搜档网
当前位置:搜档网 › 混凝土碳化试验研究与控制_闫宏生

混凝土碳化试验研究与控制_闫宏生

混凝土碳化试验研究与控制_闫宏生
混凝土碳化试验研究与控制_闫宏生

混凝土碳化试验

一.目的 检测混凝土的碳化性能,指导检测人员按规程正确操作,确保检测结果科学、准确。 二.检测参数及执行标准 检测参数:碳化性能 执行标准:GBJ82-85《普通混凝土长期性能和耐久性能试验方法》三.适用范围 适用于测定在一定浓度的二氧化碳气体介质中混凝土试件的碳化程度,以评定该混凝土的抗碳化能力。 四.职责 检测员必须执行国家标准,按照作业指导书操作,边做试验边做好记录,编制检测报告,并对数据负责。 五.样本大小及抽样方法 碳化试验应采用棱柱体混凝土试件,以3块为一组,试件的最小边长应符合表1的要求。棱柱体的高宽比应不小于3。无棱柱体试件时,也可用立方体试件代替,但其数量应相应增加。 碳化试验试件尺寸选用表表1 试件一般应在28天龄期进行碳化,采用掺合料的混凝土可根据其特性决定碳化前的养护龄期。碳化试验的试件宜采用标准养护。但应在试验前

2天从标准养护室取出。然后在60℃温度下烘48小时。 经烘干处理后的试件,除留下一个或相对的两个侧面外,其余表面应用加热的石蜡予以密封。在侧面上顺长度方向用铅笔以10毫米间距画出平行线,以预定碳化深度的测量点。 六.仪器设备 1、CCB-70碳化箱(包括架空试件的铁架温湿度测量以及恒温恒湿设施、气体分析仪),设备编号为:JC611 2、二氧化碳供气装置(包括气瓶、压力表及流量计) 3、碳化深度检测尺,设备编号为:GC531 4、辅助破型设备:万能试验机(200t或30t)、三角挫刀条2个 5、材料、工具:石蜡、电炉、托盘、酚酞试液 七.环境条件 养护条件:二氧化碳浓度为20±3%,温度为20±5℃,湿度为70±5%。 八.试验步骤及结果判定 1、将经过处理的试件放入碳化箱内的铁架上,各试件经受碳化的表面之间的间距至少应不少于50毫米。 2、将碳化箱盖严密封。密封可采用机械办法或油封,但不得采用水封以免影响箱内的湿度调节。开动箱内气体对流装置,徐徐充入二氧化碳,并测定箱内的二氧化碳浓度,逐步调节二氧化碳的流量,使箱内的二氧化碳浓度保持在20±3%。在整个试验期间可用去湿装置或放入硅胶,使箱内的相对湿度控制在70±5%的范围内。碳化试验应在20±5℃的温度下

混凝土碳化深度及对回弹影响

混凝土碳化深度及对回弹影响 混凝土的碳化是混凝土所受到的一种化学腐蚀。空气中CO2气渗透到混凝土内,与其碱性物质起化学反应后生成碳酸盐和水,使混凝土碱度降低的过程称为混凝土碳化,又称作中性化,其化学反应为:Ca(OH)2+CO2=CaCO3+H2O。水泥在水化过程中生成大量的氢氧化钙,使混凝土空隙中充满了饱和氢氧化钙溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe2O3和Fe3O4,称为钝化膜(碱性氧化膜)。碳化后使混凝土的碱度降低,当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。可见,混凝土碳化作用一般不会直接引起其性能的劣化,对于素混凝土,碳化还有提高混凝土耐久性的效果,但对于钢筋混凝土来说,碳化会使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,因而会使混凝土对钢筋的保护作用减弱。 影响混凝土碳化速度的因素是多方面的。首先影响较大的是水泥品种,因不同的水泥中所含硅酸钙和铝酸钙盐基性高低不同;其次,影响混凝土碳化主要还与周围介质中CO2的浓度高低及湿度大小有关,在干燥和饱和水条件下,碳化反应几乎终止,所以这是除水泥品种影响因素以外的一个非常重要的原因;再次,在渗透水经过的混凝土时,石灰的溶出速度还将决定于水中是否存在影响Ca(OH)2溶解度的物质,如水中含有Na2SO4及少量Mg2+时,石灰的溶解度就会增加,如水中含有Ca(HCO3)2的Mg(HCO3)2对抵抗溶出侵蚀则十分有利。因为它们在混凝土表面形成一种碳化保护层;另外,混凝土的渗透系数、透水量、混凝土的过度振捣、混凝土附近水的更新速度、水流速度、结构尺寸、水压力及养护方法与混凝土的碳化都有密切的关系。 混凝土碳化破坏的防治,对于混凝土的碳化破坏,我们在施工中总结出了一系列治理措施:一是,在施工中应根据建筑物所处的地理位置、周围环境,选择合适的水泥品种;对于水位变化区以及干湿交替作用的部位或较严寒地区选用抗硫酸盐普通水泥;冲刷部位宜选高强度水泥;二是,分析骨料的性质,如抗酸性骨料与水、水泥的作用对混凝土的碳化有一定的延缓作用;三是,要选好配合比,适量的外加剂,高质量的原材料,科学的搅拌和运输,及时的养护等各项严格的工艺手段,以减少渗流水量和其它有害物的侵蚀,以确保混凝土的密实性;另外,若建筑物地处环境恶劣的地区,宜采取环氧基液涂层保护效果较好,对建筑物地下部分在其周围设置保护层;用各种溶注液浸注混凝土,如:用溶化的沥青涂抹。还有,若建筑物一旦发生了混凝土碳化,最好采用环氧材料修补,若碳化深度较大,可凿除混凝土松散部分,洗净进入的有害物质,将混凝土衔接面凿毛,用环氧砂浆或细石混凝土填补,最后以环氧基液做涂基保护。 测碳化很简单: 1.在砼表面凿个小洞,深1cm左右; 2.用洗耳球或小皮老虎吹掉灰尘碎屑;文档冲亿季,好礼乐相随mini ipad移动硬盘拍立得百度书包 3.在凿开的砼表面滴或者喷1%的酚酞酒精溶液; 4.用游标卡尺或碳化深度深度测定仪测定没有变色的砼的深度规范有规定,超过6mm就要抽芯修正平均碳化深度值小于或等于0.4mm时,视为无碳化;大于或等于6.0mm时,取6.0mm。对于新浇注的混凝土不超过3个月龄期的,视为无碳化答案补充你可以看下这本书《建筑结构检测技术标准》GB/T50344-2004 答案补充碳化深度值的测量准确与否与回弹值一样,直接影响推定混凝土强度的精度。测出来的值是越小越正常提高回弹法检测混凝土抗压强度精确度的探讨回弹法检测混凝土抗压强度在我国使用已达四十余年,因其简便、灵活、准确、可靠、快速、经济等特点而倍受工程检测人员的青睐,是我国目前工程检测中应用最为广泛的检测仪器之一。当对工程结构质量有怀疑时,均可运用回弹法进行检测。但回弹法在使用过程中还是出现了较多的操作不规范、随意性大、计算方法不当等问题,造成了较大的测试误

混凝土碳化的几点原因

1.混凝土碳化 混凝土的碳化是指大气中的二氧化碳首先渗透到混凝土内部的孔隙中,而后溶解于毛细孔中的水分,与水泥水化过程中所产生的水化硅酸钙和氢氧化钙等水化产物相互作用,生成碳酸钙等产物。所以,混凝土碳化是由于混凝土存在着孔隙,里面充满着水分和空气,在混凝土的气相、液相、固相中进行着一个十分复杂的多相物理化学连续过程。 2.混凝土碳化影响因素 有内在因素,也有外界因素。 2.1影响混凝土碳化的内在因素 不同的水泥,其矿物组成、混合材量、外加剂、生料化学成分不同,直接影响着水泥的活性和混凝土的碱度,对碳化速度有重要影响。一般而言,水泥中熟料越多,则混凝土的碳化速度越慢。外加剂(减水剂、引气剂)一般均能提高抗渗性,减弱碳化速度,但含氯盐的防冻、早强剂则会严重加速钢筋锈蚀,应严格控制其用量。集料品种和级配不同,其内部孔隙结构差别很大,直接影响着混凝土的密实性。材质致密坚实,级配较好的集料的混凝土,其碳化的速度较慢。 增加水泥用量,一方面可以改变混凝土的和易性,提高混凝土的密实性;另一方面还可以增加混凝土的碱性储备,使其抗碳化性能增强,碳化速度随水泥用量的增大而减少。 在水泥用量一定的条件下,增大水灰比,混凝土的孔隙率增加,密实度降低,渗透性增大,空气中的水分及有害化学物质较多的浸入混凝土体内,加快混凝土碳化。 施工质量差表现为振捣不密实,造成混凝土强度低,蜂窝、麻面、空洞多,为大气中的二氧化碳和水分的渗入创造了条件,加速了混凝土的碳化。

混凝土成型后,必须在适宜的环境中进行养护。养护好的混凝土,具有胶凝好、强度高、内实外光和抗侵蚀能力强,能阻止大气中的水分和二氧化碳侵入其内,延缓碳化速度。 2.2影响混凝土碳化的外界因素 酸性气体(如CO2)渗入混凝土孔隙溶解在混凝土的液相中形成酸,与水泥石中的氢氧化钙、硅酸盐、铝酸盐及其他化合物发生中和反应,导致水泥石逐渐变质,混凝土的碱度降低,这是引起混凝土碳化的直接原因。试验研究已证明,混凝土的碳化速度与二氧化碳浓度的平方根成正比,即混凝土碳化速度系数随二氧化碳浓度的增加而加快。 在混凝土浸水饱和或水位变化部位,由于温度交替变化,使混凝土内部孔隙水交替地冻结膨胀和融解松弛,造成混凝土大面积疏松剥落或产生裂缝,导致混凝土碳化。渗漏水会使混凝土中的氢氧化钙流失,在混凝土表面结成碳酸钙结晶,引起混凝土水化产物的分解,其结果是严重降低混凝土强度和碱度,恶化钢筋锈蚀条件。混凝土温度骤降,其表面收缩产生拉力,一旦超过混凝土的抗拉强度,混凝土表面便开裂,导致形成裂缝或逐渐脱落,为二氧化碳和水分渗入创造了条件,加速混凝土碳化。

混凝土的碳化深度

混凝土的碳化深度 混凝土碳化深度: 土碳化是指混凝土中的高碱性物质(主要是氢氧化钙)同大气中的二氧化碳(CO2)发生化学反应的现象。由于混凝土碳化是在混土碳化是在混凝土的构件外表面及表面下形成一个坚硬的碳化表皮,所以又称为混凝土“表面碳化”。 测定混凝土碳化深度值的意义: 检测混凝土碳化深度的目的之一是混凝土碳化深度的大小直接影响采用回弹法检测混凝土强度的 测定结果,即(对回弹法检测混凝土强度测定值进行修正)必须考虑混凝土碳化深度。 检测混凝土碳化深度的目的之二是由此可定性地推定混凝土中的钢筋锈蚀情况。下面简述混凝土碳化与钢筋锈蚀的关系分析。 混凝土碳化与钢筋锈蚀的关系: 普通硅盐水泥在水化过程中生成大量的氢氧 化钙。混凝土孔隙中充满了饱和氢氧化钙溶液,钢筋在碱性介质中表面生成难溶的Fe2O3和Fe3O4,这层保护膜(或钝化膜)使钢筋难以生锈。

混凝土硬化以后,表面遭受空气中二氧化碳的作用,氢氧化钙慢慢变成碳酸钙而失去碱性,即前述的混凝土碳化。 图c示出混凝土碳化深度达到钢筋表面,碳化部分的钢筋表面使氧化膜破坏而开始生锈,但碱性部分的钢筋表面并不生锈。钢筋一生锈,铁锈的体积增大,破坏了混凝土保护层,沿钢筋产生裂缝,水、空气进入裂缝,加速了钢筋的锈蚀。 因此,一般认为当混凝土保护层厚度大于碳化深度时,钢筋没有锈蚀;保护层厚度与碳化深度接近时,则钢筋表面开始有局部锈点出现,当碳化浓度大于保护层时,锈蚀一般不可避免地要出现。 由于已碳化混凝土中钢筋锈蚀将产生钢筋截面削弱、钢筋与混凝土相互作用能力降低,所以一般也认为当钢筋锈蚀发展

到混凝土保护层沿钢筋开裂的程度时,尽管尚不影响构件安全使用,但可认为是开始危及结构安全的前兆,甚至可认为这是构件使用寿命的一种极限状态。 混凝土碳化深度的检测方法: 碳化深度,可用合适的工具(如钻、凿子)在测区表面形成直径约为15mm的孔洞,其深度约等于保护层厚度,然后除去孔洞中的粉末和碎屑,不能用液体冲洗。用浓度为1%的酚酞酒精溶液立即洒在孔洞壁的边缘处,再用钢尺测量自混凝土表面至深处不变色、(未碳化部分呈紫红色)有代表性的交界处垂直距离1~2次,该距离即为混凝土的碳化深度值。每次测读至0.5mm。 在测区中选取n个碳化深度测点,得到相应碳化深度测量值,即可进行平均碳化深度值的计算。

混凝土碳化深度与处理措施

目录 一、碳化作用机理 (2) 二、影响商品混凝土碳化的因素 (2) 三、商品混凝土碳化的预防措施 (5) 四、混凝土碳化处理措施 (6)

混凝土碳化的影响因素及其预防措施 商品混凝土碳化是影响商品混凝土耐久性的一个重要因素。本文对商品混凝土碳化的影响因素及其预防措施进行了总结。从商品混凝土本身的密实度和碱性大小的角度考虑,商品混凝土的碳化受材料、环境和施工等因素的影响。降低水灰比、优化配合比设计、加强养护和增加保护层厚度可以提高商品混凝土的抗碳化能力。 一、碳化作用机理 空气中CO2渗透到商品混凝土内,与其碱性物质发生化学反应生成碳酸盐和水,使商品混凝土碱度降低的过程称为商品混凝土碳化,也可称为中性化,其化学反应为: Ca(OH)2 + CO2 = CaCO3 + H2O 水泥在水化过程中生成大量的氢氧化钙,使商品混凝土空隙中充满了饱和C a(OH)2溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe 2O3和Fe3O4,称为钝化膜。 碳化本身对商品混凝土没有破坏作用,其主要危害是由于碳化会降低商品混凝土的碱度。当碳化超过商品混凝土的保护层时,在水与空气同时存在的条件下,钢筋开始生锈。钢筋锈蚀产生的体积膨胀将导致钢筋长度方向出现纵向裂缝,并使保护层脱落,进而使得构件的截面减小、承载能力降低,最终将使结构构件破损或者失效。 二、影响商品混凝土碳化的因素 影响商品混凝土碳化最主要的因素是商品混凝土本身的密实度和碱性大小,即商品混凝土的渗透性及其Ca(OH)2含量。影响商品混凝土碳化的因素主要分为三个方面:材料因素、环境因素和施工因素。 2.1 材料因素 材料因素包括水灰比、水泥品种与用量、掺合料、外加剂、骨料品种与级配、商品混凝土表面覆盖层等等,主要通过影响商品混凝土的碱度和密实性来影响商品混凝土的碳化速度。 2.1.1 水灰比 水灰比是决定混凝土性能的重要参数,对混凝土碳化速度影响极大。众所周知,水灰比基本上决定了混凝土的孔结构,水灰比越大,混凝土内部的孔隙率就越大。混凝土中的气孔主要有胶孔、气孔和毛细孔。胶孔的半径很小,CO2分子很难自由进出;CO2扩散均在内部的气孔和毛细孔中进行。因此水灰比一定程度上决定了CO2在混凝土中的扩散速度,水灰比越大,孔隙率越高,CO2的扩散越容易,混凝土碳化速度越快。另外,水灰比大会使商品混凝土孔隙中的游离水增多,一定程度上也有利于碳化反应。研究结果表明:当水灰比大于0.65时,碳化深度会急剧加大。国内外进行了大量的快速碳化试验和长期暴露试验来研究水灰比与混凝土碳化速度的关系。得到碳化速度与水灰比的关系,暴露试验给出了碳化速度系数与水灰比的表达式:

混凝土碳化研究现状_武俊曦

四川建筑科学研究Sichuan Building Science 第37卷第6期2011年12月 收稿日期:2010-06-10作者简介:武俊曦(1977-),男,陕西西安人,工程师,主要从事建筑施工工作。 E -mail :wujunxi1977@126.com 混凝土碳化研究现状 武俊曦1 ,王 艳 2 (1.陕西建工集团第三建筑工程有限公司,陕西西安710054;2.西安建筑科技大学土木工程学院,陕西西安710055) 摘要:混凝土碳化是一个非常复杂的物理化学过程,国内外众多学者分别从碳化机理、影响碳化的因素、碳化深度预测模型 等方面, 对这个问题进行了深入研究。本文对这些成果进行了总结与分类,在此基础上提出了尚存在的问题,并对混凝土碳化研究发展方向进行了展望。 关键词:混凝土;碳化;碳化速度;碳化深度中图分类号:TU528文献标识码:B 文章编号:1008-1933(2011)06-202-03 0前言 Mahta 教授在题为《混凝土耐久性———50年进 展》的主旨报告中指出:“当今世界,混凝土破坏原 因,按重要性递减顺序排列是钢筋腐蚀、寒冷气候下 的冻害、侵蚀环境的物理化学作用”。因此,钢筋锈 蚀是影响混凝土耐久性的主要因素之一。而混凝土碳化又是引起钢筋锈蚀最主要的原因。20世纪60年代,国际上一些发达国家就开始重视混凝土结构的耐久性问题,对混凝土碳化进行了大量的试验研究及理论分析。国内从20世纪80年代开始研究混凝土碳化与钢筋锈蚀问题,通过快速碳化实验、长期暴露实验及实际工程调查,研究混凝土碳化的影响因素与碳化深度预测模型。经过40多年的研究,国内外对混凝土碳化机理与影响因素已经有了深刻的 认识, 并提出了很多种碳化深度的计算模型。1混凝土碳化机理的研究 混凝土碳化是一个非常复杂的物理化学过程, 国内外很多学者从不同的角度对这个问题进行了深入研究。 普通水泥混凝土水泥熟料的主要矿物成分是硅酸三钙C 3S (3CaO ·SiO 2)、硅酸二钙C 2S (2CaO ·SiO 2)、铁铝酸四钙C 4AF (4CaO ·Al 2O 3·Fe 2O 3)和 铝酸三钙C 3A (3CaO ·Al 2O 3), 另外,还有少量的石膏C SH 2(CaSO 4·2H 2O )等。其水化产物为氢氧化钙(约占25%)、水化硅酸钙(约占60%)、水化铝酸钙、水化硫铝酸钙等,充分水化后,混凝土孔隙水溶液为氢氧化钙饱和溶液,其pH 值约为12 13,呈强碱性。在水泥水化过程中,由于化学收缩、自由水蒸发等多种原因,在混凝土内部存在大小不同的毛细 管、 孔隙、气泡等,大气中的二氧化碳通过这些孔隙向混凝土内部扩散,并溶解于孔隙内的液相,在孔隙溶液中与水泥水化过程中产生的可碳化物质发生碳 化反应, 生成碳酸钙。混凝土碳化的主要化学反应式如下[1] :Ca (OH )2+CO 2→CaCO 3+H 2O 3CaO ·2SiO 2·3H 2O +3CO 2→3CaCO 3·2SiO 2 ·3H 2O 3CaO ·SiO 2+3CO 2+γH 2O →SiO 2·γH 2O +3CaCO 3 2CaO ·SiO 2+2CO 2+γH 2O →SiO 2·γH 2O +2CaCO 3 文献[2]研究表明,混凝土孔溶液中绝大多数组分为Na + , K +和与其保持电性平衡的OH –,Ca 2+含量微乎其微, Ca (OH )2大部分是以晶体存在的。当CO 2扩散到混凝土孔溶液,并分别与Na + , K +,Ca 2+反应生成Na 2CO 3,K 2CO 3,CaCO 3。由于Na 2CO 3,K 2CO 3溶解度大,孔溶液中的Na + ,K +浓度不会发生变化,除非这些溶液干燥时达到过饱和析 出晶体;而孔溶液中的Ca 2+与CO 2- 3发生反应生成溶解度极低的CaCO 3,并沉积在孔壁表面,导致孔溶 液中Ca 2+ 浓度降低,因此Ca (OH )2晶体继续溶解,并补充孔溶液中失去的Ca 2+ 浓度。Ca (OH )2晶体逐渐溶解而碳化反应过程中CaCO 3晶体逐渐增多,这种循环反应一直进行到Ca (OH )2晶体完全溶解和消耗为止,此时混凝土pH 值降低,混凝土发生中性化现象。 混凝土孔溶液的pH 值越高,CaCO 3溶解度越小,孔溶液中发生中性化反应之后Ca 2+ 的浓度减少 得也越多, Ca (OH )2晶体的溶解速度也越快。随着中性化过程的继续,孔溶液的pH 不断降低, Ca (OH )2晶体的溶解速度也会减慢,碳化速度相应会有一些降低。 另外,由于碳化反应的主要产物碳酸钙属非溶 解性钙盐,比原反应物的体积膨胀约11.6%[3] ,因 2 02

混凝土回弹与碳化深度

混凝土回弹与碳化深度

综述:碳化深度过深会降低混凝土的碱性,影响结构的耐久度。碳化就是混凝土中的Ca(OH)2和空气中的CO2反应生成CaCO3和水的过程。 碳化深度主要与水灰比和周围环境有关。一般说来,水泥用量一定的时候,水灰比越大,碳化越快。当水灰比一定的时候,水泥用量越少,碳化越快。从碳化的定义我们可以看出如果水泥用量多的话,混凝土中的Ca(OH)2就多碱性就越强,越不容易碳化。还有就是周围的环境,CO2的浓度及湿度。非常潮湿和非常干燥的时候,混凝土都不易碳化。太湿可以隔离CO2与Ca(OH)2的反映,太干CO2无法结合到水生成H2CO3(碳酸),混凝土也不会碳化。 回弹检测混凝土强度是以混凝土的表面硬度来推断混凝土强度的.碳化会增大混凝土表面硬度,所以回弹判定其强度时需要检测碳化深度进行修正。 一、混凝土碳化机理及原因 1、混凝土碳化机理 拌和混凝土时,硅酸盐水泥的主要成份CaO水化作用后生成Ca(OH)2,它在水中的溶解度低,除少量溶于孔隙液中,使孔隙液成为饱和碱性溶液外,大部分以结晶状态存在,成为孔隙液保持高碱性的储备,它的PH值为12.5~13.5。空气中的CO2气体不断地透过混凝土中未完全充水的粗毛细孔道,气相扩散到混凝土中部分充水的毛细孔中,与其中的孔隙液所溶解的Ca(OH)2进行中和反应。反应产物为CaCO3和H2O,CaCO3溶解度低,沉积于毛细孔中。

该反应式为:Ca(OH)2+CO2→CaCO3↓+H2O 反应后,毛细孔周围水泥石中的羟钙石补充溶解为Ca2+和OH-,反向扩散到孔隙液中,与继续扩散进来的CO2反应,一直到孔隙液的PH值降为8.5~9.0时,这层混凝土的毛细孔中才不再进行这种中和反应,此时即所谓“已碳化”。确切地说,碳化应称为碳酸盐化。另外,凡是能与Ca(OH)2进行中和反应的一切酸性气体,如SO2、SO3、H2S以至于气相HCI等,均能进行上述中和反应,使混凝土碱度降低,故混凝土碳化应广义地称为“中性化”。混凝土表层碳化后,大气中的CO2继续沿混凝土中未完全充水的毛细孔道向混凝土深处气相扩散,更深入地进行碳化反应。 2、混凝土碳化原因 混凝土的主要成分有水泥、粗细骨料、水以及外加剂。水泥掺与混凝土的拌合中,水泥中主要成分是CaO,经水化作用后生成Ca(OH)2 ,混凝土的碳化,是指混凝土中的Ca(OH)2与空气中的CO2起化学反应,生成中性的碳酸盐CaCO3 。未碳化的混凝土呈碱性,混凝土中钢筋保持钝化状态的最低(临界)碱度是PH 值为11.5,碳化后的混凝土PH值为8.5~9.5。碳化使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,使混凝土对钢筋的保护作用减弱。当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。钢筋锈蚀后,锈蚀产生的体积比原来膨胀2~4倍,从而对周围混凝土产生膨胀应力,锈蚀越严重,铁锈越多,膨胀力越大,最后导致混凝土开裂形

应力状态下混凝土的碳化试验研究

第33卷第5期2003年9月  东南大学学报(自然科学版) JOUR NAL OF SOUTHEAST UNIVER SITY (Natural Science Edition )   Vol .33No .5 Sept .2003 应力状态下混凝土的碳化试验研究 涂永明 吕志涛 (东南大学混凝土与预应力混凝土结构教育部重点实验室,南京210096) 摘要:进行了碳化环境下预应力混凝土试件的耐久性试验研究,阐述了在应力和碳化共同作用下的混凝土结构破损机理及规律.试件为无应力、弯曲受拉和直接受压的应力状态,采用加速碳化的试验方案.分别引进k wc 和χσ反映碳化深度与混凝土质量、强度和应力水平的关系,建立了应力状态下的混凝土碳化深度的多因素预测模型.结果表明:拉、压应力分别加快和减缓了混凝土的碳化速率,且应力越大;碳化速率的改变越大;χσ可以反映碳化速率的变化趋势.施加预应力能够控制混凝土裂缝的发展、消除或限制裂缝的宽度,因此,预应力混凝土结构的耐久性比普通混凝土结构的耐久性更好. 关键词:预应力混凝土结构;耐久性;应力;碳化;腐蚀 中图分类号:TU37 文献标识码:A 文章编号:1001-0505(2003)05-0573-04 Experiment and research of presteressed concrete structure in carbonation corrosive environments T u Yongming L ǜZhitao (Key Lab of R C &PC Structures of Minis try of Education ,Southeas t Universit y ,Nanjing 210096,China ) A bstract : The durability experiments of prestr essed concrete specimens in carbonation corrosive environ -ments were carried out .The corrosion mechanism of c oncrete under the coactions of stress and carbonation c or -rosion was discussed .The specimens were categor ized into three types :non -stressed ,bend -tensile stress and c ompressive str ess .Carbonation of the specimens was acc elerate d .A multi -factor m odel forecasting th e car -bonation depth o f pr estressed concr ete was constructed ,introducin g k wc and χσ,whic h describe the r elation -ships between carbonation depth and concrete quality or strength or stress levels .The r esults sho w that the tensile str ess and compressive str ess are able to accelerate or slow do wn the concrete carbonation ,respective -ly ,and the larger the changes in stresses ,the lar ger the changes in carbonation degrees .χσreflects the changes well .The compressive str ess can control the development of c oncrete cracks ,and eliminate the crack width ,so the durability of the prestressed concrete str ucture is better than that of an ordinar y c oncrete struc -ture . Key words : prestressed concrete str ucture ;durability ;stress ;carbonation ;corrosion 收稿日期:2003-04-25.  基金项目:国家自然科学基金资助项目(59978008).  作者简介:涂永明(1978—),男,博士生;吕志涛(联系人),教 授,博士生导师,中国工程院院士,luzhitao @seu .edu .cn . 自20世纪六、七十年代开始,混凝土的碳化研究已成为结构耐久性研究的重点,但迄今为止,应力状态下混凝土的碳化试验研究仍很少见.本文研究 了预应力混凝土结构在碳化环境下的耐久性能,并对此进行了试验与研究. 1 应力状态下的混凝土碳化试验 1.1 试验方案 试验研究了在碳化侵蚀环境下,应力状态、水灰比(指质量比,下同)、保护层厚度等因素对混凝土碳

混凝土的碳化深度.分析

混凝土的碳化深度 混凝土碳化深度:土碳化是指混凝土中的高碱性物质(主要是氢氧化钙)同大气中的二氧化碳(CO2)发生化学反应的现象。由于混凝土碳化是在混土碳化是在混凝土的构件外表面及表面下形成一个坚硬的碳化表皮,所以又称为混凝土“表面碳化”。 测定混凝土碳化深度值的意义: 检测混凝土碳化深度的目的之一是混凝土碳化深度的大小直接影响采用回弹法检测混凝土强度的测定结果,即(对回弹法检测混凝土强度测定值进行修正)必须考虑混凝土碳化深度。 检测混凝土碳化深度的目的之二是由此可定性地推定混凝土中的钢筋锈蚀情况。下面简述混凝土碳化与钢筋锈蚀的关系分析。 混凝土碳化与钢筋锈蚀的关系: 普通硅盐水泥在水化过程中生成大量的氢氧化钙。混凝土孔隙中充满了饱和氢氧化钙溶液,钢筋在碱性介质中表面生成难溶的Fe2O3和Fe3O4,这层保护膜(或钝化膜)使钢筋难以生锈。 混凝土硬化以后,表面遭受空气中二氧化碳的作用,氢氧化钙慢慢变成碳酸钙而失去碱性,即前述的混凝土碳化。

图c示出混凝土碳化深度达到钢筋表面,碳化部分的钢筋表面使氧化膜破坏而开始生锈,但碱性部分的钢筋表面并不生锈。钢筋一生锈,铁锈的体积增大,破坏了混凝土保护层,沿钢筋产生裂缝,水、空气进入裂缝,加速了钢筋的锈蚀。 因此,一般认为当混凝土保护层厚度大于碳化深度时,钢筋没有锈蚀;保护层厚度与碳化深度接近时,则钢筋表面开始有局部锈点出现,当碳化浓度大于保护层时,锈蚀一般不可避免地要出现。 由于已碳化混凝土中钢筋锈蚀将产生钢筋截面削弱、钢筋与混凝土相互作用能力降低,所以一般也认为当钢筋锈蚀发展到混凝土保护层沿钢筋开裂的程度时,尽管尚不影响构件安全使用,但可认为是开始危及结构安全的前兆,甚至可认为这是构件使用寿命的一种极限状态。 混凝土碳化深度的检测方法: 碳化深度,可用合适的工具(如钻、凿子)在测区表面形成直径约为15mm的孔洞,其深度约等于保护层厚度,然后除去孔洞中的粉末和碎屑,不能用液体冲洗。用浓度为1%的酚酞酒精溶液立即洒在孔洞壁的边缘处,再用钢尺测量自混凝土表面至深处不变色、(未碳化部分呈紫红色)有代表性的交界处垂直距离1~2次,该距离即为混凝土的碳化深度值。每次测读至0.5mm。

(完整word版)混凝土碳化深度JGHNT07

1. 适用范围、检测项目及技术标准 1.1. 适用范围 本方法适用于测定在一定浓度的二氧化碳气体介质中混凝土试件的碳化程 度,以评定该混凝土的抗碳化能力。也适用于水泥砂浆。 1.2. 检测项目 混凝土的碳化程度。 1.3. 引用标准 JTJ270-98《水运工程混凝土试验规程》 2.检测设备 2.1.碳化箱: 带有密封盖或门的密闭容器,容器的容积至少应为预定进行的试 件体积的两倍。箱内应有架空试件的搁架,二氧化碳引入口,分析取样 用的气体引出口,箱内气体对流循环装置,温湿度测量以及为保持箱内恒温 恒湿所需的设施。必要时,可设玻璃观察口以对箱内的温湿度进行读数; 2.2.气体分析仪: 能分析箱内气体中的二氧化碳浓度,精确到1%; 2.3.二氧化碳供气装置: 包括气瓶、压力表及流量计; 2.4.其他: 1%酚欧乙醇溶液(含20%的蒸馏水)、变色硅胶、钢尺、喷雾器等。 3.试验 3.1.碳化试验应采用棱柱体混凝土试件,以3块为一组,试件的最小边长应符合 下表的要求。棱柱体的高宽比应不小于3。 无棱柱体试件时,也可用立方体试件代替,但其数量应相应增加。碳化试验的试件宜采用标准养护。一般应在28d龄期进行碳化,采用掺合料的混凝土可根据其特性决定碳化前的养护龄期。但试件应在试验前2d从标准养护室取出。然后在60℃温度下烘48h。 经烘干处理后的试件,除留下一个或相对的两个側面外,其余表面应

用加热的石蜡予以密封。在側面上順长度方向用铅笔以10mm 间距画出平行线, 以预定碳化深度的测量点。 3.2. 将经过处理的试件放人碳化箱内的铁架上,各试件经受碳化的表面之间的间距 应大于 50mm 。 3.3. 将碳化箱关闭密封。 密封可采用机械办法或油封, 但不得采用水封以免影响 箱内的湿度调节。开动箱内气体对流调节装置, 徐徐充入=氧化碳, 并测定箱内的二氧化碳浓度, 逐步调节二氧化碳的流量, 使箱内的二氧化碳浓度保持在20±3%。在整个试验期间可用去湿装置或放入硅胶,使箱内的相对湿度控制在70±5%的范围内 。 碳化试验应在20±5℃的温度下进行。 3.4. 每隔一定时问对箱内的二氧化碳浓度、 温度及湿度作一次测定。一般在第 一、二天每隔2h 测定一次,以后每隔4h 测定一次。并根据所测得的二氧化碳浓度随时调节其流量。去湿用的硅胶应经常更换。 3.5. 碳化至3、7、14及28d 时,各取出试件,破型以测定其碳化深度。棱柱体 试件在压力试验机上用劈裂法从一端开始破型。 每次切除的厚度约为试件宽度的一半, 用石蜡将破型后试件的切断面封好, 再放入箱内继续碳化, 直到下一个试验期 。 如采用立方体试件, 则在试件中部劈开 。 立方体试件只作一次检验。劈开后不再放回碳化箱重复使用。 3.6. 将切下的那部分试件刷去断面上的粉末, 随即喷上(或满上) 1%酚欧乙醇溶 液。经30s 后,按原先标划的每l0mm 一个测量点用钢尺分别测出两侧面各点的碳化深度。如果测点处的碳化分界线上刚好嵌有粗骨料颗粒,则可取该颗粒两侧处碳化深度的平均值作为该点的深度值 。 碳化深度测量精确至 lmm 。 3.7. 混凝土在各试验龄期时的平均碳化深度 d , 应按下式计算, 精确到 0. lmm : n d d n 1 i i t ∑== 式中 d t ----试件碳化 t 天后平均碳化深度(mm); d i ----两个测面上的各测点的碳化深度 (mm) ; n----两个测面上的测点总数 。 以在标推条件下(即=氧化碳浓度为20±3%,温度为20±5℃,湿度为70士5%)的3个试件碳化28d 的碳化深度平均值作为测定值,用以对比各种混凝土的抗碳化能力及对钢筋的保护作用。以各龄期计算所得的碳化深度绘制碳化时间与碳化深度的关系曲线, 以表示在该条件下的混凝土碳化发展规律。 4. 检测结束工作 4.1. 试验完毕后,收拾整理好试验设备,以备下次使用。

文献综述(混凝土的碳化)

文献综述 (2011届) 浅析混凝土碳化及其防治 学生姓名王利锋 学号07134225 院系工学院土木工程系专业土木工程 指导教师周欣墨 完成日期2011-02-28

浅析混凝土碳化及其防治 摘要:混凝土碳化是影响混凝土结构耐久性的主要因素之一。本文根据混凝土碳化的危害和基本原理,主要论述了影响混凝土碳化的各种因素,如水泥品种及用量、水灰比、集料品种、施工质量及养护方法、环境中CO2的浓度、外界环境温湿度等,并针对混凝土碳化的危害提出了相应的防治措施。 关键词:混凝土;碳化;危害;影响因素;防治措施 引言 20世纪60年代,国际上一些发达国家就开始重视混凝土结构的耐久性问题,在混凝土碳化方面进行了大量的试验研究及理论分析。首先,在混凝土碳化机理方面已经取得了比较统一完整的认识。其次,对于混凝土碳化影响因素、人工加速碳化以及碳化深度检测方面也有了全面的了解。基于这些研究成果,各国工程界相继都把碳化作为混凝土耐久性的一个主要方面纳入了设计规范,国际混凝土学术界已举办过多次有关混凝土碳化的学术讨论会,国际水泥化学会议也报导了混凝土碳化研究的进展,并且每次都有相当数量关于混凝土碳化的论文发表,并从不同角度提出了碳化深度的计算模型。我国在混凝土碳化方面的研究起步较晚,从20世纪80年代开始研究混凝土碳化与钢筋的锈蚀问题,通过快速碳化试验、长期暴露试验以及实际工程调查,研究混凝土碳化的影响因素与碳化深度预测模型,并且取得了可喜的研究成果。 混凝土的碳化是指混凝土中原呈碱性的氢氧化钙在大气中受到二氧化碳和水分的作用逐渐变成呈中性的碳酸钙的过程[1]。混凝土碳化是影响混凝土结构耐久性的重要原因之一,通过对混凝土碳化机理以及影响因素的分析,我们可以采取更好的相关控制措施来减少碳化的危害。 1混凝土碳化的危害及机理 1.1混凝土碳化的危害 经过碳化的混凝土,表面强度、密度能有所提高,但由于碳化一般均在结构表面,深度不大,故对整体结构强度影响不大。混凝土碳化后会产生体积收缩,当收缩应力超过混凝土表面抗拉强度时,会在表面产生裂缝。潮湿空气进入裂缝使裂缝处的混凝土碳化收缩,继而使裂缝向混凝土内部发展。当裂缝穿透混凝土

水泥混凝土碳化深度

混凝土的碳化是混凝土所受到的一种化学腐蚀。空气中CO2气渗透到混凝土内,与其碱性物质起化学反应后生成碳酸盐和水,使混凝土碱度降低的过程称为混凝土碳化,又称作中性化,其化学反应为:Ca(OH)2+CO2=CaCO3+H2O。水泥在水化过程中生成大量的氢氧化钙,使混凝土空隙中充满了饱和氢氧化钙溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe2O3和Fe3O4,称为钝化膜(碱性氧化膜)。碳化后使混凝土的碱度降低,当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。可见,混凝土碳化作用一般不会直接引起其性能的劣化,对于素混凝土,碳化还有提高混凝土耐久性的效果,但对于钢筋混凝土来说,碳化会使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,因而会使混凝土对钢筋的保护作用减弱。 影响混凝土碳化速度的因素是多方面的。首先影响较大的是水泥品种,因不同的水泥中所含硅酸钙和铝酸钙盐基性高低不同;其次,影响混凝土碳化主要还与周围介质中CO2 的浓度高低及湿度大小有关,在干燥和饱和水条件下,碳化反应几乎终止,所以这是除水泥品种影响因素以外的一个非常重要的原因;再次,在渗透水经过的混凝土时,石灰的溶出速度还将决定于水中是否存在影响Ca(OH)2溶解度的物质,如水中含有Na2SO4及少量Mg2+时,石灰的溶解度就会增加,如水中含有Ca(HCO3)2的Mg(HCO3)2对抵抗溶出侵蚀则十分有利。因为它们在混凝土表面形成一种碳化保护层;另外,混凝土的渗透系数、透水量、混凝土的过度振捣、混凝土附近水的更新速度、水流速度、结构尺寸、水压力及养护方法与混凝土的碳化都有密切的关系。 混凝土碳化破坏的防治,对于混凝土的碳化破坏,我们在施工中总结出了一系列治理措施:一是,在施工中应根据建筑物所处的地理位置、周围环境,选择合适的水泥品种;对于水位变化区以及干湿交替作用的部位或较严寒地区选用抗硫酸盐普通水泥;冲刷部位宜选高强度水泥;二是,分析骨料的性质,如抗酸性骨料与水、水泥的作用对混凝土的碳化有一定的延缓作用;三是,要选好配合比,适量的外加剂,高质量的原材料,科学的搅拌和运输,及时的养护等各项严格的工艺手段,以减少渗流水量和其它有害物的侵蚀,以确保混凝土的密实性;另外,若建筑物地处环境恶劣的地区,宜采取环氧基液涂层保护效果较好,对建筑物地下部分在其周围设置保护层;用各种溶注液浸注混凝土,如:用溶化的沥青涂抹。还有,若建筑物一旦发生了混凝土碳化,最好采用环氧材料修补,若碳化深度较大,可凿除混凝土松散部分,洗净进入的有害物质,将混凝土衔接面凿毛,用环氧砂浆或细石混凝土填补,最后以环氧基液做涂基保护。 测碳化很简单: 1.在砼表面可采用适当的工具在测区表面形成直径约15mm的孔洞,其深度应大于混凝土的碳化深度(大于10mm); 2.用洗耳球或小皮老虎吹掉灰尘碎屑,并不得用水擦洗; 3.在凿开的砼表面滴或者喷1%的酚酞酒精溶液; 4.用游标卡尺或碳化深度测定仪测定没有变色的砼的深度。

混凝土碳化深度及对回弹影响

混凝土碳化深度及对回弹影响混凝土的碳化是混凝土所受到的一种化学腐蚀。空气中CO2气渗透到混凝土内,与其碱性物质起化学反应后生成碳酸盐和水,使混凝土碱度降低的过程称为混凝土碳化,又称作中性化,其化学反应为:Ca(OH)2+CO2=CaCO3+H2O。水泥在水化过程中生成大量的氢氧化钙,使混凝土空隙中充满了饱和氢氧化钙溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe2O3和Fe3O4,称为钝化膜(碱性氧化膜)。碳化后使混凝土的碱度降低,当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。可见,混凝土碳化作用一般不会直接引起其性能的劣化,对于素混凝土,碳化还有提高混凝土耐久性的效果,但对于钢筋混凝土来说,碳化会使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,因而会使混凝土对钢筋的保护作用减弱。 影响混凝土碳化速度的因素是多方面的。首先影响较大的是水泥品种,因不同的水泥中所含硅酸钙和铝酸钙盐基性高低不同;其次,影响混凝土碳化主要还与周围介质中CO2的浓度高低及湿度大小有关,在干燥和饱和水条件下,碳化反应几乎终止,所以这是除水泥品种影响因素以外的一个非常重要的原因;再次,在渗透水经过的混凝土时,石灰的溶出速度还将决定于水中是否存在影响Ca(OH)2溶解度的物质,如水中含有Na2SO4及少量Mg2+时,石灰的溶解度就会增加,如水中含有Ca(HCO3)2的Mg(HCO3)2对抵抗溶出侵蚀则十分有利。因为它们在混凝土表面形成一种碳化保护层;另外,混凝土的渗透系数、透水量、混凝土的过度振捣、混凝土附近水的更新速度、

混凝土碳化深度与处理措施

一、碳化作用机理 (1) 二、影响商品混凝土碳化的因素 (1) 三、商品混凝土碳化的预防措施 (4) 四、混凝土碳化处理措施 (5) 混凝土碳化的影响因素及其预防措施 商品混凝土碳化是影响商品混凝土耐久性的一个重要因素。本文对商品混凝土碳化的影响因素及其预防措施进行了总结。从商品混凝土本身的密实度和碱性大小的角度考虑,商品混凝土的碳化受材料、环境和施工等因素的影响。降低水灰比、优化配合比设计、加强养护和增加保护层厚度可以提高商品混凝土的抗碳化能力。 一、碳化作用机理 空气中C02渗透到商品混凝土内,与其碱性物质发生化学反应生成碳酸盐和水,使商品混凝土碱度降低的过程称为商品混凝土碳化,也可称为中性化,其化学反应为: Ca(0H)2 + C02 = CaC03 + H20 水泥在水化过程中生成大量的氢氧化钙,使商品混凝土空隙中充满了饱和Ca(0H)2 溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe203和Fe304称为钝化膜。 碳化本身对商品混凝土没有破坏作用,其主要危害是由于碳化会降低商品混凝土的碱度。当碳化超过商品混凝土的保护层时,在水与空气同时存在的条件下,钢筋开始生锈。钢筋锈蚀产生的体积膨胀将导致钢筋长度方向出现纵向裂缝,并使保护层脱落,进而使得构件的截面减小、承载能力降低,最终将使结构构件破损或者失效。 二、影响商品混凝土碳化的因素 影响商品混凝土碳化最主要的因素是商品混凝土本身的密实度和碱性大小,即商品混凝土的渗透性及其Ca(0H)2含量。影响商品混凝土碳化的因素主要分为三个方面:材料因素、环境因素和施工因素。

2.1材料因素

材料因素包括水灰比、水泥品种与用量、掺合料、外加剂、骨料品种与级配、商品混凝土表面覆盖层等等,主要通过影响商品混凝土的碱度和密实性来影响商品混凝土的碳化速度。 2.1.1 水灰比 水灰比是决定混凝土性能的重要参数,对混凝土碳化速度影响极大。众所周知,水灰比基本上决定了混凝土的孔结构,水灰比越大,混凝土内部的孔隙率就越大。混凝土中的气孔主要有胶孔、气孔和毛细孔。胶孔的半径很小,CO2分子很难自由进出;C02扩散 均在内部的气孔和毛细孔中进行。因此水灰比一定程度上决定了C02在混凝土中的扩散 速度,水灰比越大,孔隙率越高,C02的扩散越容易,混凝土碳化速度越快。另外,水灰比大会使商品混凝土孔隙中的游离水增多,一定程度上也有利于碳化反应。研究结果表明:当水灰比大于0.65时,碳化深度会急剧加大。国内外进行了大量的快速碳化试验和长期暴露试验来研究水灰比与混凝土碳化速度的关系。得到碳化速度与水灰比的关系,暴露试验给出了碳化速度系数与水灰比的表达式: k=12.1w/c-3.2 式中,w/c —混凝土的水灰比。 2.1.2水泥品种与用量的影响 水泥品种决定了单位体积商品混凝土中可碳化物质的含量。研究表明:在相同的试验条件下,不同水泥配置的商品混凝土的碳化速度大小顺序为:硅酸盐水泥<普通硅酸盐水泥<其他品种的水泥;矿渣水泥商品混凝土要比普通硅酸盐水泥的碳化快10?20%室外暴露的情况下高达50%^上;早强水泥与同强度其它水泥相比,抗碳化能力更高。 水泥用量也直接影响到商品混凝土中可碳化物质的含量。增加水泥用量,一方面可以 改变混凝土的和易性,提高混凝土的密实度;另一方面可以增加混凝土的碱性储备,直接影响混凝土吸收二氧化碳的量。混凝土吸收二氧化碳的量取决于水泥用量和混凝土的水化程度,水泥用量越大,其碳化速度越慢,以大量的试验数据为前提,根据最小二乘法可以拟和水泥用量对碳化速度的影响公式: ? =2.582-4.71x 其中,?为碳化速度; x 为单位体积水泥用量(T)。 2.1.3掺合料的影响 商品混凝土中掺入的粉煤灰、矿渣等掺合料与水泥水化后的Ca(OH)2结合,降低商品混凝土的碱性,进而减弱了商品混凝土的抗碳化能力。相关研究表明,粉煤灰等量取代水泥越多,商品混凝土的抗碳化能力下降越大。但是采用超量取代技术,可提高商品混凝土的抗碳化能力。 2.1.4外加剂的影响 高效减水剂能够降低商品混凝土的用水量,改善其和易性,降低商品混凝土的孔隙率,可以提高商品混凝土的抗碳化能力。弓I气剂在商品混凝土中引入大量的微细气泡。初期引气剂能够使商品混凝土中的毛细孔形成封闭的气孔,切断毛细管通道,可以在一定程度上抑制商品混凝土的碳化。但是随着碳化的延续,弓I气剂在商品混凝土内部留下的孔隙成为CO2扩散的通道。 2.1.5骨料的影响 骨料的粒径大小对骨料-水泥浆粘结由很大的影响,而骨料-水泥浆的界面有一个过渡层,过渡层的结构较为疏松、孔隙较多。因此,不同骨料对骨料-水泥浆的过渡层由影响,也会影响CO2的扩散,进而影响商品混凝土的碳化速率。 2.1.6商品混凝土覆盖层的影响 商品混凝土覆盖层的种类与厚度对商品混凝土的碳化有着不同程度的影响。气密性覆

相关主题