搜档网
当前位置:搜档网 › CANopen协议详情讲解

CANopen协议详情讲解

根据DS301的内容进行介绍

1、CAN总线

CAN标准报文

2、CANopen应用层协议

CANopen 协议不针对某种特别的应用对象,具有较高的配置灵活性,高数据传输能力,较低的实现复杂度。同时,CANopen 完全基于CAN 标准报文格式,而无需扩展报文的支持,最多支持127个节点,并且协议开源。

一个标准的CANopen 节点(下图),在数据链路层之上,添加了应用层。该应用层一般由软件实现,和控制算法共同运行在实时处理单元内。

一个标准的CANopen 节点

CANopen 应用层协议细化了CAN 总线协议中关于标识符的定义。定义标准报文的11 比特标识符中高4 比特为功能码,后7 比特为节点号,重命名为通讯

对象标识符(COB-ID)。功能码将所有的报文分为7个优先级,按照优先级从高至低依次为:

网络命令报文(NMT)

同步报文(SYNC)

紧急报文(EMERGENCY)

时间戳(TIME)

过程数据对象(PDO)

服务数据对象(SDO)

节点状态报文(NMT Err Control)

7 位的节点号则表明CANopen 网络最多可支持127个节点共存(0 号节点为主站)。

下表给出了各报文的COB-ID 范围。

NMT 命令为最高优先级报文,由CANopen 主站发出,用以更改从节点的运行状态。

SYNC 报文定期由CANopen 主站发出,所有的同步PDO 根据SYNC报文发送。

EMERGENCY报文由出现紧急状态的从节点发出,任何具备紧急事件监控与处理能力的节点会接收并处理紧急报文。

TIME 报文由CANopen 主站发出,用于同步所有从站的内部时钟。

PDO 分为4 对发送和接收PDO,每一个节点默认拥有4对发送PDO 和接收PDO,用于过程数据的传递。

SDO 分为发送SDO 和接收SDO,用于读写对象字典。

MT Error Control报文由从节点发出,用以监测从节点的运行状态。

状态机

CANopen 的每一个节点都维护了一个状态机。该状态机的状态决定了该节点当前支持的通讯方式以及节点行为。

初始化时,节点将自动设置自身参数和CANopen 对象字典,发出节点启动报文,并不接收任何网络报文。

初始化完成后,自动进入预运行状态。在该状态,节点等待主站的网络命令,接收主站的配置请求,因此可以接收和发送除了PDO 以外的所有报文。

运行状态为节点的正常工作状态,接收并发送所有通讯报文。

停止状态为一种临时状态,只能接收主站的网络命令,以恢复运行或者重新启动。

CANopen节点状态转换图

CANopen节点状态转换条件

3、Device Model

Communication 提供通信对象和传输经过底层的数据的适当功能;

Object Dictionary 对此设备上的应用程序对象,通信对象和状态机的行为有影响的所有

数据项的集合。

Application 由在处理环境方面的设备功能组成。

设备应用在数据条目中的完整描述在对象字典中叫设备子文件(device profile)

4、OD

每个节点维护一个对象字典(Object Dictionary, OD)。该对象字典保存了节点信息、通讯参数和所有的过程数据,是CANopen 节点的核心数据结构。上层应用程序也主要通过读写对象字典和CANopen 应用层进行交互。

CANopen 对象字典为两级数组结构,通过索引(16bits)和子索引(8bits)来编址。设备子文件中最重要的就是对象字典的描述,对象字典在slave节点中一般是在设备初始化写好的不会修改,而在master节点中可以在运行过程中动态修改,不修改的OD一般存在ROM中,而修改的存在RAM中。

由于它是由16bits的位索引,所以最多有65536个entries.

根据节点所支持的通讯方式,每一个节点都必须实现1000h~1FFFh 当中的一个必要子集,同时实现6000h 以上部分的数据区。数据区大小由节点的功能自行决定。1000h 以下部分所有的节点都不需实现。

对象字典作为在CAN总线上连接application和通信的媒介,其允许来自application数据在CAN 网络上进行交换。CANopen定义了可以进入对象字典的服务和通信对象。每一个入口通过索引和子索引来编址。在一个主索引里中的子索引入口的类型和属性可能会变化。

5、PDO

数据处理对象(PDO) 特别适合快速的数据处理传输。通信模块针对这些数据

处理对象定义了一个PDO producer 和一个或多个PDO consumers。

PDO的传输是由事件触发的,这样的事件可以是代表一个PDO变量的变化;可

以是时间的过期或者是接收到一个特定的消息。

过程数据直接在一个CAN消息中传输而不需要协议头文件。一个PDO的长度是在0到8个字节之间。

PDOs包含在其映射参数和通信参数中。TPDOs 和RPDOs的最大的数可以被定义为512。

一个简单的CANopen设备一般支持4个PDOs。实际当中,对一个具体的CANopen

设备而言,其PDOs的个数由应用层或设备profile来决定的。

3.1PDO的结构—映射参数

在对象词典中一个PDO由临近的条目构成。所谓的映射参数定义了这些条目的

连接。一个映射参数通过索引、分索引和位数定义数据源。

例如:

一个CAN消息最多有8个字节。这意味着当使用一个PDO时,在一个PDO中发送

8个字典的对象条目。

3.2PDO的结构—通信参数

为了传输一个PDO,通信参数定义了传输的性质和CAN标识符(CAN identifier)。

PDO通信参数是在对象词典的条目

(RPDOs: index 0x1400–0x15FF,TPDOs: 0x1800-0x19FF)

如果允许,映射参数在数据服务对象帮助下可以通过CAN修改。

3.2 COB-ID(CAN 标识符, 分索引1)

COB-ID作为身份证明,PDO的优先权在总线入口(access)之前。对于每一个CAN消息来说只允许有一个发送者(生产者)。然而,对这个已存在的消息来

说其允许多个接收者(消费者)。

位30=0,著对这个PDO来说一个远程发送请求(RTR)是被允许。

3.3 PDO连接的例子

设备A的输入2和3被转移到设备B的输出1和3。两个设备都支持完全映射。

传输和接收都是PDOs使用的是相同的标识符0x01C0。因此设备B自动的接收由设备A发送的PDO。设备B作为接收者根据映射原理分析数据:它传递第一个字节到输出1,传递第二个字节到输出3。在另一方面,发送设备A 以同样的字节存储它的输入2和3。

6、SDO

数据字典作为应用层和通信层的主要数据交换媒介。一个CANopen设备的所有数据的入口可以通过对象字典来管理。每一个对象字典的入口可以用索引和子索引来表示其地址。CANopen定义了所谓的SDO就是用于进入到这些入口。

通信模块基于客户-服务器框架上的数据交换。读或写入口总是由客户来初始

化并且是由服务器服务。每一个CANopen设备必须有一个数据服务对象服务器

来进入到它的对象字典。

SDO 发送需要两类不同的COB IDs (CAN identifier)。第一个COB ID 用于从客户到服务器发送一个请求。服务器通过第二个COB ID发送反馈信号到客户。

不同的COB ID必须用于各自的方向以防止在CAN总线上的冲突。通信profile 定义了COB IDs 可以用default SDP server。每一个CANopen设备可以处理127个SDO servers. CANopen 标准CiA DS-301 定义了不同的协议用于发送SDOs。

读OD 入口称作为上传,写入口称为下载。一个正在进行的发送可以在终止转

移服务帮助下由客户或服务器来中断。

TPDO 传输的是采样的数据,当发生触发TPDO 传输的事件时,各个TPDO 根据自己的传输类型决定是否进行采样并传输。TPDO 的传输分为同步和异步两大类,传输类型为同步的,需要在接收到同步消息(SYNC) 时采样数据。同步又分为周期和非周期两种。传输类型0 为非周期传输,表示只有接收到同步消息并且规定的事件发生才进行采样数据发送,具体是在收到同步对象后,判断规定的事件是否发生,如果发生则进行采样并触发TPDO 的发送。传输类型1~240 为周期传输,传输类型的值表示在接收到对应个数的同步消息后采样并触发TPDO 的发送,例如某个TPDO的传输类型为10,就表示此TPDO 每次接收到10 个同步消息后采样并发送数据。传输类型252 为非周期传输,在接收到同步对象后进行采样但不发送,在接收到请求该数据的远程帧后发送。传输类型253-255 为异步传输,定义为此三种类型的TPDO在接收到远程帧或规定的事件发生后进行传输。

7、CANopen中的协议

CAN message in CANopen

数据放在CAN帧中是按最小位在前的顺序存放。

NMT protocol

设置节点进入操作

设置节点进入停止

设置节点进入预操作

设置节点进入复位应用

设置节点进入复位通信

配置所有节点时,使用nodeID=00

Node Guard Protocol

主节点发送下列命令来询问节点的状态

节点响应

HeartBeat Protocol

节点周期传送它的状态。

Bootup Protocol

节点进入预操作状态时,它发送:

SDO protocol

所有SDO帧都具有相同的CAN帧长度:8bytes数据和rtr=0. SDO Download expedited protocol

为了写0xd0d1…到服务器节点对象字典,客户机发送请求:

SDO Upload expedited protocol

为了读0xd0d1…到服务器节点对象字典,客户机发送请求:

SDO abort protocol

Abort code (hexa)

0503 0000 Toggle bit not alternated

0504 0000 SDO protocol timed out

CANopen协议讲解

根据DS301的内容进行介绍 1、CAN总线 CAN标准报文

2、CANopen应用层协议 CANopen 协议不针对某种特别的应用对象,具有较高的配置灵活性,高数据传输能力,较低的实现复杂度。同时,CANopen 完全基于CAN 标准报文格式,而无需扩展报文的支持,最多支持127个节点,并且协议开源。 一个标准的CANopen 节点(下图),在数据链路层之上,添加了应用层。该应用层一般由软件实现,和控制算法共同运行在实时处理单元内。 一个标准的CANopen 节点 CANopen 应用层协议细化了CAN 总线协议中关于标识符的定义。定义标准报文的11 比特标识符中高4 比特为功能码,后7 比特为节点号,重命名为通讯对象标识符(COB-ID)。功能码将所有的报文分为7个优先级,按照优先级从高至低依次为: 网络命令报文(NMT) 同步报文(SYNC) 紧急报文(EMERGENCY) 时间戳(TIME)

过程数据对象(PDO) 服务数据对象(SDO) 节点状态报文(NMT Err Control) 7 位的节点号则表明CANopen 网络最多可支持127个节点共存(0 号节点为主站)。 下表给出了各报文的COB-ID 范围。 NMT 命令为最高优先级报文,由CANopen 主站发出,用以更改从节点的运行状态。 SYNC 报文定期由CANopen 主站发出,所有的同步PDO 根据SYNC报文发送。 EMERGENCY报文由出现紧急状态的从节点发出,任何具备紧急事件监控与

处理能力的节点会接收并处理紧急报文。

TIME 报文由CANopen 主站发出,用于同步所有从站的内部时钟。 PDO 分为4 对发送和接收PDO,每一个节点默认拥有4对发送PDO 和接收PDO,用于过程数据的传递。 SDO 分为发送SDO 和接收SDO,用于读写对象字典。 MT Error Control报文由从节点发出,用以监测从节点的运行状态。 状态机 CANopen 的每一个节点都维护了一个状态机。该状态机的状态决定了该节点当前支持的通讯方式以及节点行为。 初始化时,节点将自动设置自身参数和CANopen 对象字典,发出节点启动报文,并不接收任何网络报文。 初始化完成后,自动进入预运行状态。在该状态,节点等待主站的网络命令,接收主站的配置请求,因此可以接收和发送除了PDO 以外的所有报文。 运行状态为节点的正常工作状态,接收并发送所有通讯报文。 停止状态为一种临时状态,只能接收主站的网络命令,以恢复运行或者重新启动。

CANopen协议介绍

CANopen ?????????CAN-bus????

?? 1??? (1) 2?CAL ?? (2) 3?CANopen (3) 3ˊ1 ????OD (3) 3ˊ2 CANopen?? (4) 3ˊ3 CANopen8?Н??▊ (6) 3ˊ4 CANopen????? (8) 3ˊ5 CANopen boot-up?? (8) 3ˊ6 CANopen?????? (9) 4??? (18) 5??? (19)

1??? ?OSI????????????????????????1???ˊ????2??????????7?????????????????????????????3????????4???????г????5???????6?????????? CAN?Controller Area Network????????Н??1???2???ISO11898?????┉??Ё????????????????????????????Software?????Firmware????????????? ???CAN??Н?ˊ?????????????????????????????????НCAN??Ё?11/29?????8?????????????CAN??????????Ё?????????????????????????????CAN??????????????????CAN ??Ё????????????????????????????????ˊ???z ????Application layer?????Ё??????????????????????? z ?????Communication profile???????????????Н??Н???????z ?????Device proflile?????????????????? ??????????CAN??????CAL?????CAL?????CANopen???CANopen ???CAN-in-Automation(CiA)?Н???П?????????Й?????????????????CANopen?????????CAN?????Ё?:??????????????????????????????????????????????????????????????ā????ā???Ё?????ā????ā?Н????????????????????CANopen????????????????????????? ?OSI??Ё?CAN???CANopen??П?????????? C iA DS P-401C iA DS P-404 CiA DSP-xxx Application C hip Data Link Physical Layer ?1.1 CAN?CANopen???OSI????Ё?????

CAN总线与CANopen协议

CAN总线与CANOpen协议 一CAN总线简介 1.1 引言 在20世纪90年代的汽车研究领域,采用总线分布式控制获得了很大的成功。用户要求汽车的控制系统具有优越的性能以保证汽车的安全性和舒适性,因此越来越多的具有超强计算能力的电子设备加载在汽车上。这就要求不同的电子设备之间能够进行通信和数据交换,以达到信息共享协调工作的目的。德国的博世公司(Bosch)率先将CAN总线(Controller Area Network)应用于汽车电子控制系统,解决了控制系统的部件之间的以及控制系统与测试设备主机的数据交换问题,替代了原有网络(用于车体控制的LIN网络、用于厂内环境控制的MOST 网络及原有车内通信的Flecray网络等)实现的功能。由于其独特的设计思想和高可靠性,在不同总线标准的竞争中获得了广泛的认可,并逐渐成为汽车最基本的控制网络,广泛应用于火车、机器人、楼宇控制、机械制造、数字机床、医疗器械、自动化仪表等领域。 图1.1 早期的ECU(汽车电子控制单元)通信 CAN总线是一种串行通信协议,具有较高的通信速率的和较强的抗干扰能力,可以作为现场总线应用于电磁噪声较大的场合。由于CAN总线本身只定义ISO/OSI模型中的第一层(物理层)和第二层(数据链路层),通常情况下CAN 总线网络都是独立的网络,所以没有网络层。在实际使用中,用户还需要自己定义应用层的协议,因此在CAN总线的发展过程中出现了各种版本的CAN应用

层协议,现阶段最流行的CAN应用层协议主要有CANopen、DeviceNet和J1939等协议。 图1.2 基于总线(CAN)的ECU通信 1.2 CAN总线的特点 CAN总线并不采用物理地址的模式传送数据,而是每个消息有自己的标识符用来识别总线上的节点。标识符主要有2个功能:消息滤波和消息优先级确定。节点利用标识符确定是否接收总线上的传送的消息当有2个或更多节点需要传送数据时,根据标识符确定消息的优先级。总线访问采用多主原则,所有节点都可以作为主节点占用总线。CAN总线相对于Ethernet具有非破坏性避免总线冲突的特点(CSMA/CA协议,与CSMA/CD协议相似),这种方式可以保证在产生总线冲突的情况下,具有更高优先级的信息没有被延时传输。 其物理传输层详细和高效的定义,使得CAN总线具有其它总线无法达到的优势,注定其在工业现场总线中占有不可动摇的地位,CAN总线通信主要具有如下所示的优势和特点: (1)CAN总线上任意节点均可在任意时刻主动的向其它节点发起通信,节点没有主从之分,但在同一时刻优先级高的节点能获得总线的使用权,在高优先级的节点释放总线后,任意节点都可使用总线; (2)CAN总线传输波特率为5Kbps~1Mbps,在5Kbps的通信波特率下最远传输距离可以达到10Km,即使在1Mbps的波特率下也能传输40m的距离。在1Mbps波特率下节点发送一帧数据最多需要134μs; (3)CAN总线采用载波监听多路访问、逐位仲裁的非破坏性总线仲裁技术。在节点需要发送信息时,节点先监听总线是否空闲,只有节点监听到总线空

can总线与canopen协议

竭诚为您提供优质文档/双击可除can总线与canopen协议 篇一:?canopen协议讲解 根据ds301的内容进行介绍 1、can总线 can标准报文 2、canopen应用层协议 canopen协议不针对某种特别的应用对象,具有较高的配置灵活性,高数据传输能力,较低的实现复杂度。同时,canopen完全基于can标准报文格式,而无需扩展报文的支持,最多支持127个节点,并且协议开源。 一个标准的canopen节点(下图),在数据链路层之上,添加了应用层。该应用层一般由软件实现,和控制算法共同运行在实时处理单元内。 一个标准的canopen节点 canopen应用层协议细化了can总线协议中关于标识符的定义。定义标准报文的11比特标识符中高4比特为功能码,后7比特为节点号,重命名为通讯对象标识符(cob-id)。功能码将所有的报文分为7个优先级,按照优先级从高至低

依次为: 网络命令报文(nmt) 同步报文(sync) 紧急报文(emeRgency) 时间戳(time) 过程数据对象(pdo) 服务数据对象(sdo) 节点状态报文(nmterrcontrol) 7位的节点号则表明canopen网络最多可支持127个节点共存(0号节点为主站)。 下表给出了各报文的cob-id范围。 nmt命令为最高优先级报文,由canopen主站发出,用以更改从节点的运行状态。 sync报文定期由canopen主站发出,所有的同步pdo根据sync报文发送。 emeRgency报文由出现紧急状态的从节点发出,任何具备紧急事件监控与处理能力的节点会接收并处理紧急报文。 time报文由canopen主站发出,用于同步所有从站的内部时钟。 pdo分为4对发送和接收pdo,每一个节点默认拥有4 对发送pdo和接收pdo,用于过程数据的传递。 sdo分为发送sdo和接收sdo,用于读写对象字典。

CANopen协议—PDO介绍

机械工程学院机械设计及理论研究所 目录 第一章PDO实例分析 (1) 一、目的: (1) 二、手段: (1) 三、分析: (1) 四、过程: (2) 4.1.对象字典的编写 (2) 4.1.1各节点ID分配表定义 (2) 4.1.2对节点1进行对象字典编写 (2) 4.1.3对节点2进行对象字典编写 (3) 4.1.4对节点3进行对象字典编写 (5) 4.2节点1发送数据至节点2、节点3 (6) 4.2.1节点1发送数据至总线 (6) 4.2.2 节点2、节点3从总线接收数据 (7) 4.3 节点2 发送数据至节点3 (8) 4.3.1 节点2 发送数据至总线 (8) 4.3.2 节点3从总线接收数据 (9) 参考文献 (10)

第一章PDO实例分析 一、目的: 实例的目的如图1-1所示,实现节点1的数据(A、B)传送到节点2、节点3,同时实现节点2传输数据(C、D)至节点3 。 图1-1 数据传输目的 二、手段: 使用PDO进行数据传送。 三、分析: 图1-2 SDO客户/服务器通讯模式[1] PDO通信是基于生产者/消费者(Producer/Consumer)模型,主要用于传输实时数据。产生数据的节点将带有自己节点号的数据放到总线上,需要该数据的节点可以配置为接收该节点发送的数据[3]。

四、过程: 4.1.对象字典的编写 对象字典的结构和条目对于所有设备是共同的,本例中采用索引定位,子索引确定对象的思想构建对象字典,方法是使用结构体定义子索引,子索引结构体的成员变量包含对象的属性(读写权限,数据类型,数据长度等)和指向对象的指针,定义索引时包含指向子索引的指针和子索引数目,对象字典各项在代码中采取如图1-3所示的方式来组织构建,这样可以方便地通过索引和子索引一找到对应的项,对象定义为指针的形式可以通过主站的SDO报文进行读写,实现对对象字典的灵活配置,同时这种方式实现通讯层与应用层共享数据变量的特点。对象字典的条目格式如图1-3所示: 图1-3 对象字典模块结构图 4.1.1各节点ID分配表定义 表1-1 各节点ID分配表 4.1.2对节点1进行对象字典编写 节点1发送数据至节点2、节点3,故需定义TPDO,我们在此处定义为TPDO1。节点1的应用数据区、TPDO1的通讯参数和映射参数在对象字典中的定义分别如表1-2、1-3和1-4所示。 表1-2 节点1的应用数据区在对象字典中的定义 表1-3 节点1的TPDO1通讯参数在对象字典中的定义

CANopen协议介绍

CANopen协议介绍(讲义) 2010-10-12 15:58:28| 分类:技术文档| 标签:|举报|字号大中小订阅 很长一段时间以来,很多人问我CANopen 总线优势到底在什么地方,我也大体的给了口头的讲述,但是比较笼统,没办法做到详细解释,加上纯技术的话语比较晦涩,遇上内行还能多聊几句,如果是刚接触的,那就是云里雾里了。这次正好要进行公司业务员培训,要讲讲CANopen,在整理过程中把我的讲义贴出来,希望能帮到大家,以下内容是我讲课的口述内容,比较白话,不能作为资料,大家见谅,鉴于我整理也比较辛苦,也算个小小的知识产权,所以PPT我就不 贴出来了。^-^ 讲义内容: 通常CANopen协议相关的一些资料相对来说比较晦涩,非专业人士看起来比较困难。我尽量以浅显易懂的方式将CANopen 协议的框架和它在实际应用中存在的优缺 点展示给大家。

我按照最先接触的内容由浅入深的讲解,直接讲CANopen协议会有点跳跃的感觉,所以,我以产品作为切入点,分析一下如何使用,在这个过程中,让大家理解什么是CANopen协议。首先,我们拿到一个产品,比方说是编码器,它的用途是作为位置传感器,那我们就需要将编码器送出的数据进行采集。一般自然界中存在的信号有多种形式,大多以模拟量形式存在,类似于人感觉到温度的高低、水流的快慢、风力的大小等等。但这是很模糊的概念,今天热了还是冷了,风大风小,没有比较是很难界定的,为了规范这些量,方便描述时的统一性,温度计量标准有华氏和摄氏、水流有每秒多少立方、风力有级数。这些,就是数字量。数字量在人与人之间传递时,可以通过嘴和耳,语言和听力,在设备之间如何来传递呢?学过数电的人知道,灯泡有两种状态,亮和暗,在最基础的电路回路里,“通”和“断”是两个最基本的状态,我们可以把他理解为“1”和“0”,这样,就有了表述的方法。但是单独使用这两种状态是无法传递信息的,如何把编码器

CANOPEN协议详解.pdf

一、CAN-BUS 介绍 1.CAN 的基本概念、特点 CAN 是Controller Area Network 的缩写(以下称为 CAN ),是ISO*1国际标准化 的串行通信协议。CAN 协议如表 3 所示涵盖了ISO 规定的OSI 基本参照模型中的传输层、数据链路层及物理层。 CAN 协议中关于ISO/OSI 基本参照模型中的传输层、数据链路层及物理层,具体有哪些定义如图所示。 . ISO/OSI 基本参照模型ISO/OSI 基本参照模型 各层定义的主要项目软件 控制 7 层:应用层 由实际应用程序提供可利用的服务。6 层:表示层 进行数据表现形式的转换。如:文字设定、数据压缩、加密等的控制5 层:会话层 为建立会话式的通信,控制数据正确地接收和发送。4 层:传输层控制数据传输的顺序、传送错误的恢复等,保证通信的品质。 如:错误修正、再传输控制。 3 层:网络层进行数据传送的路由选择或中继。 如:单元间的数据交换、地址管理。 硬件 控制 2 层:数据链路层 将物理层收到的信号(位序列)组成有意义的数据,提供传输错误控 制等数据传输控制流程。如:访问的方法、数据的形式。 通信方式、连接控制方式、同步方式、检错方式。应答方式、通信方式、包(帧)的构成。位的调制方式(包括位时序条件)。 1 层:物理层 规定了通信时使用的电缆、连接器等的媒体、电气信号规格等,以实 现设备间的信号传送。 如:信号电平、收发器、电缆、连接器等的形态。【注】*1 OSI :Open Systems Interconnection (开放式系统间互联)

CAN的特点 CAN 协议具有以下特点。 (1) 多主控制 在总线空闲时,所有的单元都可开始发送消息(多主控制)。最先访问总线的单元可获得发送权。 (2) 消息的发送 在CAN 协议中,所有的消息都以固定的格式发送。总线空闲时,所有与总线相连 的单元都可以开始发送新消息。两个以上的单元同时开始发送消息时,根据标识符(Identifier 以下称为ID)决定优先级。ID 并不是表示发送的目的地址,而是表示访问总线的消息的优先级。两个以上的单元同时开始发送消息时,对各消息ID 的每个位进行逐个仲裁比较。仲裁获胜(被判定为优先级最高)的单元可继续发送消息,仲裁失利 的单元则立刻停止发送而进行接收工作。 (3) 系统的柔软性 与总线相连的单元没有类似于“地址”的信息。因此在总线上增加单元时,连接在 总线上的其它单元的软硬件及应用层都不需要改变。 (4) 通信速度 根据整个网络的规模,可设定适合的通信速度。 在同一网络中,所有单元必须设定成统一的通信速度。即使有一个单元的通信速度 与其它的不一样,此单元也会输出错误信号,妨碍整个网络的通信。不同网络间则可以 有不同的通信速度。 (5) 远程数据请求 可通过发送“遥控帧”请求其他单元发送数据。 (6) 错误检测功能·错误通知功能·错误恢复功能 所有的单元都可以检测错误(错误检测功能)。 检测出错误的单元会立即同时通知其他所有单元(错误通知功能)。 正在发送消息的单元一旦检测出错误,会强制结束当前的发送。强制结束发送的单 元会不断反复地重新发送此消息直到成功发送为止(错误恢复功能)。 (7) 故障封闭 CAN 可以判断出错误的类型是总线上暂时的数据错误(如外部噪声等)还是持续的 数据错误(如单元内部故障、驱动器故障、断线等)。由此功能,当总线上发生持续数据错误时,可将引起此故障的单元从总线上隔离出去。 (8) 连接 CAN 总线是可同时连接多个单元的总线。可连接的单元总数理论上是没有限制的。 但实际上可连接的单元数受总线上的时间延迟及电气负载的限制。降低通信速度,可连 接的单元数增加;提高通信速度,则可连接的单元数减少。 2. CAN协议及标准规格

CANOPEN协议详解

一、CAN-BUS介绍 1.CAN的基本概念、特点 CAN 是Controller Area Network的缩写(以下称为CAN),是ISO*1国际标准化的串行通信协议。 CAN 协议如表3 所示涵盖了ISO 规定的OSI 基本参照模型中的传输层、数据链路层及物理层。 CAN 协议中关于ISO/OSI 基本参照模型中的传输层、数据链路层及物理层,具体有哪些定义如图所示。 . ISO/OSI 基本参照模型 【注】*1 OSI:Open Systems Interconnection (开放式系统间互联)

CAN的特点 CAN 协议具有以下特点。 (1) 多主控制 在总线空闲时,所有的单元都可开始发送消息(多主控制)。最先访问总线的单元可获得发送权。 (2) 消息的发送 在CAN 协议中,所有的消息都以固定的格式发送。总线空闲时,所有与总线相连的单元都可以开始发送新消息。两个以上的单元同时开始发送消息时,根据标识符(Identifier 以下称为ID)决定优先级。ID 并不是表示发送的目的地址,而是表示访问总线的消息的优先级。两个以上的单元同时开始发送消息时,对各消息ID 的每个位进行逐个仲裁比较。仲裁获胜(被判定为优先级最高)的单元可继续发送消息,仲裁失利的单元则立刻停止发送而进行接收工作。 (3) 系统的柔软性 与总线相连的单元没有类似于“地址”的信息。因此在总线上增加单元时,连接在总线上的其它单元的软硬件及应用层都不需要改变。 (4) 通信速度 根据整个网络的规模,可设定适合的通信速度。 在同一网络中,所有单元必须设定成统一的通信速度。即使有一个单元的通信速度与其它的不一样,此单元也会输出错误信号,妨碍整个网络的通信。不同网络间则可以有不同的通信速度。 (5) 远程数据请求 可通过发送“遥控帧”请求其他单元发送数据。 (6) 错误检测功能·错误通知功能·错误恢复功能 所有的单元都可以检测错误(错误检测功能)。 检测出错误的单元会立即同时通知其他所有单元(错误通知功能)。 正在发送消息的单元一旦检测出错误,会强制结束当前的发送。强制结束发送的单元会不断反复地重新发送此消息直到成功发送为止(错误恢复功能)。 (7) 故障封闭 CAN 可以判断出错误的类型是总线上暂时的数据错误(如外部噪声等)还是持续的数据错误(如单元内部故障、驱动器故障、断线等)。由此功能,当总线上发生持续数据错误时,可将引起此故障的单元从总线上隔离出去。 (8) 连接 CAN 总线是可同时连接多个单元的总线。可连接的单元总数理论上是没有限制的。但实际上可连接的单元数受总线上的时间延迟及电气负载的限制。降低通信速度,可连接的单元数增加;提高通信速度,则可连接的单元数减少。 2. CAN协议及标准规格

CANOpen协议家族

CANOpen协议族入门学习笔记CANOPEN 2010-11-07 16:52:57 当我们使用CANOpen时,首先要明确我们 CANOPEN能干什么? 要用canopen干什么? 怎么用canopen来干活? CANOPEN能干什么? 首先需要明确canopen各个协议的功能,兄弟我最近在学习中大概总结了一些提纲如下: canopen分为两种协议类型: 1)基础题,应用层和通信层规范,主要是3xx系列的规范 2)解应用题,相当于用基础科目解应用题的一些套路,4xx系列规范 一般来讲,CANopen协议集定义了基于CAN的分布式工业自动化系统的应用标准以及CAN应用层通信标准。 CANopen是CAN-in-Automation(CiA)定义的标准之一,并且在发布后不久就获得了广泛的承认。尤其是在欧洲,CANopen被认为是在基于CAN的工业系统中占领导地位的标准。CANopen协议集基于所谓的"通信子集",该子集规定了基本的通信机制及其特性。 cAN物理层和数据链路层协议最初开发用作客车的车载网络。基于CAN的高层协议定义了如何根据特定的应用要求来使用CAN数据链路协议。除专用的基于CAN的高层协议外,还有多个国际标准化协议:用于嵌入式控制系统的CANopen、 用于工厂自动化的DeviceNet、用于卡车和其它车辆的基于J1939的解决方案(J1939-71、Isobus、ISO 11992、CiA 501/2)、用于客车诊断的ISO 15765。 分解学习CANOPEN 基础题类的3xx,等效于课本和字典,看个大概,用的时候再翻查也不迟,反正是开卷考试。最重要的莫过于301这个协议了,所有的应用题都是在这个基础题上的变化,国内的资料基本上都是讲解这部分,出于偷懒,我就不多讲了。 应用题类:既然是应用题,我把cia中文网站上的一些资料copy过来,作为我的纲要 CiA 401: 针对通用I/O模块的设备规范 CiA 402: 针对驱动装置和运动控制装置(伺服控制器、步进式电机控制器、

CANopen从站协议在stm32分析和说明

1 CANopen是一种架构在控制局域网路 (Control Area Network, CAN)上的高层通讯协定,其协议在嵌入式系统及单片机上广泛使用,是工业控制常用到的一种现场总线。依靠CANopen协议集的支持,可以对不同的从站设备通过总线进行配置和系统重构。相信在不久的将来随着国内对CANopen协议的研究深入,CANopen协议会在各个领域有广泛的应用。 CANopen 是OSI模型中的网络层以上(包括网络层)的协定。 CANopen 支持网络管理、设备监控及节点间的通讯,其中包括一个简易的传输层,可处理资料的传送。数据的传输和接收都基于CAN总线。如图1,通常多个从站设备靠CANopen网络传输数据给一个CANopen 主站设备。 CANopen需要有对象字典,SDO(服务数据对象)处理功能,PDO(过程数据对象)处理功能,定时器,NMT(网络管理)处理功能等。 2 CANopen对象字典介绍及设计 对象字典(od:object dictionary)是CANopen协议的核心。对象字典(od:object dictionary)是一个有序的对象组;每个对象采用一个16位的索引值来寻址,为了允许访问数据结构中的单个元素,同时定义了一个8位的子索引。通过接收主站发送的SDO(服务数据对象)报文,可以设置从站的对象字典,主要对象字典请参见表1。从站在做事件处理时通常会读取对象字典,根据对象字典里的数据进行事件处理。 譬如从站的1017索引是记录从站发送心跳包的时间间隔。当从站程序运行时并且从站是准备、停止、运行状态时,程序会查找1017索引的0号子索引里的数据进行处理。如果里面有数据的话(假设数据为2000),程序则会根据数据所设置的时间通过定时器判断来每2000毫秒发送心跳包。 表1 从站主要对象字典介绍

CANopen协议分析指南

广州致远电子有限公司

修订历史

目录 1. CANopen协议分析插件简介 (1) 1.1 CANopen协议及其插件简介 (1) 1.2 CANopen协议插件安装说明 (1) 1.3 CANopen数据分析结果的实例 (2) 2. CANopen协议分析的方法 (3) 2.1 支持块传输的CANopen协议分析 (3) 2.2 不支持块传输的CANopen协议分析 (5) 2.3 发送CANopen协议帧 (7) 3. 免责声明 (12)

1. CANopen协议分析插件简介 1.1 CANopen协议及其插件简介 CANopen协议集定义了基于CAN总线的分布式工业自动化系统的应用标准以及CAN 总线应用层通信标准。其最核心部分是通过对象词典来描述设备功能并以EDS文件格式来记录,采用实时数据与服务数据分开传输,最大限度提高实时数据传输效率,灵活多变的数据传输方式以及强大的网络管理能力。一经推出便得到了广泛的应用,在车辆工业、工业机具、建筑物自动化、医疗设备、航海机具、餐厅设备、实验室器材及科研研究等行业中已得到广泛的应用。 CANopen协议分析插件是CANPro协议分析平台的一部分,与CAN分析仪配套使用。用于分析CANopen网络的数据、错误状态、网络负载,或模拟CANopen应用终端的工作状态等,是CANopen网络开发工程师的好帮手,可以大大缩短开发周期,方便实现网络维护、查错、管理等复杂工作。 1.2 CANopen协议插件安装说明 要使用CANopen协议插件对CANopen网络进行分析,您需要两个安装包:CANPro协议分析平台安装包和CANopen协议分析插件安装包。安装包可以从广州致远电子有限公司的网站上下载:https://www.sodocs.net/doc/a816342009.html,/products/CANalyst/CANalyst.asp。 请注意,在安装CANopen协议分析插件之前,必须已安装好CANPro协议分析平台软件,且CANPro协议分析平台的版本需要1.40或更高的版本。否则,安装失败。出现下面的错误提示: 图1-1 插件安装错误提示(1) 图1-2 插件安装错误提示(2) 安装1.40或更高版本的CANPro协议分析平台后,就可以成功安装CANopen协议分析插件,开始分析CANopen网络数据了。 由于现在协议分析插件和协议分析平台都作了较大的修改,V1.00的插件只能和V1.40的CANPro协议分析平台配套使用,建议用户需要时,协议分析插件和协议分析平台均使用最新的版本。

CANOPEN从站协议在stm32f103zet6单片机上的实现-给人

CANopen从站协议在stm32f103zet6单片机上的实现 摘要:本文对CANopen从站协议在stm32f103zet6单片机上的实现做了分析和说明。介绍了CANopen协议的SDO(服务数据对象),PDO(过程数据对象)等报文处理的工作和实现原理,实现了向主站发送数据及处理主站报文等功能。本文中,做了一个从站与一个主站进行数据交互的实现,实验表明CANopen从站协议可以正常使用在stm32f103zet6单片机上,并且可以与CANopen主站进行数据传输等交互操作。 关键词:CANopen;从站协议;服务数据对象;过程数据对象;单片机 1引言 (STM32F103ZET6)(STM32F103ZET6)(STM32F103ZET6)从站设备 (STM32F103ZET6) 图1 CANOPEN连接示意图 CANopen是一种架构在控制局域网路(Control Area Network, CAN)上的高层通讯协定,其协议在嵌入式系统及单片机上广泛使用,是工业控制常用到的一种现场总线。依靠CANopen协议集的支持,可以对不同的从站设备通过总线进行配置和系统 重构。相信在不久的将来随着国内对CANo pen协议的研究深入,CANopen协议会在各个领域有广泛的应用。 CANopen 是OSI模型中的网络层以上(包括网络层)的协定。CANopen 支持网络管理、设备监控及节点间的通讯,其中包括一个简易的传输层,可处理资料的传送。数据的传输和接收都基于CAN总线。如图1,通常多个从站设备靠CANopen网络传输数据给一个CANopen主站设备。 CANopen需要有对象字典,SDO(服务数据对象)处理功能,PDO(过程数据对象)处理功能,定时器,NMT(网络管理)处理功能等。本文着重介绍了CANopen协议的各个功能以及CANopen协议在单片机上stm32f103zet6的设计与实现。 2 CANopen对象字典介绍及设计 对象字典(od:object dictionary)是CAN open协议的核心。对象字典(od:object dict ionary)是一个有序的对象组;每个对象采用一个16位的索引值来寻址,为了允许访问数据结构中的单个元素,同时定义了一个8位的子索引。通过接收主站发送的SDO(服务数据对象)报文,可以设置从站的对象字典,主要对象字典请参见表1。从站在做事件处理时通常会读取对象字典,根据对象字典里的数据进行事件处理。 譬如从站的1017索引是记录从站发送心跳包的时间间隔。当从站程序运行时并且从站是准备、停止、运行状态时,程序会查找1017索引的0号子索引里的数据进行处理。如果里面有数据的话(假设数据为2000),程序则会根据数据所设置的时间通过定时器判断来每2000毫秒发送心跳包。 表1 从站主要对象字典介绍 索引:对象16 位元的位址。数据的类型:一个代表对象的类型,可以是阵列、纪录或只是一个变量。类型:变量的类型。属性:提供此是否可读/可写的资料,有下列四种:可读/写、只读、唯写、只读常数。 以下是建立6003索引的代码案例,并且里面的数据是(2.78593)*100000的代码片

相关主题