搜档网
当前位置:搜档网 › 某核电工程岩体地基均匀性评价

某核电工程岩体地基均匀性评价

某核电工程岩体地基均匀性评价
某核电工程岩体地基均匀性评价

地基土均匀性评价

地基土均匀性评价 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

地基的均匀性和稳定性评价是岩土工程勘察报告较为重要的一项内容,从定性和定量两方面对地基的均匀性和稳定性进行了论叙,并对在不均匀地基的基础设计中应采取的结构措施提出建议。 关键词:地基;地基均匀性;稳定性;基础设计; 1.天然地基的均匀性评价 在建筑物的天然地基浅基础设计时,设计人员最关心的是由于地基变形引起的建筑物的变形(沉降量、沉降差、倾斜及局部倾斜) 而当前在进行建筑物的变形设计时多采用正常使用极限状态的原则设计,即建筑物的变形是否超过变形允许范围值,而造成地基变形最主要的原因之一就是地基存在不均匀的问题;岩土工程师在对地基的均匀性进行评价时由于《岩土工程勘察规范》和《建筑地基基础设计规范》中没有明确的评判标准可供参考,往往仅一笔带过或者只停留在定性的评价上,缺乏必要的定量分析,给岩土工程设计带来诸多不便。 地基均匀性的评价范围对天然地基的均匀性评价时应首先确定其评价的平面范围和深度范围,天然地基的均匀性评价平面范围与抗震场地评价范围既有相似而又有较大的差异,抗震的建筑场地评价多以自然村或某一街区为单位进行考虑,而建筑地基的均匀性评价时多以建筑物水平投影面积范围为标准,也即通常以建筑物角点包络线所占的面积为评价范围;但地基均匀性的评价深度范围与抗震覆盖层厚度评价具有明显不同的概念,必须有明确的定性概念,假若它的评价范围与抗震覆盖层厚度的评价范围一致,则将造成过大的投资浪

费,建筑抗震覆盖层厚度的确定是以地面至地层界面剪切波速大于500m/s的岩土层顶面距离为准,而地基均匀性评价深度应掌握以下几条原则: (1)地基主要受力层情况:对于条形基础为基底下3b(b为基础底面宽度),对于独立基础为基底下1.5b,且评价深度均不小于5m; (2)压缩层深度范围:对于天然地基浅基础,独立基础或条形基础其压缩层深度按变形比法确定其评价深度: ? 式中符号意义可参考“地基规范” (3)对大面积基础其评价深度范围按下式确定: ? 式中b:基础宽度。且对于大面积基础其评价范围应不小于1倍基础宽度范围。 (4)对于桩基础按等效实体深基础的底面积按应力比确定评价深度zn,即z 处的附加应力o z与土的自重应力o c应符合下式要求: 2 地基均匀性的评价内容 地基的均匀性评价是岩土工程分析与评价的重要内容之一,在审核岩土工程勘察报告时,发现大部份岩土工程师对该部份的评价显得空洞无物,或者根本就不涉及这方面的内容,使得基础设计时对地基土的均匀性难以进行考虑,给建筑物的安全带来隐患,

某超高层项目地基均匀性评价

某超高层项目地基均匀性评价 摘要:地基的均匀性评价是岩土工程分析与评价的一项重要内容,本文结合工 程实例从定性和定量两个方面对地基均匀性进行了评价。 1、引言 在岩土工程勘察中,性评价地基均匀性是岩土工程分析与评价的一项重要内容。根据《高层建筑岩土工程勘察标准》(JGJ/T 72-2017),对于天然地基的地基均匀性评价可从定性和定量两个方面进行评价。结合工程实例,准确、客观的对地 基土的均匀性评价,可使得基础设计时对地基土的不均匀沉降有一定的考虑。 2、工程概况 某新建项目包括1栋45层(高200米)框架核心筒结构的超高层办公楼、1栋3~6层(高32米)裙房及1个3层整体纯地下室,两者均为框架结构。超高 层办公楼基础埋深17.5米,裙房和地下室埋深15.5米,总建筑面积约16.1万m2,基础方案拟采用桩基。拟建项目所在场地的大致地层情况及承载力特征值fak、 压缩模量Es(1-2)参见表1。 表1 各土层的分布埋藏情况及承载力特征值fak、压缩模量Es(1-2)表 图1塔楼部分代表性工程地质剖面图 图2地下室部分代表性工程地质剖面图 3、地基均匀性评价—定性评价 根据《高层建筑岩土工程勘察标准》(JGJ/T 72-2017)第8.2.3条符合下列情况 之一者,应判定为不均匀地基: 1、地基持力层跨越不同地貌单元或工程地质单元,工程特性差异显著。 2、地基持力层虽属于同一地貌单元或工程地质单元,但存在下列情况之一: 1)中-高压缩性地基,持力层底面或相邻基底高程的坡度大于10%; 2)中-高压缩性地基,持力层及其下卧层在基础宽度方向上的厚度差值大 于0.05b(b为基础宽度)。 3、同一高层建筑虽处于同一地貌单元或同一工程地质单元,但各处地基土 的压缩性有较大差异时,可在计算各钻孔地基变形计算深度范围内当量模量的基 础上,根据当量模量和当量模量最小值的比值判定地基均匀性。当比值大于表2 中地基不均匀系数界限值K时,可按不均匀地基考虑。 表2 地基不均匀系数K界限值 3.1定性评价 根据勘察结果对场地地基均匀性进行定性评价。本场地地层属同一工程地貌 单元及同一地质分区,各主要土层均为中~低压缩性的地基土层和不可压缩的岩层,工程特性差异不明显,各主要地基岩土层(第(2-1)~(6)、(7-2)层)层底面有 一定起伏,但起伏不大,地层层底面坡度一般小于10%,(7-1a)和(7-1b)层局部持 力层的层底面起伏较大,且大于10%。 拟建建筑物荷载很大,采用天然地基无法满足设计要求,须采用桩基础。根 据《高层建筑岩土工程勘察标准》(JGJ/T 72-2017),拟建超高层办公楼、裙楼及纯地下室采用桩基以(7-1a)层、(7-1b)层、(7-2)层作为桩端持力层时,因(7-1a)层、(7-

岩体稳定性研究方向文献综述

岩体稳定性研究方向文献综述 长期以来,隧洞围岩稳定性研究一直是工程地质学者研究的重要课题,围岩稳定性评价是地下工程设计、施工以及维护中的一个重要环节。稳定性评价结果的正确是否直接影响着工程的安全性和经济合理性。作为岩体力学研究的重要内容,围岩稳定性评价经历了“经验判断—理论分析—数值计算”的发展过程[1],,有关方法已在地下工程的建设中发挥了巨大的作用,但同时也对围岩稳定性评价方法,尤其是围岩破坏的判据,提出了更高的要求。因此,探索新的、实用的稳定性评价方法,是生产实践中提出的永恒的研究课题。通过对地下工程围岩稳定性的研究学习,首先介绍目前国内外对围岩稳定性评价方法的研究成果,接着对影响地下隧洞围岩稳定性的因素以及围岩的变形破坏模式进行了阐述,最后结合工程案例采用数值分析的方法对隧洞开挖围岩变形破坏模式进行了分析。 1 隧洞围岩稳定性分析方法 隧洞围岩的稳定性分析主要包括隧洞的整体稳定性分析和局部块体的稳定性分析,分析方法大致可归纳为工程地质类比法、解析法、和模拟试验法等。 1.1围岩整体稳定性评价 (1)解析法 解析法是指采用数学力学的计算取得闭合解的方法[28],计算围岩中的应力分布状态及位移从而进行围岩稳定性评价[4]。对于规则的圆形断面和均质、各向同性的隧道围岩,解析解较为精确,参数也容易确定;张倬元、王士天、王兰生给出了均质、含有单一(或一组)软弱结构面围岩及顶拱围岩中简单结构块体稳定性的解析分析方法;蔡美峰等得出了特定形状巷道(如轴对称圆形巷道、一般圆巷道、椭圆巷道等)围岩应力状态的解析解。其他形状的洞室可通过复变函数法求取近似解。于学馥、刘怀恒应用复变函数对围岩应力状态及变形进行求解,得出了解析解。运用复变函数进行非圆形洞室分析的前提是获取洞室的映射函数,因此如何求取简单合理的映射函数成为近年来研究的一个热点,钱伯勤推导出单孔无限域应力函数的通式,王润富提出了一种保角映射法并编制了相应的微机程序,范广勤等应用三个绝对收敛级数相乘法求解非圆形洞室的外域映射函数,吕爱钟,提出了应用最优化技术求解任意截面形状巷道映射函数的新方法,朱大勇等提出了一种新的可以求解任意形状洞室映射函数的计算方法,并将其用于复杂形状洞室围岩应力的弹性解析分析[22]。解析方法可以解决的实际工程问题十分有限。但是,通过对解析方法及其结果的分析,往往可以获得一些规律性的认识,这是非常重要和有益的。 (2)工程地质类比法(围岩分类法) 经验类比法是大型地下洞室群围岩稳定性评价的重要方法之一,尤其在勘测资料较少的可行性研究阶段,更能发挥其作用[8]。其中,围岩分类法简单、明了,从而成为被广泛使用的工程地质类比方法。国外的地下洞室围岩质量评价始于二十世纪,初期出现了普氏岩石分级法,随后,Terzaghi 根据阿尔卑斯山公路隧道支护施工的经验,从描述各种岩层的特征入手最早提出隧道围岩分级;随后,Lauffer 提出了隧道有效跨度的稳定时间这一概念,主要以毛洞稳定时间为指标进行分级;1969 年,Deer提出了RQD分类法,随后RQD 成为国内外广泛采用的RMR 分类法、Q 分类法等综合分类法的基本元素之一,因此得到广泛应用。1973年,Bieniawski 基于岩石单轴抗压强度、不连续面间距、RQD、不连续面条件、地下水条件等基本参数对岩体进行分类,提出了更为具体的岩体分类方法RMR 法。1974 年,Barton 等学者在分析研究大量的地下工程开挖实例的基础上,把工程要素与岩石质量指标统一起来,以节理组数、节理粗糙度系数、节理蚀变影响系数等为基本参数,提出了隧道指标方法Q 分类法[12]。1979年,国内学者谷德振等提出Z 系统分类法;1980 年王思敬等人

岩体稳定性评价

岩体稳定性分析与评价 1 工程岩体的定义 在工程地质中,把工程作用范围内具有一定的岩石成分、结构特征及赋存于某种地质环境中的地质体称为岩体。岩体是在内部的联结力较弱的层理、片理和节理、断层等切割下,具有明显的不连续性。这是岩体的重要特点,使岩体结构的力学效应减弱和消失。使岩体强度远远低于岩石强度,岩体变形远远大于岩石本身,岩体的渗透性远远大于岩石的渗透性[1]。 工程岩体是十分复杂的,它受到自然地质作用和人类活动的共同影响。工程岩体稳定性评价与利用一直是人们研究的热点话题,国内外相关方面的研究一直没有间断。工程岩体通常是指与人类活动有关的地下或地表岩体,如地面的斜坡边坡、岩石基础、水库岸坡、地下硐室围岩以及矿区岩体等。具体而言工程岩体具有以下四个方面的含义: (1)岩体中普遍存在的节理裂隙、断层、层里等软弱面不连续使大部分岩体失去了连续性而呈现出非线性大变形的力学形态。岩体的变形与强度特征在很多情况下都是由这些结构面控制的,加之岩体介质本身的非均质性,使得岩体的力学形态比土体复杂的多。 (2)由于各种条件的限制,工程岩体往往不可避免地处于高地应力、地下水、地震、地热等环境中,处于多因素控制的受力状态,使其变形与破坏规律更为复杂,经常涉及到固体力学—水力学—热力学场耦合作用。 (3)为满足工程建设要求,经常地对工程岩体进行各种扰动,如开挖、回填、加固处理等,从而使得工程岩体在时间和空间上呈现出复杂的性态特征。 (4)大多数工程岩体均为地表相对较浅的地壳岩体,经历各种地质营力作用,因人类工程活动表现为卸荷岩体力学行为和特征,不同于常规的加载岩体力学特征。

2工程岩体稳定性的影响因素及破坏形式 通常来讲,影响岩体稳定性的结构性因素主要是其自身的结构特征,其次是人类工程活动,最后是环境因素,包括地下水、地应力、地震、地热等。影响工程岩体稳定性的因素主要有以下几个方面: (1)岩块性质的影响包括岩石的坚硬程度、抗风化能力、抗软化能力、强度、组成、透水性等。 (2)岩层的构造与结构的影响,表现在节理裂隙的发育程度及其分布规律、结构面的胶结情况、软弱面和破碎带的分布与边坡的关系、下伏岩土界面的形态以及坡向坡脚等。 (3)水文地质条件的影响,包括地下水的埋藏条件、地下水的流动及动态变化等。 (4)地貌因素,如边坡的高度、坡度和形态等。 (5)风化作用的影响,主要体现为风化作用将减弱岩石的强度,改变地下水的动态。 (6)气候作用的影响,气候引起岩土风化速度、风化厚度以及岩石风化后的机械、化学变化,同时引起地下水、地表水作用的变化。 (7)地震作用除了使岩土体增加下滑力外,还常常引起孔隙水压力的增加和岩体的强度的降低;另外,开挖、填筑和堆载等人为因素同样可能造成工程岩体的失稳。 工程岩体的失稳往往是多种因素共同作用的结果,导致边坡失稳的因素可归结为两类:一是外界力的作用破坏了岩体原来的应力平衡状态,如边坡岩体的开挖及坡顶上作用外荷载、渗流、地震力等;另一类是边坡岩体的抗剪强度由于受外界各种因素的影响而降低。 岩体承受应力,就会在体积、形状或宏观连续性上发生某种变化。宏观连续性无显著变化者称为变形。如果宏观连续性发生了显著变化,称为破坏。岩体变形破坏的方式与过程既取决于岩体的岩性、结构,也与所承受的应力状态及其变化有关。

地基土均匀性评价

地基的均匀性和稳定性评价是岩土工程勘察报告较为重要的一项内容,从定性和定量两方面对地基的均匀性和稳定性进行了论叙,并对在不均匀地基的基础设计中应采取的结构措施提出建议。 关键词:地基;地基均匀性;稳定性;基础设计; 1 .天然地基的均匀性评价 在建筑物的天然地基浅基础设计时,设计人员最关心的是由于地基变形引起的建筑物的变形(沉降量、沉降差、倾斜及局部倾斜) 而当前在进行建筑物的变形设计时多采用正常使用极限状态的原则设计,即建筑物的变形是否超过变形允许范围值,而造成地基变形最主要的原因之一就是地基存在不均匀的问题;岩土工程师在对地基的均匀性进行评价时由于《岩土工程勘察规范》和《建筑地基基础设计规范》中没有明确的评判标准可供参考,往往仅一笔带过或者只停留在定性的评价上,缺乏必要的定量分析,给岩土工程设计带来诸多不便。 1.1地基均匀性的评价范围 对天然地基的均匀性评价时应首先确定其评价的平面范围和深度范围,天然地基的均匀性评价平面范围与抗震场地评价范围既有相似而又有较大的差异,抗震的建筑场地评价多以自然村或某一街区为单位进行考虑,而建筑地基的均匀性评价时多以建筑物水平投影面积范围为标准,也即通常以建筑物角点包络线所占的面积为评价范围;但地基均匀性的评价深度范围与抗震覆盖层厚度评价具有明显不同的概念,必须有明确的定性概念,假若它的评价范围与抗震覆盖层厚度的评价范围一致,则将造成过大的投资浪费,建筑抗震覆盖层厚度的确定是以地面至地层界面剪切波速大于 500m/s的岩土层顶面距离为准,而地基均匀性评价深度应掌握以下几条原则: (1)地基主要受力层情况:对于条形基础为基底下 3b(b为基础底面宽度),对于独立基础为基底下 1.5b,且评价深度均不小于 5m; (2)压缩层深度范围:对于天然地基浅基础,独立基础或条形基础其压缩层深度按变形比法确定其评价深度: 式中符号意义可参考“地基规范” (3)对大面积基础其评价深度范围按下式确定:

岩土工程勘察报告稳定性评价1

岩土工程勘察报告(稳定性评价部分) (第二册共二册) 院长: 总工程师: 勘察设计研究院 二O一二年十月

岩土工程勘察(稳定性评价部分) 主要责任人及岗位 生产单位负责人: 审定人: 审核人: 工程技术负责人:

目录 1前言 (1) 2稳定性分析与计算 (1) 2.1坝肩稳定性分析 (1) 2.2初期坝及后期堆积坝稳定性分析 (1) 2.3坝体稳定性计算 (2) 3影响坝体稳定性的因素分析及工程措施方案 (5) 4降低浸润线后的坝体加高计算 (5) 5结论与建议 (7) 附图一:坝体稳定性计算图(现坝高) 附图二:坝体稳定性计算图(坝体加高20m)

1前言 xxxxx尾矿库、尾矿堆积坝岩土工程勘察工作,是受龙钢集团公司木龙沟铁矿委托,根据xxxx设计研究院提出的岩土工程勘察任务书之技术要求(见附件),由我院于2006年7月~8月完成。 本册为坝体稳定性评价报告。 2稳定性分析与计算 2.1坝肩稳定性分析 据工程地质测绘结果,初期坝和堆积坝的左、右坝肩,山体形态自然完整,基岩裸露,无影响坝肩稳定的不利组合的结构面,也无崩塌、滑坡等不良地质作用,坝肩稳定,有利于坝体稳定和继续加高。 2.2初期坝及后期堆积坝稳定性分析 据调查,尾矿库初期坝为一不透水浆切片石拱坝,坝体完整,整体强度较高,未发现切石松动、坝体裂缝等变形破坏的痕迹,地基持力层为⑥-2层中风化白云岩,坝肩支撑于两侧的基岩上,坝基及坝肩的地质条件良好,初期坝的稳定性好。仅在坝面上发现有多处渗水、漏水现象,目前不致影响坝体的稳定性。 在初期坝坝顶之上已筑有7级尾矿堆积的子坝,各级子坝高度1.60~3.80m不等,其中第三级子坝最高,达3.80m,堆积坝总高度约17.1m,总坡度比约1:3.1,各级子坝坡度约450~600,坝体形态较规则,坝体上未发现裂缝等变形破坏特征,干面滩长度约60m,综合分析认为,现状态下堆积坝体处于基本稳定状态。 据钻探揭露,坝体内浸润线较高,初期坝上方第一级马道处地下水位埋深为1.20m,已接近了初期坝顶,各子坝地下水位在排矿时接近了地表,在

最新混凝土评定表(SL176) SL632-2012(DOC)

岩石地基开挖单元工程质量评定表 单位工程名称单元工程量 分部工程名称施工单位 单元工程名称、部位检验日期年月日~年月日项次检验项目质量标准检查(测)记录或备查资料名称合格数合格率 主控项目1 保护层开挖 浅孔、密孔、少药量、控制 爆破 2 建基面处理 开挖后岩面满足设计要求, 建基面上无松动岩块,表面 清洁、无污垢、油污 3 △多组切割的 不稳定岩体开 挖和不良地质 开挖处理 满足设计处理要求 4 岩体的完整性 爆破未损害岩体的完整性, 开挖面无明显爆破裂隙,声 波降低率小于10%或满足设 计要求 一般项目1 无结构要求 或无配筋的 基坑断面尺 寸及开挖面 平整度 基坑长 或宽 ≤10m -10~20cm 2 >10m -20~30cm 3 坑(槽)底部 标高 -10~20cm 4 垂直或斜面 平整度 20cm 5 有结构要求 或有配筋预 埋件的基坑 断面尺寸及 开挖面平整 度 基坑长 或宽 ≤10m 0~10cm 6 >10m 0~20cm 7 坑(槽)底部 标高 0~20cm 8 垂直或斜面 平整度 15cm 施工单位自评意见 主控项目检验点100%合格,一般项目逐项检验点的合格率 %,且不合格点不集中分布。 单元质量等级评定为: (签字,加盖公章)年月日 监理单位复核意见 经抽检并查验相关检验报告和检验资料,主控项目检验点100%合格,一般项目逐项检验点的合格率 %,且不合格点不集中分布。 单元质量等级评定为: (签字,加盖公章)年月日 注:“+”为超挖,“-”为欠挖。

岩石洞室开挖单元工程质量评定表 单位工程名称单元工程量 分部工程名称施工单位 单元工程名称、部位检验日期年月日~年月日 项次检验项目质量标准检查(测)记录或 备查资料名称 合格数合格率 主控项目1 光面爆破和预 裂爆破效果 符合规范要求 2 洞、井轴线 符合设计要求,允许偏差-5~ 5cm 3 不良地质处理符合设计要求 4 爆破控制 爆破未损害岩体的完整性,开挖 面无明显爆破裂隙,声波降低率 小于10%或满足设计要求 一般项目1 洞室壁面清撬 洞室壁面上无残留的松动岩块 和可能塌落危石碎块,岩石面干 净,无岩石碎片、尘埃、爆破泥 粉等 2 岩石壁面局部 超、欠挖及平 整度 无结构 要求、 无配筋 预埋件 底部 标高 -10~20cm 径向尺 寸 -10~20cm 侧向 尺寸 -10~20cm 开挖面 平整度 15cm 3 有结构 要求、 有配筋 预埋件 底部 标高 0~15cm 径向 尺寸 0~15cm 侧向 尺寸 0~15cm 开挖面 平整度 10cm 施工单位自评意见 主控项目检验点100%合格,一般项目逐项检验点的合格率 %,且不合格点不集中分布。 单元质量等级评定为: (签字,加盖公章)年月日 监理单位复核意见 经抽检并查验相关检验报告和检验资料,主控项目检验点100%合格,一般项目逐项检验点的合格率 %,且不合格点不集中分布。 单元质量等级评定为: (签字,加盖公章)年月日 注:“+”为超挖,“-”为欠挖。

地基岩体稳定性分析

第一节坝基岩体抗滑稳定性分析 重力坝、支墩坝等挡水建筑物。 一、坝基岩体承受的荷载分析 (沿坝轴线方向取1m宽坝基(单宽坝基)为单位进行计算,如图10.1所示) 图10.1 坝体静水压力分布示意图 1.坝体重力W(kN) 式中:—坝体材料的容重(KN/m3); —坝体横截面面积(m2)。 2.静水压力 ①水平静水压力: ②竖直(向)静水压力:(阴影部分面积) 如: 3.泥沙压力(F) 由朗肯土压力理论: 式中:—泥沙的容重; —坝前淤积泥沙厚度; φ—泥沙的内摩擦角。 4.浪压力(P) 确定比较困难。 当坝的透水面为铅直面或坡度大于1∶1时。 ①时,水深处浪压力的剩余强度为: 式中:—波浪高度; —波浪长度; —波浪破碎的临界水深; —水深。 ②,在深度以下可不考虑浪压力的影响, 式中:。 5.扬压力(U)(作用于坝底上的渗流压力) 图10.2 坝底扬压力分布图 如图10.2所示。 ①在没有灌浆和排水设施的情况下 (即图中梯形面积) 式中:—单宽坝底所受扬压力; —坝底宽度; —不大于1.0的系数。 当时,(即“莱维(Levy)法则”) ②当坝基有灌浆帷幕和排水设施时,如仅有排水设施时,λ=0.8~0.9。 ③如果能确定坝基岩体内地下水渗流的水力梯度(I),则可按下式计算渗透压力:6.岩体重力(G) 7.地震力()

—地震影响系数;—坝体与滑面上部岩体重力。 图10.3 接触面滑动示意图 二、坝基岩体的破坏模式 根据坝基失稳时滑动面的位置,分为三种模型: 图10.4 岩体内滑动类型示意图 三、坝基岩体抗滑稳定性计算 1.接触面抗滑稳定性计算 如图10.5所示。 (1)抗滑稳定性系数:或 图10.5 接触面滑动受力示意图 —坝体与基岩接触面的摩擦系数; C—接触面的内聚力。 (2)为增大η,将坝体和岩体接触面设计成向上游倾斜的平面,如图10.6所示,作用于接触面的正压力:拉滑力: 滑动力: 图10.6 坝底面倾斜的情况及受力分析 (3)如果坝底面水平且嵌入岩基较深,如图10.7所示,那么在计算η时,应考虑下游岩体的抗力(被动压力)。 对楔体abd,在bd面上: 在bd法线方向: 图10.7 岩体抗力计算示意图 ∴岩体的抗力: 修正为: (因为工程设计中,只是部分利用或不利用岩体抗力。) 式中:ξ为抗力折减系数,0~1.0) 2.坝基岩体内滑动的稳定性计算 (1)沿水平软弱结构面滑动的情况 若滑动面埋深不大,一般不计入岩体抗力;如滑动面埋深较大则应考虑抗力的影响。如图10.8所示。 图10.8 倾向上游结构面滑动计算图 式中:,分别为坝基可能滑动面上总的法向压力和切向推力; 为可能滑动面上作用的扬压力; 为可能滑动面上游铅直边界上作用的水压力; 图10.9 倾向上游结构面滑动计算图 ,分别为可能滑动面的摩擦系数和粘聚力; A为可能滑动面的面积;

关于地层均匀性和地基均匀性评价的理解和探讨

关于地层均匀性和地基均匀性评价的理解和探讨 张晓玉,张丽丽 (中南勘察设计院(湖北)有限责任公司武汉 430071) 摘要:本文在对岩土工程勘察有关规范理解的基础上,对地层均匀性和地基均匀性的作用及其相互关系进行阐述,分析地基均匀性评价的重要性,细化了地基均匀性评价方法。 关键词:地层均匀性;地基均匀性;变形控制;当量模量 0 引言 我们的岩土工程勘察报告一般很重视地基承载力、基础持力层和基础形式的分析评价,对地基均匀性的评价重视不够,前几年多数单位的岩土工程勘察报告甚至不予评价,在审图机构的要求下,现在的勘察报告基本上有这一节的内容,但评价方法五发八门,说法也很多,如不均匀、较均匀、均匀性较好、均匀性一般等,并多以地层均匀性代替地基均匀性,概念也不是很清晰,彼此理解出入较大,本文针对《高层建筑岩土工程勘察规程》的理解谈谈自己的想法。 1 规范对地层均匀性和地基均匀性评价的要求 ①《岩土工程勘察规范》4.1.11-3表述“查明建筑范围内岩土层的类型、深度、分布、工程特性,分析和评价地基的稳定性、均匀性和承载力”。其条文说明4.1.11-2补充解释为“地基的承载力和稳定性是保证工程安全的前提,这是毫无疑问的;但是工程经验表明,绝大多数与岩土工程有关的事故是变形问题,包括总沉降量、倾斜和局部倾斜;变形控制是地基设计的主要原则,故本条规定了应分析评价地基的均匀性,提供岩土变形参数,预测建筑物的变形特征。” ②《岩土工程勘察规范》14.3.3表述岩土工程勘察报告应根据任务要求、勘察阶段、工程特点和地质条件等具体情况编写,包括内容的第4款为“场地地形、地貌、地质构造、岩土性质及其均匀性”。 ③湖北省地区规范《预应力混凝土管桩基础技术规程》(DB42/489—2008)中6.0.10条表明,预应力混凝土管桩基础岩土工程勘察报告内容应包括对地基的均匀性进行评价。 ④《高层建筑岩土工程勘察规程》8.2.1-2表述天然地基分析评价应包括的基本内容的第2款为“地基均匀性”。其8.2.4条明确了地基均匀性判别方法。 从上述内容可见,岩土性质的均匀性及地基均匀性评价为强制性条文,为岩土工程勘察工作中必须评价的内容。 2 目前对地基均匀性评价的状况和必要性 因除《高层建筑岩土工程勘察规程》外,《岩土工程勘察规范》及《岩土工程勘察工作工程》没有对地基均匀性评价的具体方法和内容做出规定,且对规范的理解不同,均匀性评价也没有引起重视,勘察单位多以应付审查为主,也没有进行深入的研究和对规范进行深刻理解。出现了均匀性评价的盲目性和无所适从,现评价内容多以地层均匀性评价作为地基均匀性评价或以为地层均匀性评价就是地基均匀性评价的现象,与规范的要求不符。 《岩土工程勘察规范》4.1.11-3的条文说明明确地基均匀性主要解决地基变形问题,变形控制是地基设计的主要原则,影响变形控制的最重要在因素是地层在水平方向上的变形不均匀性。地基明显不均匀将直接导致建筑物的倾斜,所以,均匀性评价的目的,是预测建筑物的变形特征,是分析沉降和变形之

JGJ340-2015《建筑地基检测技术规范》

建筑地基检测技术规范 JGJ340-2015 批准部门:中华人民共和国住房和城乡建设部 施行日期:2015年12月1日 中华人民共和国住房和城乡建设部公告第786号 住房城乡建设部关于发布行业标准《建筑地基检测技术规范》的公告现批准《建筑地基检测技术规范》为行业标准,编号为JGJ340-2015,自2015年12月1日起实施。其中,第5.1.5条为强制性条文,必须严格执行。 本规范由我部标准定额研究所组织中国建筑工业出版社出版发行。 中华人民共和国住房和城乡建设部 2015年3月30日 前言 根据住房和城乡建设部《<关于印发2010年工程建设标准规范制订、修订计划>的通知》(建标[2010]43号)的要求,规范编制组经过广泛调查研究,认真总结实践经验,参考有关国际标准和国外先进标准,并在广泛征求意见的基础上,编制本规范。 本规范的主要技术内容是:1总则;2术语和符号;3基本规定;4土(岩)地基载荷试验;5复合地基载荷试验;6竖向增强体载荷试验;7标准贯入试验;8圆锥动力触探试验;9静力触探试验;10十字板剪切试验;11水泥土钻芯法试验;12低应变法试验;13扁铲侧胀试验;14多道瞬态面波试验。 本规范中以黑体字标志的条文为强制性条文,必须严格执行。 1总则 1.0.1为了在建筑地基检测中贯彻执行国家的技术经济政策,做到安全适用、技术先进、确保质量、保护环境,制定本规范。 1.0.2本规范适用于建筑地基性状及施工质量的检测和评价。 1.0.3建筑地基检测方法的选择应根据各种检测方法的特点和适用范围,考虑地质条件及施工质量可靠性、使用要求等因素因地制宜、综合确定。 1.0.4建筑地基检测除应符合本规范外,尚应符合国家现行有关标准的规定。 2术语和符号

碎石土地基的岩土工程评价

第17章碎石土地基的岩土工程评价 17.1 碎石土的基本特征及岩土工程问题 1.碎石土的分类 粒径大于2mm的颗粒质量超过总质量50%的土定名为碎石土。 碎石土可按颗粒级配和颗粒形状再分为三组共6个亚类。 碎石土分类 2.碎石土的基本特征 1)颗粒组成 碎石土的颗粒组成特点是粒径大小往往相差悬殊,缺乏中间粒径。 以角砾、碎石或块石作为骨架,以黏性土或砂土为充填物。 颗粒级配曲线有一段近似水平线,在该直线区段的颗粒是极少的。

2)密实度 碎石土的密实状态对其力学性质影响很大。但由于取样困难,不能用一般土工试验的方法进行测定。所以在工程实践中,常不根据定量指标(孔隙比、相对密度)来进行密实状态的分类。 根据其骨架颗粒含量和排列,结合野外钻探、掘进的困难程度及坑壁情况进行分类,参见表17-2。——定性描述的方法 《岩土工程勘察规范》(GB50021—2001)碎石土密实度的划分——定量指标的方法 碎石土的密实度可根据圆锥动力触探锤击数确定,重型圆锥动力触探按N63.5和超重型圆锥动力触探按N120查下列表,表中的N63.5和N120应按国家标准《岩土工程勘察规范》(GB50021—2001)附录B进行杆长修正。 碎石土密实度(按N63.5分类) 注: 1 本表适用于平均粒径等于或小于50mm, 且最大粒径小于100mm 的碎石土。 2 对于平均粒径大于50mm, 或最大粒径大于100mm的碎石土,可用 超重型动力触探或用野外观察鉴别。

碎石土密实度(按N120分类) 3)土的结构 碎石土骨架颗粒为连续接触时,其强度由组成骨架的碎石起控制作用。一般说来,碎石由结晶岩组成的,其强度比由沉积岩组成的高些。 碎石土骨架颗粒为不连续接触,而为充填物所包裹时,碎石土的强度由充填物起控制作用。当作为充填物的细粒含量接近或超过其土体全重的40%时,整个土体则表现出相应细粒土的性状。充填物为砂土的,其强度较充填物为黏性土的为高。 充填物为砂土时,含水量对其强度的影响不大,而密实度对强度的影响则甚大。一般碎石土粒径愈大,含量愈多,承载力愈高;骨架颗粒呈圆形并充填砂土的较呈棱角状井充填黏性土的要高,同类土中密实的较松散的承载力为高。 4)分布特点 常见碎石土,特别是碎石、卵石、块石、漂石类,一般不呈大面积分布,而只在其他土层中呈透镜体或尖灭夹层存在,厚度变化剧烈。

岩体工程稳定性的微震监测技术070123

岩体稳定性的微震监测技术
北 京 优 赛 科 技 有 限 公 司 北 京 达 汉 新 柯 仪 器 有 限 公 司

岩体工程稳定性的微震监测技术
微震监测技术概要 微震监测技术用于监测岩体在变形和断裂破坏过程中以微弱地震(里氏三级以下)波的形式发 生的微震事件,利用现代计算技术,通讯技术,GPS 授时精确定位技术,在三维空间中实时地确定 岩体中微震事件发生的位置和量级,从而对岩体的变形活动范围及其稳定性做出安全评价. 自 1990 年中期以来,微震监测技术已经被广泛应用于诸如矿山,石油工业,土木工程,环境地 质,核废料,废气储存,战略石油储备等公共安全领域中岩体稳定性的短期和长期监测.微震监测 技术在边坡滑动的时间和空间预警方面已经取得了重要成果,并显示了广阔的应用前景. 微震监测技术的应用领域 环境与公共安全 地震 火山 滑坡,泥石流 水库 核废料储存设施 地热工程 土木工程 隧道和隧道开挖 岩爆 边坡稳定 地下洞室,结构响应 大坝监测 石油工业 断层活动定向 油,气井稳定性 油,气层监护管理 水压致裂监测评估 地下石油储备 矿山工程 地下洞室开挖稳定性 岩爆 崩落采矿 采空区管理 露天开采边坡稳定性 爆破
微震监测技术可以从岩体变形的最初始阶段开始,跟踪监测岩体内部从单元岩块的断裂到整个 岩体失稳的渐进性破坏过程,从而大大促进了监测工作的科学性,同时提高了工程与地质灾害预报 的准确性和超前性.与传统岩体稳定监测技术相比,微震监测技术的最大优点是可以精确给出岩体 失稳的空间位置并使灾害预报提前约 30-45 天.因此,技术和管理人员可以有较为充足的时间采取 应急措施,避免或极大限度地降低生命和财产损失,提高工作人员以及公众的安全. ISS 微震监测技术系统构成 南非微震监测系统国际有限公司的 ISS 微震监测系统具有下述优良特性: 三维实时监测边坡整体; GPS 授时精确定位; 小直径钻孔安装,兼容各种传感器; 专业化的处理软件; 全波形,全数字,高速信号采集; 高分辨率,多通道,宽频率,灵活的有线无线通讯等; 同时在空间和时间的预警方面有突出优势. ISS 微震监测系统包括硬件和软件两大部分. 硬件部分包括:微震拾震器(检波器) ,数据采集单元,数据通讯,GPS 计时; 软件部分包括:微震数据可视化与数据分析软件. 拾震器(Geophone) 拾震器用于感应微震地震波信号并将其传送至信号采集记录中心,拾震器分单向和三向两类, 如图 1 所示,可根据具体监测要求选用.ISS 拾震器的技术指标如下:
地址:北京车公庄西路 19 号华通大厦 A 座 505.邮编:100044 电话:010-6848 6065,010-6848 3334.传真:010-6848 3335.
1

地下工程岩体的稳定性阐明

地下工程岩体的稳定性分析 地下工程,系指在地面以下及山体内部的各类建筑物。地下工程具有隔热、恒温、密闭、防震、隐蔽及不占地面土地面积等许多优点。因此,在国民经济各个部门的工程建设 中被广泛采用。如城市及交通建设中的地下铁道、地下仓库、地下商场、铁路隧道、公路 隧道、过江隧道等,水电及矿山建设中的地下厂房、引水隧洞、地下水库、地下矿井巷道等,以及军工建设中的地下飞机场、地下试验室(站)、地下掩蔽部及各类军事设备器材仓 库等。显然随着经济建设的高速发展及地下工程所具有的优越性,地下工程的应用将会越 来越广泛,规模也将越来越大。 地下工程按成因分为人工洞室和天然洞室两大类。人工洞室指由人工开挖支护形成的 地下工程。天然洞室一般指由地质作用形成的地下空间,如可溶岩的溶洞等。地下工程完 全被周围的岩土体介质所包围。因此,这些介质的性质直接影响着地下工程的稳定与安全。 地下工程岩体系指地下工程周围的岩土介质,以往也称为地下洞室围岩。其稳定性的 工程地质研究是工程地质研究的重要课题之一。主要包括地下工程岩体稳定性的影响因素 分析,地下工程洞线及进、出口边坡位置的正确选择地下工程岩体稳定性的合理评价,对 不稳定地段的支护及施工方法的研究,施工过程中根据地质情况预测各种可能出现的工程 地质问题等。, 一、洞室位置的选择· 地下洞室按其用途分有压洞室和无压洞室,按工程岩体性质分岩体洞室和土体洞室。(一)无压的岩体洞室位置选择 无压的岩体洞室位置应满足以下条件: (1)洞址宜选在山体完整雄厚、地质构造简单、地下水影响小、岩性均一的坚硬岩层且岩层厚度为厚层、中厚层的地段;要避开透水的宽大破碎带、断裂交汇带、岩溶发育带、 强风化带及有害气体和高地温等地段。洞址选在稳定性好的围岩中,是保证地下工程施工 安全和正常运行的关键。 (2)洞口要选择在松散覆盖层薄、坡度较陡的反向坡,且有完整厚层岩层作顶板的地段;要避开冲沟或溪流源头,以及滑坡、崩塌、泥石流等不良地质现象发育或洪水可能淹没的 地段。洞外还应该有相应规模的弃渣场地。大量工程实践表明,地下工程进出口位置选择 十分重要,稍有不慎,将造成无法进洞或洞口岩体失稳等不良后果。. (3)洞轴线要选择与区域构造线、岩层及主要节理走向垂直或大角度相交的方向;要避免洞线从冲沟、山洼等地表水和地下水汇集的地段通过;在高地应力地区,洞轴线宜与水 平方向的最大主应力平行。例如我国金川矿巷道布置时,该区最大水平主应力方向为 N35。E左右,‘mx=20—30MPa,而位于地下400m深处的西风井巷道走向为N30。W左右,与最大水平主应力方向近正交。结果建成后,此巷道产生明显变形和破坏,断面累计 变形达200cm以上,断面减小致使巷道不能正常使用。后来将500m深处的巷道改为与最 大水平主应力方向近平行(N23。E),则巷道围岩的稳定性得到显著改善,即使穿越松散结 构的断层破碎带,也末发生明显的破坏。 水工隧洞多为有压隧洞,其工作条件比无压隧洞更为复杂。在洞址选择时,除考虑上 述要求外,尚需对围岩的弹性抗力、高压隧洞围岩的承载力、洞室上覆岩体及间壁岩体厚 度等进行专门研究,才能保证有压隧洞在内水压力作用下的正常运用。 (二)土体洞室位置的选择 土体洞室,包括明挖回填洞和暗挖衬砌洞室,在工业与民用建筑及道路建设中应用较 普遍,其洞室位置选择应满足:

地基稳定性分析

建筑地基的稳定性分析和评价 《岩土工程勘察规范》(GB 50021-2001) (2009年版) 4.1.11第3款规定应“分析和评价地基的稳定性……”,由于该部分内容在规范中较分散,各位同行在岩土工程勘察报告编写时,往往感到无从下笔,现归纳如下,供参考,不当之处望不吝赐教。 一、地基稳定性 地基稳定性是指主要受力层的岩土体在外部荷载作用下沉降变形、深层滑动等对工程建设安全稳定的影响程度,避免由此地基产生过大的变形、侧向破坏、滑移造成地基破坏从而影响正常使用。按照(GB 50021-2001) (2009年版) 14.1.3、14.1.4规定,岩土体的变形、强度和稳定应在定性分析的基础上进行定量分析。评价地基稳定性问题时按承载力极限状态计算,评价岩土体的变形时按正常使用极限状态的要求进行验算。 二、地基稳定性分析评价内容 影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。一般情况下,需要对经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等建(构)筑物进行地基稳定性评价。 通常情况下,涉及到主要的内容有:(1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况;(2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。如岩溶、滑坡、崩塌、采空区、地面沉降、地震液化、震陷、活动断裂、岸边河流冲刷等。按照《岩土工程勘察规范》(GB 50021-2001) (2009年版)、《高层建筑岩土工程勘察规程》(JGJ72-2004)和《建筑抗震设计规范》(GB 50011-2010)规定,对山东地区该问题常见的几种情况罗列如下: 1、地基承载力计算与验算 验算地基稳定性实质上就是验算地基极限承载能力是否满足要求。应严格按照《建筑地基基础设计规范》(GB 50007-2011) 5.2和《高层建筑岩土工程勘察规程》(JGJ 72-2004)8.2.6~8等条款执行。 2、变形验算 建筑物的地基变形计算值,不应大于建筑物地基允许变形值。在勘察阶段往往建筑物特征参数不明确,一味要求勘察报告中能有准确的结论也勉为其难,但在岩土工程勘察报告中应提供符合规范要求的岩土变形参数,供上部结构计算条件具备时按照(GB 50007-2011) 5.3、(JGJ 72-2004) 8.2.9~12和《建筑地基处理技术规范》(JGJ 79-2002)有关条款计算。 3、基础埋置深度的确定 对高层建筑和高耸构筑物基础的埋置深度,应满足地基承载力、变形和稳定性要求。位于岩石地基上的高层建筑,其基础埋深应满足抗滑稳定性要求。天然地基上的箱形或或筏形基础埋置深度不宜小于1/ H;桩箱或桩筏基础不宜小于1/18H,H为建筑物高度。 15 4、位于稳定土坡坡顶上的建筑 应根据建(构)筑物基础形式,按照(GB 50007-2011) 5.4.1~2有关规定确定基础距坡顶边缘的距离和基础埋深。需要时,还应按照《建筑边坡工程技术规范》(GB 50330-2002)5.1~3有关规定验算坡体的稳定性。验算方法对均质土可采用圆弧滑动条分法,发育软弱结构面、软弱夹层及层状膨胀岩土时,应按最不利的滑动面验算。当坡体中分布膨胀岩土时应考虑坡体含水量变化的影响;具有胀缩裂缝和地裂缝的膨胀土边坡,应进行沿裂缝滑动的验算。 5、受水平力作用的建(构)筑物 ①山区应防止平整场地时大挖大填引起滑坡; ②岸边工程应考虑冲刷、因建筑物兴建及堆载引起地基失稳。 6、土岩组合地基 该类地基下卧基岩面为单向倾斜时,应描述岩面坡度、基底下的土层厚度、岩土界面上是否存在软弱层(如泥化带)。

地基检测报告

目录 一、工程概况 二、场区工程地质条件简述 三、强夯施工简述 四、检测工作简述 (一)检测依据 (二)检测工作布置及完成工作量 五、强夯地基检测结果 (一)水平方向 (二)垂直方向 (三)综合分析 六、结论与建议 附图 1、检测点平面位置图 1张 2、检测点重型动力触探曲线图 6张

一、工程概况 百福山庄B-4#~B-6#、B-11#、B-12#、B-27#楼地基采用强夯加固处理。B-4#~B-6#设计要求处理后的强夯地基承载力特征值f ak=150kPa,B-11#、B-12#、B-27#设计要求处理后的强夯地基承载力特征值f ak=180kPa。 受青岛中联盈地集团有限公司的委托,我公司承担了百福山庄上述楼座的强夯地基的检测工作。目的是检测、评价强夯地基加固效果,确定强夯后设计基底范围内的地基承载力特征值,为设计部门提供基础设计所需的有关岩土技术参数。 拟建场区位于城阳区惜福镇铁骑山南麓,院后庄东部、霞沟村北部、东铁村南部。 二、场区工程地质条件简述 根据现场检测资料,结合青岛地矿岩土工程有限公司提供的《百福山庄B区岩土工程勘察报告》,拟建场地检测深度范围内的地层共有三层,简述如下:第①层:夯实填土 黄褐色,稍湿~湿,稍密,以粉质粘土为主要成份,含少量碎石。层厚0.70~3.00m,平均1.71m。 第②层:粉质粘土 黄褐色、红褐色,硬塑,含有花岗岩砂粒和Mn核,局部夹有花岗岩碎屑薄层,干强度中等,韧性中等,无摇振反应,切面稍有光泽,钻探进尺缓慢。 地基承载力特征值取f ak=250kPa,压缩模量Es=10.0MPa。 第③层:强风化花岗岩: 肉红色,表层黄褐色,粗粒花岗结构,块状构造,裂隙发育,岩体破碎,手搓呈砂状,属软岩,岩体基本质量等级V级,主要矿物成份为长石、石英。 地基承载力特征值取f ak取800kPa,变形模量E0取45.0MPa。 三、强夯施工简述 机械设备采用15T履带式起重机一台,夯锤重100kN。强夯分两遍完成,重夯一遍,低能满夯一遍。强夯参数如下: (1)夯击遍数:2遍

地基均匀性评价

地基均匀性评价 1、地基均匀性评价是否可理解为对持力层和下卧层的均匀性评价,对土层的评价结论是否说土层为均匀或不均匀地基土,还是地基为均匀或不均匀地基?而且对场地土层是否应该全部进行评价?我曾经见过一份报告上对本应该在基础开挖将被挖除的填土层评价其均匀性,本人认为不合理,是否正确? 2、地基均匀性评价的具体评价方法在高层勘察规范上才有,那低层和多层天然地基方案是否需要进行地基均匀性进行评价?若需要如何评价?根据高层规范第8.2.4条要求进行是否可行? 3、如下剖面地质情况地基均匀性如何评价?

a、第一种情况:建筑层高4层,无地下室,选择②粉质粘土做地基持力层,是否需要评价地基均匀性,若要评价该如何评价?这种情况层有人说粉质粘土为不均匀地基土,理由是层厚不均匀,则变形不均匀。对此我认为不合理,层底坡度少于10%,按照高层勘察规范第8.2.4条规定可判为均匀地基,厚度不均匀,可将基础放置在粉质粘土同意水平面上即可解决该问题,不知对否? b、建筑为11层,框架,1层地下室,基地标高约在自然地面下3m,选择②粉质粘土做地基持力层,地基均匀性如何评价? 4、如下剖面地质情况,按照层高3层和18层,其地基均匀性如何评价?

高大钊: 1. 评价地基的均匀性,是勘察报告的内容之一。但勘察阶段能够评价的仅是地基的均匀性,如果是均匀的地基,说明建造体型不很复杂的建筑物应该是不会发生不均匀沉降的。但是,如果楼层的高差很大,荷载的分布明显的不均匀,那么即使在均匀的地基上还是有可能产生不均匀沉降的。 2. 有经验的工程师,稍有工程判断能力的工程师,根据场地土层厚度的分布和不同勘探孔的压缩性指标之间的比较,就可以判定这个地基是不是均匀的。 3. 对于《高层建筑岩土工程勘察规程》JGJ72-2004关于地基均匀性评价的有关规定,可能存在不同的理解,也需要进行必要的讨论:1) 均匀性判断要求进行的,即使是采用分析软件方便快捷地进行的是“沉降、差异沉降、倾斜等特征分析评价”,并不是要求进行精确的定量计算。 2) 均匀性判断的目的是为了重视地貌、工程地质单元和地基岩土层结构等条件对建筑物具有重要的控制性影响。 3) 其实模量当量值之比就等于虚拟变形之比,比较相同基底应力条件下的模量当量值之比,可以把基底应力约去,应力面积化为单位应力面积,再将分子分母中的单位应力面积约去,最后只剩下虚拟变形的比值。 4. 根据《高层建筑岩土工程勘察规程》评价均匀性的方法,从原则上说也可以适用多层建筑。但无论是对高层建筑或多层建筑,评价均

相关主题