单级旋转倒立摆控制[J].中国工程科学,2005(10). [3]汤燕.基于STC89C52的简易倒立摆控制 装置设计[J].现代电子技术,2014(20). 作者简介 邓新宇(1998-),男,四川省眉山市人。研究方向为嵌入式软件开发、嵌入式硬件设计。 作者单位 成都理工大学工程技术学院 四川省乐山市 614000

声场种类和参数

声场 消声室—房间四周均有吸声结构,因此传向各个方向的声音不会被反射。若一个房间具备自由场的条件,则会有完美的吸声效果。 消声末端—经常在高效吸声风管末端测试消声效果。 房间平均吸声系数(a)—将一个房间分成几个表面区域,单位为ft2或m2,全部房间的吸声系数,单位为赛宾或公制赛宾。 辐射─指声音以一个相当小的立体角度发射的现象。当频率增加时,这种特性更加准确。 散射场—在此环境中,各个位置的声压级相同,各个方向的声能流量也相等。 指向性因数(DI)—在远场中的任一个给定方向的声压级和平均声压级之间的差别。 从一个敞开的、排风管或风管发出的噪声,随测点和风管中心线的夹角而变化。以上所示数据为当量直径或直径约为10 ft (3.05m)的管道或风管发出的噪声。 扩散—在一个自由声场中,声波的传播使远场中声源的声压级随着离声源的距离越远而越低。 远场—声场的一部分,声压随距声源距离的增加而减少。距离每增加一倍,声压级相应减少约6dB。 自由场—指在一种环境中,声波在没有障碍物或反射的情况下,向各个方向传播。如:消声室。 硬质房间—对声音的吸收率非常低,而反射率相当高的房间。 反平方定律—在远场和自由场的条件下,声音密度的变化与距声源的距离的平方成反比。 两个远场点之间声压级的差如下所示: Lp2 = Lp1 - 20 log(R2 / R1) (B-1) 其中: Lp1 = 位置1的声压级,dB; Lp2 = 位置2的声压级,dB; R1 = 从声源到点1的距离; R2 = 从声源到点2的距离。(R1、R2单位必须相同) 公制Sabins—参看“总吸声值”。 近场—在声源和远场之间,距声源较近的位置。近场的典型特点是:只要测点与声源间距有微小变化,声压就会变化很大。 敞开的场—在一种环境里,声源可被固定在一个声学反射平面上,在无障碍物和反射的情况下,声音以半球形的形式传播。例:一间带有硬质(反射)地板的消声室;具有平坦地面而无障碍物的室外环境。 混响室—房间经过特殊处理,其四周具有高度反射性,以使声场尽可能地扩散,具有很长的混响时间。混响时间—在一个房间中,当一个稳定的声源停止发声后,平均声压级降低60dB所需要的时间。可采用如下方法估算: T = 0.049(V / A)英制单位(B-2)

《水声学》课程教学大纲

《水声学》课程教学大纲 一、课程基本信息 课程编号:0905105 课程中文名称:水声学 课程英文名称:Underwater acoustics 课程性质:专业主干课 考核方式:考试 开课专业:电子信息工程(水声) 开课学期:5 总学时:32 (其中理论32学时,实验0学时,上机0学时,其它0学时) 总学分:2 二、课程目的 通过讲述声纳方程、海洋声传播特性、目标反射和散射、海洋混响和水下噪声等内容,使学生了解水声工程设计的基本方法、声纳设备正确使用以及水声学的最新发展动态,掌握声波在海水中传播时的基本现象和规律以及对声呐设备的影响,具有解决简单的水声工程实际问题的能力。 三、教学基本要求(含素质教育与创新能力培养的要求) 1、掌握主、被动声纳方程,声纳参数物理意义,回声级、噪声级和混响级与距离的关系;了解水声学发展简史和应用。 2、掌握海洋中声速、声速结构、声吸收和扩展规律;了解海底和海面有关基本理论。 3、掌握射线声学的基本方程和应用条件,声强度和聚焦因子等概念;会绘制在不同类型声速分布下的声线轨迹,并能够计算声线传播距离和传播时间。 4、熟悉声波在表面声道、深海声道和浅海声道传播的基本规律;掌握反转深度、跨度、焦散线(面)和会聚区等基本概念;了解声传播的传播损失;运用声传播理论解释简单的声传播现象。 5、掌握目标强度概念和声纳目标强度特点,回声信号的组成和特征;了解目标强度测

量方法,刚性物体和弹性物体的回声信号的特点。 6、掌握散射强度、等效平面波的混响级概念,体积混响理论和界面混响理论;了解混响的统计特性;混响预报和计算。 7、掌握深海环境噪声源、噪声谱、噪声指向性,舰艇辐射噪声和自噪声的源和特征;了解舰艇辐射噪声和自噪声的测量方法;学会计算舰艇辐射噪声级和自噪声级。 8、掌握噪声和混响背景下的信号检测方法及声纳方程的应用。 四、教学内容与学时分配 第一章绪论(4学时) 水声学发展简史及应用;声纳及声纳工作方式;声呐参数及其物理意义(重点);主动声呐方程和被动声呐方程;声呐方程的应用及其限制。 第二章海洋声学特性(2学时) 海水中的声速;海水中的声吸收;海底声学特性及对声传播的影响;海面声学特性及对声传播的影响。 第三章海洋中的声传播理论(5学时)(重点、难点) 波动声学基础,波动方程,定解条件,硬地均匀浅海声场建模;射线声学的基本方程和应用条件;分层介质中的射线声学:声线弯曲、声线轨迹、声强度和聚焦因子。 第四章典型传播条件下的声场(5学时)(重点) 表面声道中的声传播特性;深海声道中的声传播特性;浅海声传播特性。 第五章声波在目标上的反射和散射(4学时)(重点、难点) 目标强度的定义及物理意义;常见声呐目标的目标强度及一般特征;目标强度的实验测量方法;目标回波信号组成及特征;刚性、弹性球体散射特性;亥姆霍茨积分方法求解散射声场。 第六章海洋中的混响(4学时)(重点、难点) 海洋混响基本概念及其特性;体积混响及其特性;海面混响及其特性;海底混响及其特性;混响统计特性和混响预报。 第七章水下噪声(4学时) 噪声基本概念(重点);海洋环境噪声;舰船、潜艇、鱼雷的辐射噪声;舰船、潜艇和

超声波

Ultrasound A Deep Thermal & Non-thermal Mechanical Modality CAI BIN

?对于一位前臂开刀半年后产生黏连性疤痕组织的病患,下列超声波治疗参数的组合,何着最为合适? ?A. 間歇性:1MHZ ;0.5watt/cm2 ?B. 間歇性:1MHZ ;1-2 watt/cm2 ?C. 連續性:3MHZ ;0.5 watt/cm2 ?D. 連續性:3MHZ ;1-2 watt/cm2

纲要 ?基础部分?临床部分

What is Ultrasound? ?Located in the Acoustical Spectrum ?May be used for diagnostic imaging, therapeutic tissue healing, or tissue destruction ?Thermal & Non-thermal effects ?We use it for therapeutic effects ?Can deliver medicine to subcutaneous tissues (phonophoresis)

超声波 ?超声波是指频率在20KHz以上,不能引起正常人听觉反应(16~20KHz)的机械振动波 ?Therapeutic ultrasound waves range from 750,000 to 3,000,000 Hz (0.75 to 3 MHz)?近年多采用1MHz、3MHz超声

物理特性?超声波与声波的本质 相同,都是物体的机 械振动在弹性介质中 传播所形成的机械振 动波。 ?在传播时产生一种疏 密交替的弹性纵波, 具有一定的方向性;

水声通信的信号处理实现

水声通信的信号处理实现 1.工作参数: 采样率:80ksps; FFT点数:2048; FFT输入精度:18比特; FFT输出精度:18比特,加6位精度控制; 输出波束为-60:8:60度,共16个波束; 波束上加30dB的切比雪夫窗用于抑制波束泄漏; 频域积分:500Hz~20kHz输出32或者64个频域区间,频域积分区间可通过软件控制; 时间积分:1、2、4、8个周期平均,可以通过软件控制。 因此:每次上传的数据为2边,每边16个波束,每个波束32个频率区间的时间平均。因此每一次上传采用一个数据包实现。 2.重要组成部分和实现: 水声通信信号的主要包括以下3个部分: 32个通道的2048点FFT处理; 32个通道的FFT由一个FFT的IP核实现,输入为实部为信号,虚部为0,输入是18位定点。输出的实部和虚部为18位,再加一个6比特的精度控制信息,表示数据低位舍去了多少位。 上面是2048FFT IP的实现的一些参数。它完成一次FFT的时间为3096个时钟周期。下面计算一下处理的时间,按照时钟周期计算。处理时钟为40MHz,2048点数据的采样时间为25.6毫秒,因此一个处理的时钟周期为1024000个时钟周期,由于通道数为32个通道,所以平均每个通道的时钟周期为32000个,远大于实际所需的时钟周期。因此采用一个FFT

模块就可以实现。 ●频域波束形成; 波束形成完成16个波束的频域乘累加运算。该运算的运算量为2个16个通道16个波束的运算。每个波束要16次的复数运算,一次波束共1024点。因此一次波束形成需要2×16×16×1024次复数乘累加运算。 该运算,频域的补偿值预先存储在ROM中,在运算的过程中调用。 ●波束域的频域积分、时间积分; 频域积分在频域波束形成输出时同时完成,完成后的波束积分放在缓存中,用于时间积分时。积分区间考虑做一个表,可以通过外部指令输入,也可以用内部的预先存储的值。 时间积分在频域积分的同时进行,它会把前几个周期的频域积分调出来进行积分运算。 3.系统实现的难点: 目前利用现有平台上实现信号处理的主要问题是RAM资源不足。目前硬件平台上FPGA内部有200KB的缓存和1MB的外部缓存。由于实现频域波束形成,32个通道同时操作,因此把中间数据放在外部缓存,调用时不方便。而内部资源比较有限,只有尽量减少中间结果的存储。 4.其他: 关于原始数据存储,由于该项目时间进度比较紧,建议采用目前的测试软件进行数据存储。目前的测试软件经过测试,不存在着数据丢包的问题。建议采用该软件在工业计算机上进行数据存储。 关于测向等后续算法,暂时还没有考虑。等把波束形成的算法完成后再把这部分功能加上去。

水声信道目标噪声干扰特性

第三章 信道、干扰与目标特性 3.1 水声信道特性 3.1.1 稳定单途信道-自由空间的传播 在理想介质自由空间中,信号传输过程如果用一网络来表示,则其脉冲响应为 ()()0τ-τδ=τh (3.1.1) 而传输函数为 ()0ωτ-=ωe H (3.1.2) 式中0τ为发射点至接收点的传播时间。 在实际海洋中,由于各个频率的吸收系数不同,高频衰减比低频衰减要大的多,传输函数的模()ωH 不在等于1,而是随着频率的增高而衰减,这时脉冲响应也不在是δ脉冲,而是有一定宽度的,其展宽程度与距离等因素有关。 3.1.2 稳定多途信道-海底、海面反射以及声速梯度引起折射产生的影响 实际海洋不可能是一个自由空间,它存在着海面和海底两个界面。由于温度、盐度和静压力的影响,海洋中不同深度声速是不同的,存在着声速垂直分布,这就会使声波产生折射。上下边界的反射和在水中的折射使得实际海洋信道不是单途径信道而是多途径信道。如果我们把海洋看成是一个具有平滑的上下边界的分层不均匀介质,声波在其中传播将产生稳定的多途信号。在已知声速-深度分布曲线时,可用射线理论或简正波理论来预测多途结构。 图3.1.1分别给出相应的多途信号的理论预测图和实际图。 图3.1.1 多途信号的理论预测图和实际图

图3.1.2 a 给出存在跃层时浅海传播的多途结构;b 给出相应的多途信号。图中给出了声源和接收点同在跃层上和分别在跃层上下的两种情况。 图3.1.2 ( a) 存在跃层时浅海传播的多途结构 (b) 相应的多途信号 稳定多途信号用网络来表示时,其脉冲响应可用如下形式来表示: ()()∑= τ-τδ=τh i (3.1.3) 式中i τ为各个途径信号的时延值。 传输函数为 ()e A H ωτ- = ∑=ω (3.1.4) 由于多途信号间的干涉,()ωH 随频率变化有起伏。 3.1.3 时空变信道 (1) 随机时变信道-随机起伏海面、粗糙海底、不均匀介质产生的影响 由于海面是随机起伏,海底是粗糙不平的,海水存在着宏观的分层不均匀,微观的随温度起伏、湍流、涡流、内波等因素的影响,使得多途信道不是稳定的而是随机时变的,这时脉冲响应函数应该是时间的随机函数。一个实际信道的脉冲响应可表示为

一种特征模板匹配的水声识别系统的设计与实现

收稿日期:2018年5月4日,修回日期:2018年6月25日作者简介:张振华,男,硕士,高级工程师,研究方向:水声目标识别、目标融合处理。吴宁,男,工程师,研究方向:水声信号处理,数据分析。俞剑,男,高级工程师,研究方向:水声系统架构,系统融合。? 1 引言 1.1 水声目标识别 水声目标识别技术,无论是民用的海底鱼群探 测、冰山礁石探测、深海环境探测,还是军用的鱼雷探测、潜艇探测以及反潜作战等,都很有现实意义,尤其是在军用领域,所谓知己知彼,百战不殆,实时准确的识别,是克敌制胜的关键。 目前水声目标识别面临两个主要问题:其一,水声目标类别繁多,如潜艇、水面舰、鱼雷、商船、渔船以及各种海洋生物,甚至暗礁、沉船等。其二,异类水声目标间的特征存在相似性,使得识别任务面 临很大干扰[1]。因此,虽然当前对于水声目标的识别手段日渐丰富,但如何有效利用好这些识别方法,取长补短;如何充分运用特征模板匹配方法,通过大数据技术充实数据库资料,再逆向完善匹配模板,从而最终构建基于模板匹配的水声综合识别系统,已成为提高水声目标识别率的急需。 1.2特征模板匹配技术应用 特征模板匹配技术,是在大数据应用基础上用 于目标识别的一种行之有效的方法。 一方面,“大数据”技术发展的大背景下,在水声识别领域,随着各类水声目标特征数据采集、汇总和存储量的不断增加,为了能够有效使用长期积 一种特征模板匹配的水声识别系统的设计与实现 ? 张振华1 吴 宁2 俞 剑1 (1.中国电子科技集团公司第二十八研究所南京210007)(2.中国人民解放军91458部队 三亚 572021) 摘 要 传统的水声目标识别,主要是通过单类型声纳或单识别方法来实现判性。论文提出一种基于多类型声纳或多 种识别手段相互印证,依据各种已明确的识别特征信息,进行汇总、归类、编辑、入库,充分运用大数据证据体模板及信息资料匹配的方法,同时,辅助人耳判听,能有效提高目标可识别性和识别准确率。虽然大数据匹配模板在该原型系统上的应用目前仅局限在初步实现阶段,但在实用意义和研究价值上很有必要性。 关键词 特征模板;水声识别;模板匹配;大数据 中图分类号 TN929 DOI :10.3969/j.issn.1672-9722.2018.11.023 Design and Implementation of Underwater Acoustic Identification System Based on Feature Template Matching ZHANG Zhenhua 1 WU Ning 2 YU Jian 1 (1.The 28th Research Institute of China Electronics Technology Group Corporation ,Nanjing 210007) (2.No.91458Troops of PLA ,Sanya 572021) Abstract Traditional underwater acoustic target recognition mainly depends on single sonar or single recognition method. This paper presents a multi type sonar or confirm each other many kinds of recognition method based on feature information.This method collects ,dassifies ,edits and stores the information based on all kinds of clean recoguition features ,and makes full use of the big data evidence and information template matching.At the same time ,this method assists human ears to judge hearing ,and it can effectively improve the target identification and recognition accuracy.Although the application of large data matching template in this prototype system is limited to the initial stage of implementation ,it is necessary in practical significance and research value. Key Words feature template ,underwater acoustic recognition ,template matching ,large data Class Number TN929 万方数据

相关主题