搜档网
当前位置:搜档网 › 模具设计模具热处理中英文对照外文翻译文献

模具设计模具热处理中英文对照外文翻译文献

模具设计模具热处理中英文对照外文翻译文献
模具设计模具热处理中英文对照外文翻译文献

中英文对照外文翻译

Heat Treatment of Die and Mould Oriented Concurrent Design

Abstract:

Many disadvantages exist in the traditional die design method which belongs to serial pattern. It is well known that heat treatment is highly important to the dies. A new idea of concurrent design for heat treatment process of die and mould was developed in order to overcome the existent shortcomings of heat treatment process. Heat treatment CAD/CAE was integrated with concurrent circumstance and the relevant model was built. These investigations can remarkably improve efficiency, reduce cost and ensure quality of R and D for products.

Key words :die design; heat treatment; mould

ong desires for precision,service life,development period and cost,modern die and mould should be designed and manufactured perfectly.Therefore more and more advanced technologies and innovations have been applied,for example,concurrent engineering,agile manufacturing virtual manufacturing,collaborative design,etc.

Heat treatment of die and mould is as important as design,manufacture and assembly because it has a vital effect on manufacture,assembly and service life.Design and manufacture of die and mould have progressed rapidly,but heat treatment lagged seriously behind them.As die and mould industry develops,heat treatment must ensure die and mould there are good

state of manufacture,assembly and wear—resistant properties by request. Impertinent heat treatment can influence die and mould manufacturing such as over—hard and—soft and assembly.Traditionally the heat treatment process was made out according to the methods and properties brought forward by designer.This could make the designers of die and mould and heat treatment diverge from each other,for the designers of die and mould could not fully realize heat treatment process and materials properties,and contrarily the designers rarely understood the service environment and designing thought. These divergences will impact the progress of die and mould to a great extent. Accordingly,if the process design of heat treatment is considered in the early designing stage,the aims of shortening development period,reducing cost and stabilizing quality will be achieved and the sublimation of development pattern from serial to concurrent will be realized.

Concurrent engineering takes computer integration system as a carrier,at the very start subsequent each stage and factors have been considered such as manufacturing,heat treating,properties and so forth in order to avoid the error.The concurrent pattern has dismissed the defect of serial pattern,which bring about a revolution against serial pattern.

In the present work.the heat treatment was integrated into the concurrent circumstance of the die and mould development,and the systemic and profound research was performed.

1 Heat Treatment Under Concurrent Circumstance

The concurrent pattern differs ultimately from the serial pattern(see Fig.1).With regard to serial pattern,the designers mostly consider the structure and function of die and mould,yet hardly consider the consequent process,so that the former mistakes are easily spread backwards.Meanwhile,the design department rarely communicates with the assembling,cost accounting and sales departments.These problems certainly will influence the development progress of die and mould and the market foreground.Whereas in the concurrent pattern,the relations among departments are close,the related departments all take part in the development progress of die and mould and have close intercommunion with purchasers.This is propitious to elimination

of the conflicts between departments,increase the efficiency and reduce the cost.

Heat treatment process in the concurrent circumstance is made out not after blueprint and workpiece taken but during die an d mould designing.In this way,it is favorable to optimizing the heat treatment process and making full use of the potential of the materials.

2 Integration of Heat Treatment CAD/CAE for Die and Mould

It can be seen from Fig.2 that the process design and simulation of heat treatment are the core of integration frame.After information input via product design module and heat treatment process generated via heat treatment CAD and heat treatment CAE module will automatically divide the mesh for parts drawing,simulation temperature field microstructure analysis after heat—treatment and the defect of possible emerging (such as overheat,over burning),and then the heat treatment process is judged if the optimization is made according to the result reappeared by stereoscopic vision

technology.Moreover tool and clamping apparatus CAD and CAM are integrated into this system.

The concurrent engineering based integration frame can share information with other branch.That makes for optimizing the heat treatment process and ensuring the process sound.

2.1 3-D model and stereoscopic vision technology for heat treatment

The problems about materials,structure and size for die and mould can be discovered as soon as possible by 3-D model for heat treatment based on the shape of die and mould.Modeling heating condition and phase transformation condition for die and mould during heat treatment are workable,because it has been broken through for the calculation of phase transformation thermodynamics,phase transformation kinetics,phase stress,thermal stress,heat transfer,hydrokinetics etc.For example,3-D heat —conducting algorithm models for local heating complicated impression and

asymmetric die and mould,and M ARC software models for microstructure transformation was used.Computer can present the informations of temperature,microstructure and stress at arbitrary time and display the entire transformation procedure in the form of 3-D by coupling temperature field,microstructure field and stress field.If the property can be coupled,various partial properties can be predicted by computer.

2.2 Heat treatment process design

Due to the special requests for strength,hardness,surface roughness and distortion during heat treatment for die and mould,the parameters including quenching medium type,quenching temperature and tempering temperature and time,must be properly selected,and whether using surface quenching or chemical heat treatment the parameters must be rightly determined.It is difficult to determine the parameters by computer fully.Since computer technology develops quickly in recent decades,the difficulty with large—scale calculation has been overcome.By simulating and weighing the property,the cost and the required period after heat treatment.it is not difficult to optimize the heat treatment process.

2.3 Data base for heat treatment

A heat treatment database is described in Fig.3.The database is the foundation of making out heat treatment process.Generally,heat treatment database is divided into materials database and process database.It is an inexorable trend to predict the property by materials and process.Although it is difficult to establish a property database,it is necessary to establish the database by a series of tests.The materials database includes steel grades,chemical compositions,properties and home and abroad grades parallel tables.The process database includes heat treatment criterions,classes,heat preservation time and cooling velocity.Based on the database,heat treatment process can be created by inferring from rules.

2.4 Tool and equipment for heat treatment

After heat treatment process is determined,tool and equipment CAD/CAE system transfers the information about design and manufacture to the numerical control device.Through rapid tooling prototype,the reliability of tool and the clamping apparatus can be judged.The whole procedure is transferred by network,in which there is no man—made interference.

3 Key Technique

3.1 Coupling of temperature,microstructure,stress and property

Heat treatment procedure is a procedure of temperature-microstructure—stress interaction.The three factors can all influence the property (see Fig.4).During heating and cooling,hot stress and transformation will come into being when microstructure changes.Transformation temperature-microstructure and temperature—microstructure—and stress-property interact on each other.Research on the interaction of the four factors has been greatly developed,but the universal mathematic model has not been built.Many models fit the test nicely,but they cannot be put into practice.Difficulties with most of models are solved in analytic solution,and numerical method is employed so that the inaccuracy of calculation exists.

Even so,comparing experience method with qualitative analysis,heat treatment simulation by computer makes great progress.

3.2 Establishment and integration of models

The development procedure for die and mould involves design,manufacture,heat treatment,assembly,maintenance and so on.They should have own database and mode1.They are in series with each other by the entity—relation model.Through establishing and employing dynamic inference mechanism ,the aim of optimizing design can be achieved.The relation between product model and other models was built.The product model will change in case the cell model changes.In fact,it belongs to the relation of data with die and mould.After heat treatment model is integrated into the system,it is no more an isolated unit but a member which is close to other models in the system.After searching,calculating and reasoning from the heat treatment database,procedure for heat treatment,which is restricted by geometric model,manufacture model for die and mould and by cost and property,is obtained.If the restriction is disobeyed,the system will send out the interpretative warning.

All design cells are connected by communication network.

3.3 Management and harmony among members

The complexity of die and mould requires closely cooperating among item groups.Because each member is short of global consideration for die and mould development,they need to be managed and harmonized.Firstly,each item group should define its own control condition and resource requested,and learn of the request of up-and-down working procedure in order to avoid conflict.Secondly,development plan should be made out and monitor mechanism should be established.The obstruction can be duly excluded in case the development is hindered.

Agile management and harmony redound to communicating information,increasing efficiency,and reducing redundancy.Meanwhile it is beneficial for exciting creativity,clearing conflict and making the best of resource.

4 Conclusions

(1) Heat treatment CAD/CAE has been integrated into concurrent design for die and mould and heat treatment is graphed,which can increase efficiency,easily discover problems and clear conflicts.

(2) Die and mould development is performed on the same platform.When the heat treatment process is made out,designers can obtain correlative information and transfer self-information to other design departments on the platform.

(3) Making out correct development schedule and adjusting it in time can enormously shorten the development period and reduce cost.

References:

[1] ZHOU Xiong-hui,PENG Ying-hong.The Theory and Technique of Modern Die and Mould Design and Manufacture[M].Shanghai:Shanghai Jiaotong University Press 2000(in Chinese).

[2] Kang M,Park& Computer Integrated Mold Manufacturing[J].Int J Computer Integrated Manufacturing,1995,5:229-239.

[3] Yau H T,Meno C H.Concurrent Process Planning for Finishing Milling and Dimensional Inspection of Sculptured Surface in Die and Mould Manufacturing[J].Int J Product Research,1993,31(11):2709—2725.

[4] LI Xiang,ZHOU Xiong-hui,RUAN Xue-yu.Application of Injection Mold Collaborative Manufacturing System [J].JournaI of Shanghai Jiaotong University,2000,35(4):1391-1394.

[5] Kuzman K,Nardin B,Kovae M ,et a1.The Integration of Rapid Prototyping and CAE in Mould Manufacturing [J].J Materials Processing Technology,2001,111:279—285.

[6] LI Xiong,ZHANG Hong—bing,RUAN Xue-yu,et a1.Heat Treatment Process Design Oriented Based on Concurrent Engineering[J].Journal of Iron and Steel Research,2002,14(4):26—29.

文献出处:

LI Xiong,ZHANG Hong-bing,RUAN Xue—yu,LUO Zhong—hua,ZHANG Yan.Heat Treatment of Die and Mould Oriented Concurrent Design[J].Journal of Iron and Steel Research,2006,13(1):40-43,74

模具热处理及其导向平行设计

摘要:

在一系列方式中,传统模具设计方法存在许多缺点。众所周知,热处理对模具起着非常重要的作用。为了克服模具热处理工艺存在的缺点,一种新的模具热处理工艺并行设计方法已经被开发出来了。

热处理CAD/CAE技术是集成了并行环境和有关模型而建立的。这些调查研究可以显著提高效率,降低成本,并保证产品质量达到R和D级。

关键词:模具设计;热处理;模具

传统模具设计主要是依照自身实践经验或依照部分实践经验,而不是制造工艺。在设计完成之前,模具方案通常要被一次又一次的改进,于是有些缺点便出现,例如开发时期长,成本高和实际效果不明显。由于对精确性、使用寿命、开发期和费用的严格要求,先进的模具要求设计和制造得十分完善。因此越来越先进的技术和创新方法被应用其中,例如并行工程、敏捷制造业、虚拟制造业、协同合作设计等。

模具的热处理与模具设计,制造和装配同样重要。因为它对模具的制造装配和使用寿命又及其重要的影响。模具设计与制造发展十分迅速,但是热处理发展却严重滞后它们。随着模具工业的发展,热处理必须保证模具有良好的制造装配和磨损耐热性能。不切实际的热处理将导致模具材料过硬或过软,同时影响模具装配性能。传统的热处理工艺是按照设计师提出的方法和特性制作出来的。这样会使模具设计师和热处理工艺师意见产生分歧,而模具设计师却不能充分地了解热处理工艺和材料的性能,相反热处理工艺师却很少了解模具的使用环境和设计思路。这些分歧将在很大程度上影响模具的发展。因此,如果把热处理工艺设计放在设计阶段之前,则缩短开发周期,减少花费和保证质量等目标将会被考虑,而且从串行到并行的发展模式也将会实现。

并行工程是以计算机集成系统作为载体,在开始以后,每个阶段和因素都被看作如制造、热处理、性能等等,以避免出现错误。并行模式已经摒除了串行模式的缺陷,由此带来了一场对串行模式的革命。

在当前的工作中,热处理被集成到了模具开发的并行环境中,同时也正在进行这种系统性和深入性的研究。

1.热处理下的并行环境

并行模式与串行模式存在根本的不同(见图1)。对于串行模式,设计者大多考虑的是模具的结构与功能,但很难考虑相关的工艺,以致前者的错误很容易蔓延到后面。与此同时,设计本门很少与装配,预算会计和销售部门沟通。这些问题当然会影响模具的开发进度和市场前景。然而在并行模式中,不但以上部门关系联系密切,所有参加模具开发的部门都与买家有密切的交流。这有助于协调各部门消除矛盾,提高工作效率,同时降低成本。

工业设计专业英语英文翻译

工业设计原著选读 优秀的产品设计 第一个拨号电话1897年由卡罗耳Gantz 第一个拨号电话在1897年被自动电器公司引入,成立于1891年布朗强,一名勘萨斯州承担者。在1889年,相信铃声“中央交换”将转移来电给竞争对手,强发明了被拨号系统控制的自动交换机系统。这个系统在1892年第一次在拉波特完成史端乔系统中被安装。1897年,强的模型电话,然而模型扶轮拨条的位置没有类似于轮齿约170度,以及边缘拨阀瓣。电话,当然是被亚历山大格雷厄姆贝尔(1847—1922)在1876年发明的。第一个商业交换始建于1878(12个使用者),在1879年,多交换机系统由工程师勒罗伊B 菲尔曼发明,使电话取得商业成功,用户在1890年达到250000。 直到1894年,贝尔原批专利过期,贝尔电话公司在市场上有一个虚拟的垄断。他们已经成功侵权投诉反对至少600竞争者。该公司曾在1896年,刚刚在中央交易所推出了电源的“普通电池”制度。在那之前,一个人有手摇电话以提供足够的电力呼叫。一个连接可能仍然只能在给予该人的名义下提出要求达到一个电话接线员。这是强改变的原因。 强很快成为贝尔的强大竞争者。他在1901年引进了一个桌面拨号模型,这个模型在设计方面比贝尔的模型更加清晰。在1902年,他引进了一个带有磁盘拨号的墙面电话,这次与实际指孔,仍然只有170度左右在磁盘周围。到1905年,一个“长距离”手指孔已经被增加了。最后一个强的知名模型是在1907年。强的专利大概过期于1914年,之后他或他的公司再也没有听到过。直到1919年贝尔引进了拨号系统。当他们这样做,在拨号盘的周围手指孔被充分扩展了。 强发明的拨号系统直到1922年进入像纽约一样的大城市才成为主流。但是一旦作为规规范被确立,直到70年代它仍然是主要的电话技术。后按键式拨号在1963年被推出之后,强发明的最初的手指拨号系统作为“旋转的拨号系统”而知名。这是强怎样“让你的手指拨号”的。 埃姆斯椅LCW和DCW 1947 这些带有复合曲线座位,靠背和橡胶防震装置的成型胶合板椅是由查尔斯埃姆斯设计,在赫曼米勒家具公司生产的。 这个原始的概念是被查尔斯埃姆斯(1907—1978)和埃罗沙里宁(1910—1961)在1940年合作构想出来的。在1937年,埃姆斯成为克兰布鲁克学院实验设计部门的领头人,和沙里宁一起工作调查材料和家具。在这些努力下,埃姆斯发明了分成薄片和成型胶合板夹板,被称作埃姆斯夹板,在1941年收到了来自美国海军5000人的订单。查尔斯和他的妻子雷在他们威尼斯,钙的工作室及工厂和埃文斯产品公司的生产厂家一起生产了这批订单。 在1941年现代艺术博物馆,艾略特诺伊斯组织了一场比赛用以发现对现代生活富有想象力的设计师。奖项颁发给了埃姆斯和沙里宁他们的椅子和存储碎片,由包括埃德加考夫曼,大都会艺术博物馆的阿尔弗雷德,艾略特诺伊斯,马尔塞布鲁尔,弗兰克帕里什和建筑师爱德华达雷尔斯通的陪审团裁决。 这些椅子在1946年的现代艺术展览博物馆被展出,查尔斯埃姆斯设计的新的家具。当时,椅子只有三条腿,稳定性问题气馁了大规模生产。 早期的LCW(低木椅)和DWC(就餐木椅)设计有四条木腿在1946年第一次被埃文斯产品公司(埃姆斯的战时雇主)生产出来,被赫曼米勒家具公司分配。这些工具1946年被乔治纳尔逊为赫曼米勒购买,在1949年接手制造权。后来金属脚的愿景在1951年制作,包括LCW(低金属椅)和DWC(就餐金属椅)模型。配套的餐饮和咖啡桌也产生。这条线一直

模具毕业设计外文翻译(英文+译文)

Injection Molding The basic concept of injection molding revolves around the ability of a thermoplastic material to be softened by heat and to harden when cooled .In most operations ,granular material (the plastic resin) is fed into one end of the cylinder (usually through a feeding device known as a hopper ),heated, and softened(plasticized or plasticized),forced out the other end of the cylinder, while it is still in the form of a melt, through a nozzle into a relatively cool mold held closed under pressure.Here,the melt cools and hardens until fully set-up. The mold is then opened, the piece ejected, and the sequence repeated. Thus, the significant elements of an injection molding machine become: 1) the way in which the melt is plasticized (softened) and forced into the mold (called the injection unit); 2) the system for opening the mold and closing it under pressure (called the clamping unit);3) the type of mold used;4) the machine controls. The part of an injection-molding machine, which converts a plastic material from a sold phase to homogeneous seni-liguid phase by raising its temperature .This unit maintains the material at a present temperature and force it through the injection unit nozzle into a mold .The plunger is a combination of the injection and plasticizing device in which a heating chamber is mounted between the plunger and mold. This chamber heats the plastic material by conduction .The plunger, on each stroke; pushes unbelted plastic material into the chamber, which in turn forces plastic melt at the front of the chamber out through the nozzle The part of an injection molding machine in which the mold is mounted, and which provides the motion and force to open and close the mold and to hold the mold close with force during injection .This unit can also provide other features necessary for the effective functioning of the molding operation .Moving

冲压模具文献综述

文献综述1 引言冲压模具是冲压生产必不可少的工艺装备,是技术密集型产品。冲 压件的质量、生产效率以及生产成本等,与模具设计和制造有直接关系。模具设计与制造技术水平的高低,是衡量一个国家产品制造水平高低的重要标志之一,在很大程度上决定着产品的质量、效益和新产品的开发能力。2005 年—2008 年,我国冲压模具产品均出口较大幅度的增长。2009 年在全球高压锅炉管市场总需求量下降的情况下,国际采购商通过国内某网站采购冲压模具的数量仍逆势上扬。我国冲压模具的国际竞争力正在不断提升。根据我国海关统计资料显示,2005 年—2008 年,我国冲压模具产品均出口较大幅度的增长。2008 年,即使遭受全球金融危机,我们冲压模具出口金额达4.11 亿美元,比2007 年的3.26 亿美元增长了26 。另外,2009 年在全球高压锅炉管市场总需求量下降的情况下,国际采购商通过国内某网站采购冲压模具的数量仍逆势上扬。从全年采购情况来看,总体趋于上涨的趋势。其中,2009 年下半年回暖明显,国际采购商借此网站采购频次约616 频次,比上半年的288 频次增长了114%。虽然近年来我国模具行业发展迅速,但是离国内的需要和国际水平还有很大的差距。差距较大主要表现在:(1 )标准化 程度低。(2)模具制造精度低、周期长。解决这些问题主要体现在模具设计上,故改善模具设计的水平成为拉近差距的关键性问题。若要很好的设计出一副冲压模具,就必须去了解冲压模具的历史、现状以及发展趋势。2 主体2.1 冲压模具的发展历史我国考古发现,早在2000 多年前,我国已有冲压模具被用于制造铜器,证明了中国古代冲压成型和冲压模具方面的成就就在世界领先。1953 年,长春第一汽车制造厂在中国首次建立了冲模车间,该厂于1958 年开始制造汽车覆盖件模具。我国于20 世纪60 年代开始生产精冲模具。在走过了温长的发展道路之后,目前我国已形成了300 多亿元(未包括港、澳、台 的统计数字,下同)各类冲压模具的生产能力。浙江宁波和黄岩地区的“模具之乡”;广东一些大集团公司和迅速崛起的乡镇企业,科龙、美的、康佳等集团纷纷建立了自己的模具

工业设计外文翻译

Interaction design Moggridge Bill Interaction design,Page 1-15 USA Art Press, 2008 Interaction design (IxD) is the study of devices with which a user can interact, in particular computer users. The practice typically centers on "embedding information technology into the ambient social complexities of the physical world."[1] It can also apply to other types of non-electronic products and services, and even organizations. Interaction design defines the behavior (the "interaction") of an artifact or system in response to its users. Malcolm McCullough has written, "As a consequence of pervasive computing, interaction design is poised to become one of the main liberal arts of the twenty-first century." Certain basic principles of cognitive psychology provide grounding for interaction design. These include mental models, mapping, interface metaphors, and affordances. Many of these are laid out in Donald Norman's influential book The Psychology of Everyday Things. As technologies are often overly complex for their intended target audience, interaction design aims to minimize the learning curve and to increase accuracy and efficiency of a task without diminishing usefulness. The objective is to reduce frustration and increase user productivity and satisfaction. Interaction design attempts to improve the usability and experience of the product, by first researching and understanding certain users' needs and then designing to meet and exceed them. (Figuring out who needs to use it, and how those people would like to use it.) Only by involving users who will use a product or system on a regular basis will designers be able to properly tailor and maximize usability. Involving real users, designers gain the ability to better understand user goals and experiences. (see also: User-centered design) There are also positive side effects which include enhanced system capability awareness and user ownership. It is important that the user be aware of system capabilities from an early stage so that expectations regarding functionality are both realistic and properly understood. Also, users who have been active participants in a product's development are more likely to feel a sense of ownership, thus increasing overall satisfa. Instructional design is a goal-oriented, user-centric approach to creating training and education software or written materials. Interaction design and instructional design both rely on cognitive psychology theories to focus on how users will interact with software. They both take an in-depth approach to analyzing the user's needs and goals. A needs analysis is often performed in both disciplines. Both, approach the design from the user's perspective. Both, involve gathering feedback from users, and making revisions until the product or service has been found to be effective. (Summative / formative evaluations) In many ways, instructional

模具毕业设计外文翻译7081204

(此文档为word格式,下载后您可任意编辑修改!) 冷冲模具使用寿命的影响及对策 冲压模具概述 冲压模具--在冷冲压加工中,将材料(金属或非金属)加工成零件(或半成品)的一种特殊工艺装备,称为冷冲压模具(俗称冷冲模)。冲压--是在室温下,利用安装在压力机上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件的一种压力加工方法。 冲压模具的形式很多,一般可按以下几个主要特征分类: 1?根据工艺性质分类 (1)冲裁模沿封闭或敞开的轮廓线使材料产生分离的模具。如落料模、冲孔模、切断模、切口模、切边模、剖切模等。 (2)弯曲模使板料毛坯或其他坯料沿着直线(弯曲线)产生弯曲变形,从而获得一定角度和形状的工件的模具。 (3)拉深模是把板料毛坯制成开口空心件,或使空心件进一步改变形状和尺寸的模具。 (4)成形模是将毛坯或半成品工件按图凸、凹模的形状直接复制成形,而材料本身仅产生局部塑性变形的模具。如胀形模、缩口模、扩口模、起伏成形模、翻边模、整形模等。2?根据工序组合程度分类 (1)单工序模在压力机的一次行程中,只完成一道冲压工序的模具。 (2)复合模只有一个工位,在压力机的一次行程中,在同一工位上同时完成两道或两道以上冲压工序的模具。 (3)级进模(也称连续模) 在毛坯的送进方向上,具有两个或更多的工位,在压力机的一次行程中,在不同的工位上逐次完成两道或两道以上冲压工序的模具。 冲冷冲模全称为冷冲压模具。 冷冲压模具是一种应用于模具行业冷冲压模具及其配件所需高性能结构陶瓷材料的制备方法,高性能陶瓷模具及其配件材料由氧化锆、氧化钇粉中加铝、错元素构成,制备工艺是将氧化锆溶液、氧化钇溶液、氧化错溶液、氧化铝溶液按一定比例混合配成母液,滴入碳酸氢铵,采用共沉淀方法合成模具及其配件陶瓷材料所需的原材料,反应生成的沉淀经滤水、干燥,煅烧得到高性能陶瓷模具及其配件材料超微粉,再经过成型、烧结、精加工,便得到高性能陶瓷模具及其配件材料。本发明的优点是本发明制成的冷冲压模具及其配件使用寿命长,在冲压过程中未出现模具及其配件与冲压件产生粘结现象,冲压件表面光滑、无毛刺,完全可以替代传统高速钢、钨钢材料。 冷冲模具主要零件冷冲模具是冲压加工的主要工艺装备,冲压制件就是靠上、下模具的相对运动来完成的。 加工时由于上、下模具之间不断地分合,如果操作工人的手指不断进入或停留在模具闭合区,便会对其人身安全带来严重威胁。 1

(完整版)冲压类外文翻译、中英文翻译冲压模具设计

附件1:外文资料翻译译文 冲压模具设计 对于汽车行业与电子行业,各种各样的板料零件都是有各种不同的成型工艺所生产出来的,这些均可以列入一般种类“板料成形”的范畴。板料成形(也称为冲压或压力成形)经常在厂区面积非常大的公司中进行。 如果自己没有去这些大公司访问,没有站在巨大的机器旁,没有感受到地面的震颤,没有看巨大型的机器人的手臂吧零件从一个机器移动到另一个机器,那么厂区的范围与价值真是难以想象的。当然,一盘录像带或一部电视专题片不能反映出汽车冲压流水线的宏大规模。站在这样的流水线旁观看的另一个因素是观看大量的汽车板类零件被进行不同类型的板料成形加工。落料是简单的剪切完成的,然后进行不同类型的加工,诸如:弯曲、拉深、拉延、切断、剪切等,每一种情况均要求特殊的、专门的模具。 而且还有大量后续的加工工艺,在每一种情况下,均可以通过诸如拉深、拉延与弯曲等工艺不同的成形方法得到所希望的得到的形状。根据板料平面的各种各样的受应力状态的小板单元体所可以考虑到的变形情形描述三种成形,原理图1描述的是一个简单的从圆坯料拉深成一个圆柱水杯的成形过程。 图1 板料成形一个简单的水杯

拉深是从凸缘型坯料考虑的,即通过模具上冲头的向下作用使材料被水平拉深。一个凸缘板料上的单元体在半径方向上被限定,而板厚保持几乎不变。板料成形的原理如图2所示。 拉延通常是用来描述在板料平面上的两个互相垂直的方向被拉长的板料的单元体的变形原理的术语。拉延的一种特殊形式,可以在大多数成形加工中遇到,即平面张力拉延。在这种情况下,一个板料的单元体仅在一个方向上进行拉延,在拉长的方向上宽度没有发生变化,但是在厚度上有明确的变化,即变薄。 图2 板料成形原理 弯曲时当板料经过冲模,即冲头半径加工成形时所观察到的变形原理,因此在定向的方向上受到改变,这种变形式一个平面张力拉长与收缩的典型实例。 在一个压力机冲程中用于在一块板料上冲出一个或多个孔的一个完整的冲压模具可以归类即制造商标准化为一个单工序冲孔模具,如图3所示。

工业设计产品设计中英文对照外文翻译文献

(文档含英文原文和中文翻译) 中英文翻译原文:

DESIGN and ENVIRONMENT Product design is the principal part and kernel of industrial design. Product design gives uses pleasure. A good design can bring hope and create new lifestyle to human. In spscificity,products are only outcomes of factory such as mechanical and electrical products,costume and so on.In generality,anything,whatever it is tangibile or intangible,that can be provided for a market,can be weighed with value by customers, and can satisfy a need or desire,can be entiled as products. Innovative design has come into human life. It makes product looking brand-new and brings new aesthetic feeling and attraction that are different from traditional products. Enterprose tend to renovate idea of product design because of change of consumer's lifestyle , emphasis on individuation and self-expression,market competition and requirement of individuation of product. Product design includes factors of society ,economy, techology and leterae humaniores. Tasks of product design includes styling, color, face processing and selection of material and optimization of human-machine interface. Design is a kind of thinking of lifestyle.Product and design conception can guide human lifestyle . In reverse , lifestyle also manipulates orientation and development of product from thinking layer.

模具专业外文文献最新

济南大学泉城学院 毕业设计外文资料翻译 题目现代快速经济制造模具技术 专业机械制造及其自动化 班级专升本1302班 学生刘计良 学号2013040156 指导教师刘彦 二〇一五年三月十六日

Int J Adv Manuf Technol ,(2011) 53:1–10DOI 10.1007/s00170-010-2796-y Modular design applied to beverage-container injection molds Ming-Shyan Huang & Ming-Kai Hsu Received: 16 March 2010 / Accepted: 15 June 2010 / Published online: 25 June 2010 # Springer-Verlag London Limited 2010 Modular design applied to beverage-container injection molds The Abstract: This work applies modular design concepts to designating beverage-container injection molds. This study aims to develop a method of controlling costs and time in relation to mold development, and also to improve product design. This investigation comprises two parts: functional-ity coding, and establishing a standard operation procedure, specifically designed for beverage-container injection mold design and manufacturing. First, the injection mold is divided into several modules, each with a specific function. Each module is further divided into several structural units possessing sub-function or sub-sub-function. Next, dimen-sions and specifications of each unit are standardized and a compatible interface is constructed linking relevant units. This work employs a cup-shaped beverage container to experimentally assess the performance of the modular design approach. The experimental results indicate that the modular design approach to manufacturing injection molds shortens development time by 36% and reduces costs by 19 23% compared with the conventional ap-proach. Meanwhile, the information on

冲压模具技术外文翻译(含外文文献)

前言 在目前激烈的市场竞争中,产品投入市场的迟早往往是成败的关键。模具是高质量、高效率的产品生产工具,模具开发周期占整个产品开发周期的主要部分。因此客户对模具开发周期要求越来越短,不少客户把模具的交货期放在第一位置,然后才是质量和价格。因此,如何在保证质量、控制成本的前提下加工模具是值得认真考虑的问题。模具加工工艺是一项先进的制造工艺,已成为重要发展方向,在航空航天、汽车、机械等各行业得到越来越广泛的应用。模具加工技术,可以提高制造业的综合效益和竞争力。研究和建立模具工艺数据库,为生产企业提供迫切需要的高速切削加工数据,对推广高速切削加工技术具有非常重要的意义。本文的主要目标就是构建一个冲压模具工艺过程,将模具制造企业在实际生产中结合刀具、工件、机床与企业自身的实际情况积累得高速切削加工实例、工艺参数和经验等数据有选择地存储到高速切削数据库中,不但可以节省大量的人力、物力、财力,而且可以指导高速加工生产实践,达到提高加工效率,降低刀具费用,获得更高的经济效益。 1.冲压的概念、特点及应用 冲压是利用安装在冲压设备(主要是压力机)上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件(俗称冲压或冲压件)的一种压力加工方法。冲压通常是在常温下对材料进行冷变形加工,且主要采用板料来加工成所需零件,所以也叫冷冲压或板料冲压。冲压是材料压力加工或塑性加工的主要方法之一,隶属于材料成型工程术。 冲压所使用的模具称为冲压模具,简称冲模。冲模是将材料(金属或非金属)批量加工成所需冲件的专用工具。冲模在冲压中至关重要,没有符合要求的冲模,批量冲压生产就难以进行;没有先进的冲模,先进的冲压工艺就无法实现。冲压工艺与模具、冲压设备和冲压材料构成冲压加工的三要素,只有它们相互结合才能得出冲压件。 与机械加工及塑性加工的其它方法相比,冲压加工无论在技术方面还是经济方面都具有许多独特的优点,主要表现如下; (1) 冲压加工的生产效率高,且操作方便,易于实现机械化与自动化。这是

工业设计外文翻译---不需要设计师的设计

Design Without Designers 网站截图: https://www.sodocs.net/doc/a913997413.html,/baidu?word=%B9%A4%D2%B5%C9%E8%BC%C6%D3%A2%CE%C4%CE%C4%CF%D 7&tn=sogouie_1_dg 原文: Design Without Designers I will always remember my first introduction to the power of good product design. I was newly arrived at Apple, still learning the ways of business, when I was visited by a member of Apple's Industrial Design team. He showed me a foam mockup of a proposed product. "Wow," I said, "I want one! What is it?" That experience brought home the power of design: I was excited and enthusiastic even before I knew what it was. This type of visceral "wow" response requires creative designers. It is subjective, personal. Uh oh, this is not what engineers like to hear. If you can't put a number to it, it's not important. As a result, there is a trend to eliminate designers. Who needs them when we can simply test our way to success? The excitement of powerful, captivating design is defined as irrelevant. Worse, the nature of design is in danger. Don't believe me? Consider Google. In a well-publicized move, a senior designer at Google recently quit, stating that Google had no interest in or understanding of design. Google, it seems, relies primarily upon test results, not human skill or judgment. Want to know whether a design is effective? Try it out. Google can quickly submit samples to millions of people in well-controlled trials, pitting one design against another, selecting the winner based upon number of clicks, or sales, or whatever objective measure they wish. Which color of blue is best? Test. Item placement? Test. Web page layout? Test. This procedure is hardly unique to Google. https://www.sodocs.net/doc/a913997413.html, has long followed this practice. Years ago I was proudly informed that they no longer have debates about which design is best: they simply test them and use the data to decide. And this, of course, is the approach used by the human-centered iterative design approach: prototype, test, revise. Is this the future of design? Certainly there are many who believe so. This is a hot topic on the talk and seminar circuit. After all, the proponents ask reasonably, who could object to making decisions based upon data? Two Types of Innovation: Incremental Improvements and New Concepts In design—and almost all innovation, for that matter—there are at least two distinct forms. One is

ABS塑件的注射成型工艺分析及模具设计外文翻译

毕业设计(论文)外文资料翻译 学生姓名: 学号: 专业: 指导教师: 学院: 日期:

外文资料翻译要求 一、译文内容须与课题研究或调研内容高度一致。 二、译文翻译得当、语句通顺,不少于4000字。 三、译文格式要求:译文题目(即一级标题)采用小三黑体、二级 标题采用四号黑体、三级标题采用13磅黑体;图题和表题采用五号宋体,外文和符号采用五号Times New Roman;正文采用小四宋体,外文和符号采用小四Times New Roman,行间距为20磅;A4纸双面打印。 四、原文及译文一起装订,顺序依次为封面(背面为外文资料翻译 要求)、译文评阅(单面打印)、译文、外文原文。

译文评阅 评分:___________________(百分制)指导教师(签名):___________________ 年月日

原文 Treating and the modern mould make high speed One, summarizes 1 the present situation that the mould makes at present and trend The mould is important handicraft equipment , occupies decisive position in industrid departments such as consumer goods , electrical equipment electron , automobile , aircraft fabrication. The mould is important handicraft equipment , occupies decisive position in industrid departments such as consumer goods , electrical equipment electron , automobile , aircraft fabrication. Industrial product part rough process 75%, the finish machining 50% and plastic part 90% will be completed from the mould. The Chinese mould market demand already reaches scale of 500 hundred million yuan at present. The automobile mould , the annual growth rate covering piece of mould especially will exceed 20 %; Also prompt building material mould development , various heterotype material the mould , wall surface and floor mould become new mould growth point , plastic doors and windows and plastic drain-pipe increase to exceeding 30 by in the upcoming several years %; The home appliance mould annual growth rate will exceed 10 %; The IT industry year increases % speed equally exceeding 20 , the need to the mould accounts for 20 of mould marketplace %.2004 annual Chinese machine tools implements industry output value will continue to increase. Our country mould fabrication market potential is enormous. The basis data counts , in recent years, our country mould year gross output value reaches 3 billion U. S. dollar , entrance exceeds 1 billion U. S. dollar, exceed 100 million U. S. dollar outlet. Increase by from 25% to increase to 2005 50% of 1995. The expert foretells that abroad: Asia portion being occupied by in mould fabrication in the whole world, will from 25% to increase to 2005 50% of 1995.

模具设计与制造外文翻译

The mold designing and manufacturing The mold is the manufacturing industry important craft foundation, in our country, the mold manufacture belongs to the special purpose equipment manufacturing industry. China although very already starts to make the mold and the use mold, but long-term has not formed the industry. Straight stabs 0 centuries 80's later periods, the Chinese mold industry only then drives into the development speedway. Recent years, not only the state-owned mold enterprise had the very big development, the three investments enterprise, the villages and towns (individual) the mold enterprise's development also rapid quietly. Although the Chinese mold industrial development rapid, but compares with the demand, obviously falls short of demand, its main gap concentrates precisely to, large-scale, is complex, the long life mold domain. As a result of in aspect and so on mold precision, life, manufacture cycle and productivity, China and the international average horizontal and the developed country still had a bigger disparity, therefore, needed massively to import the mold every year . The Chinese mold industry must continue to sharpen the productivity, from now on will have emphatically to the profession internal structure adjustment and the state-of-art enhancement. The structure adjustment aspect, mainly is the enterprise structure to the specialized adjustment, the product structure to center the upscale mold development, to the import and export structure improvement, center the upscale automobile cover mold forming analysis and the structure improvement, the multi-purpose compound mold and the compound processing and the laser technology in the mold design manufacture application, the high-speed cutting, the super finishing and polished the technology, the information direction develops . The recent years, the mold profession structure adjustment and the organizational reform step enlarges, mainly displayed in, large-scale, precise, was complex, the long life, center the upscale mold and the mold standard letter development speed is higher than the common mold product; The plastic mold and the compression casting mold proportion increases; Specialized mold factory quantity and its productivity increase;

相关主题