搜档网
当前位置:搜档网 › 奇偶性的概念

奇偶性的概念

奇偶性的概念
奇偶性的概念

2021-2022学年高中数学必修一第3章

3.2.2奇偶性

第1课时奇偶性的概念

学习目标 1.了解函数奇偶性的定义.2.掌握函数奇偶性的判断和证明方法.3.会应用奇、偶函数图象的对称性解决简单问题.

知识点一函数奇偶性的几何特征

一般地,图象关于y轴对称的函数称为偶函数,图象关于原点对称的函数称为奇函数.

知识点二函数奇偶性的定义

1.偶函数:函数f(x)的定义域为I,如果?x∈I,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数.

2.奇函数:函数f(x)的定义域为I,如果?x∈I,都有-x∈I,且f(-x)=-f(x),那么函数f(x)就叫做奇函数.

知识点三奇(偶)函数的定义域特征

奇(偶)函数的定义域关于原点对称.

1.奇、偶函数的定义域都关于原点对称.(√)

2.函数f(x)=x2+|x|的图象关于原点对称.(×)

3.对于定义在R上的函数f(x),若f(-1)=f(1),则函数f(x)一定是偶函数.(×)

4.不存在既是奇函数又是偶函数的函数.(×)

一、函数奇偶性的判断

例1判断下列函数的奇偶性.

(1)f(x)=1 x;

(2)f(x)=x2(x2+2);

(3)f (x )=x x -1

; (4)f (x )=x 2-1+1-x 2.

解 (1)f (x )=1x

的定义域为(-∞,0)∪(0,+∞), ∵f (-x )=1-x

=-1x =-f (x ), ∴f (x )=1x

是奇函数. (2)f (x )=x 2(x 2+2)的定义域为R .

∵f (-x )=f (x ),

∴f (x )=x 2(x 2+2)是偶函数.

(3)f (x )=x x -1

的定义域为(-∞,1)∪(1,+∞), ∵定义域不关于原点对称,

∴f (x )=x x -1

既不是奇函数,也不是偶函数. (4)f (x )=x 2-1+1-x 2的定义域为{-1,1}.

∵f (-x )=f (x )=-f (x )=0,

∴f (x )=x 2-1+1-x 2既为奇函数,又为偶函数.

反思感悟 判断函数奇偶性的方法

(1)定义法:

①定义域关于原点对称;

②确定f (-x )与f (x )的关系.

(2)图象法.

跟踪训练1 判断下列函数的奇偶性.

(1)f (x )=x ;

(2)f (x )=1-x 2

x

; (3)f (x )=?????

x 2+x ,x >0,x 2-x ,x <0. 解 (1)函数f (x )的定义域为[0,+∞),不关于原点对称,所以f (x )=x 是非奇非偶函数.

(2)f (x )的定义域为[-1,0)∪(0,1],关于原点对称.

f (-x )=1-x 2

-x

=-f (x ), 所以f (x )为奇函数.

高中数学知识点:函数的奇偶性概念及判断步骤

高中数学知识点:函数的奇偶性概念及判断步骤 1.函数奇偶性的概念 偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: (1)奇偶性是整体性质; (2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; (3)f(-x)=f(x)的等价形式为:()()()0,1(()0)() f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:()()()01(()0)()f x f x f x f x f x -+-==-≠, ; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0; (5)若f(x)既是奇函数又是偶函数,则必有f(x)=0. 2.奇偶函数的图象与性质 (1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. (2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数.

3.用定义判断函数奇偶性的步骤 (1)求函数() f x的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; (2)结合函数() f x的解析式; f x的定义域,化简函数() (3)求() f x f x的 -与() f x之间的关系,判断函数() -,可根据() f x 奇偶性. 若() f x,则() f x是奇函数; f x -=-() 若() f x是偶函数; f x,则() -=() f x 若() f x f x既不是奇函数,也不是偶函数; ≠±,则() -() f x 若() -=-() f x既是奇函数,又 f x f x,则() f x f x -() =且() 是偶函数

函数奇偶性练习题(内含答案)

函数奇偶性练习 一、选择题 1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( ) A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( ) A .y =x (x -2) B .y =x (|x |-1) C .y =|x |(x -2) D .y =x (|x |-2) 4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 5.函数1111)(22 +++-++=x x x x x f 是( ) A .偶函数 B .奇函数 C .非奇非偶函数 D .既是奇函数又是偶函数 6.若)(x ?,g (x )都是奇函数,2)()(++=x bg a x f ?在(0,+∞)上有最大值5, 则f (x )在(-∞,0)上有( ) A .最小值-5 B .最大值-5 C .最小值-1 D .最大值-3 二、填空题 7.函数212 2)(x x x f ---=的奇偶性为________(填奇函数或偶函数) . 8.已知f (x )是偶函数,g (x )是奇函数,若11 )()(-=+x x g x f ,则f (x )的

函数的性质之奇偶性

函数的奇偶性 知识体系一函数的奇偶性的定义 1.偶函数: 一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做偶函数. 2.奇函数 一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)就叫做奇函数. 注意: ○ 1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○ 2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称). 二具有奇偶性的函数的图象的特征 偶函数的图象关于y 轴对称; 奇函数的图象关于原点对称. 三奇偶函数的性质: 1定义域关于原点对称;2()f x 为偶函数()(||) f x f x ?=3若奇函数()f x 的定义域包含0,则(0)0 f =4判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须注意使定义域不受影响;5牢记奇偶函数的图象特征,有助于判断函数的奇偶性;6判断函数的奇偶性有时可以用定义的等价形式: ()()0f x f x ±-=,()1() f x f x =±-7设()f x ,() g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 题型体系 一判断函数的奇偶性 例1判断下列函数的奇偶性 (1)()42+=x x f (2)()5x x f =(3)()x x x f +=1

总结:利用定义判断函数奇偶性的格式步骤: ○ 1首先确定函数的定义域,并判断其定义域是否关于原点对称;○ 2确定f(-x)与f(x)的关系;○ 3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数; 若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数. 说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数. 例2已知函数()f x 对一切,x y R ∈,都有()()()f x y f x f y +=+, (1)求证:()f x 是奇函数;(2)若(3)f a -=,用a 表示(12)f 二利用函数的奇偶性补全函数的图象 例1已知函数y=f(x)是偶函数,且知道x≥0时的图像,请作出另一半图像.三.函数的奇偶性与单调性的关系 例1.已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数 规律: 偶函数在关于原点对称的区间上单调性相反; 奇函数在关于原点对称的区间上单调性一致. 例2定义在)1,1(-上的奇函数)(x f 在整个定义域上是减函数,若0)21()1(<-+-a f a f ,求实数a 的取值范围。O x y

函数奇偶性的归纳总结

函数的奇偶性的归纳总结 考纲要求:了解函数的奇偶性的概念,掌握判断一些简单函数的奇偶性的方法。 教学目标:1、理解函数奇偶性的概念; 2、掌握判断函数的奇偶性的类型和方法; 3、掌握函数的奇偶性应用的类型和方法; 4、培养学生观察和归纳的能力,培养学生勇于探索创新的精神。 教学重点:1、理解奇偶函数的定义; 2、掌握判断函数的奇偶性的类型和方法,并探索其中简单的规律。 教学难点:1、对奇偶性定义的理解; 2、较复杂函数奇偶性的判断及函数奇偶性的某些应用。 教学过程: 一、知识要点: 1、函数奇偶性的概念 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。 理解: (1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。这两个概念的区别之一就是,奇偶性是一个“整体”性质,单调性是一个“局部”性质; (2)定义域关于原点对称是函数具有奇偶性的必要条件。 2、按奇偶性分类,函数可分为四类: 奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数. 3、奇偶函数的图象:

奇函数?图象关于原点成中心对称的函数,偶函数?图象关于y 轴对称的函数。 4、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。 ②常用的结论:若f(x)是奇函数,且x 在0处有定义,则f(0)=0。 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。奇函数f(x)在区间[a,b](0≤a

函数的奇偶性练习题[(附答案)

函数的奇偶性 1.函数f(x)=x(-1﹤x≦1)的奇偶性 是() A.奇函数非偶函数 B.偶函数非奇函数 C.奇函数且偶函数 D.非奇非偶函数 2. 已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx是( ) A.奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数 3. 若函数f(x)是定义在R上的偶函数,在 上是减函数, 且f(2)=0,则使得f(x)<0的x的取值范围是 ( ) A.(-,2) B. (2,+) C. (-,-2)(2,+) D. (-2,2) 4.已知函数f(x)是定义在(-∞,+∞)上的偶函数. 当x∈(-∞,0)时,f(x)=x-x4,则当x∈(0.+∞)时, f(x)= . 5. 判断下列函数的奇偶性:

(1)f(x)=lg( -x); (2)f(x)= + (3) f(x)= 6.已知g(x)=-x2-3,f(x)是二次函数,当x∈[-1,2]时,f(x)的最小值是1,且f(x)+g(x)是奇函数,求f(x)的表达式。 7.定义在(-1,1)上的奇函数f(x)是减函数,且f(1-a)+f(1-a2)<0,求a 的取值范围 8.已知函数 是奇函数, 且 上是增函数, (1)求a,b,c的值; (2)当x∈[-1,0)时,讨论函数的单调性. 9.定义在R上的单调函数f(x)满足f(3)=log 3且对任意x,y∈R都有f(x+y)=f(x)+f(y).

(1)求证f(x)为奇函数; (2)若f(k·3 )+f(3 -9 -2)<0对任意x∈R恒成立,求实数k的取值范围. 10下列四个命题: (1)f(x)=1是偶函数; (2)g(x)=x3,x∈(-1,1 是奇函数; (3)若f(x)是奇函数,g(x)是偶函数,则H(x)=f(x)·g(x)一定是奇函数; (4)函数y=f(|x|)的图象关于y轴对称,其中正确的命题个数 是() A.1 B.2 C. 3 D.4 11下列函数既是奇函数,又在区间 上单调递减的是( ) A. B.

函数奇偶性的定义与应用

函数2:函数的奇偶性 【教学目的】 使学生了解奇偶性的概念,掌握判断函数奇偶性的方法; 【重点难点】 重点:函数的奇偶性的有关概念; 难点:奇偶性的应用 一、函数的奇偶性 1.偶函数:一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做 偶函数. 2.奇函数:一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)就叫 做奇函数. 3.判断函数奇偶性的方法: (1)图像法:偶函数的图像关于y 轴对称;奇函数的图像关于原点对称. (2)定义法:○1首先确定函数的定义域,并判断其是否关于原点对称; ②确定f(-x)与f(x)的关系; ○ 3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 4.奇偶函数的简单性质: (1)奇函数:奇函数的图像关于原点对称,其单调性在对称区间内相同,如在[a,b ]上为 增函数,则在[-b ,-a ]上也为增函数. (2)偶函数:奇函数的图像关于y 轴对称,其单调性在对称区间内相反,如在[a,b ]上为 增函数,则在[-b ,-a ]上为减函数. 二、函数奇偶性的应用 1、利用定义判断函数奇偶性 例1(1)x x x f 2)(3+= ; (2)2 432)(x x x f +=; (3)1)(2 3--=x x x x f ; (4)2)(x x f = []2,1-∈x ; (5)x x x f -+-=22)( ; (6)2211)(x x x f -+-=; (7)2211(0)2()11(0)2 x x g x x x ?+>??=??--x 时,()()x x x f -=1,求()x f 在R 上解析式;

函数的奇偶性练习题

函数的奇偶性 一、选择题 1.若)(x f 是奇函数,则其图象关于( ) A .x 轴对称 B .y 轴对称 C .原点对称 D .直线x y =对称 2.若函数y f x x R =∈()()是奇函数,则下列坐标表示的点一定在函数y f x =()图象 上的是( ) A . (())a f a ,- B . (())--a f a , C . (())---a f a , D .(())a f a ,- 3.下列函数中为偶函数的是( ) A .x y = B .x y = C .2x y = D .13+=x y 4. 如果奇函数)(x f 在[]7,3上是增函数,且最小值是5,那么)(x f 在[]3,7--上是( ) A .增函数,最小值是-5 B .增函数,最大值是-5 C .减函数,最小值是-5 D .减函数,最大值是-5 5. 已知函数)(1 22 2)(R x a a x f x x ∈+-+?= 是奇函数,则a 的值为( ) A .1- B .2- C .1 D .2 6.已知偶函数)(x f 在],0[π上单调递增,则下列关系式成立的是( ) A .)2()2 ()(f f f >- >-π π B .)()2 ()2(ππ ->->f f f C .)2 ()2()(π π- >>-f f f D .)()2()2 (ππ ->>- f f f 二、填空题 7.若函数)(x f y =是奇函数,3)1(=f ,则)1(-f 的值为____________ . 8.若函数)(x f y =)(R x ∈是偶函数,且)3()1(f f <,则)3(-f 与)1(-f 的大小关系为__________________________. 9.已知)(x f 是定义在[)2,0-?(]0,2上的奇函数,当0>x 时,)(x f 的图象如右图所示,那么f (x ) 的值域是 .

函数单调性与奇偶性教案

函数单调性与奇偶性 教学目标 1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法. (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念. (2)能从数和形两个角度认识单调性和奇偶性. (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程. 2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想. 3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度. 教学建议 一、知识结构 (1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像. 二、重点难点分析 (1)本节教学的重点是函数的单调性,奇偶性概念的 形成与认识.教学的难点是领悟函数单调性,奇偶性的本质,掌握单调性的证明. (2)函数的单调性这一性质学生在初中所学函数中曾 经了解过,但只是从图象上直观观察图象的上升与下降, 而现在要求把它上升到理论的高度,用准确的数学语言去 刻画它.这种由形到数的翻译,从直观到抽象的转变对高 一的学生来说是比较困难的,因此要在概念的形成上重点 下功夫.单调性的证明是学生在函数内容中首次接触到的 代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识 到它的重要性,所以单调性的证明自然就是教学中的难点. 三、教法建议 (1)函数单调性概念引入时,可以先从学生熟悉的一 次函数,,二次函数.反比例函数图象出发,回忆图象的增 减性,从这点感性认识出发,通过问题逐步向抽象的定义 靠拢.如可以设计这样的问题:图象怎么就升上去了?可以 从点的坐标的角度,也可以从自变量与函数值的关系的角 度来解释,引导学生发现自变量与函数值的的变化规律,

函数的奇偶性练习题

函数的奇偶性 1.函数f (x )=x(-1﹤x ≦1)的奇偶性是 ( ) A .奇函数非偶函数 B .偶函数非奇函数 C .奇函数且偶函数 D .非奇非偶函数 2. 已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 3. (2005重庆)若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数, 且f (2)=0,则使得f (x )<0的x 的取值范围是 ( ) A.(-¥,2) B. (2,+¥) C. (-¥,-2)è(2,+¥) D. (-2,2) 4.(2006春上海) 已知函数f (x )是定义在(-∞,+∞)上的偶函数. 当x ∈(-∞,0)时,f (x )=x -x 4,则 当x ∈(0.+∞)时,f (x )= . 5. 判断下列函数的奇偶性: (1)f (x )=lg (12+x -x ); (2)f (x )=2-x +x -2 (3) f (x )=???>+<-).0()1(),0()1(x x x x x x 6.已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值是1,且f (x )+g (x )是奇函数,求f (x )的表达式。 7.定义在(-1,1)上的奇函数f (x )是减函数,且f(1-a)+f(1-a 2)<0,求a 的取值范围 8.已知函数21()(,,)ax f x a b c N bx c +=∈+是奇函数,(1)2,(2)3,f f =<且()[1,)f x +∞在上是增函数, (1)求a,b,c 的值; (2)当x ∈[-1,0)时,讨论函数的单调性. 9.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数; (2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围.

函数的奇偶性及其几何意义

教学过程: (一)函数的奇偶性定义 1.偶函数(even function) 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.仿照偶函数的定义给出奇函数的定义 2.奇函数(odd function) 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.注意: ○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则 -x也一定是定义域内的一个自变量(即定义域关于原点对称). (二)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. (三)典型例题 1.判断函数的奇偶性 例1.(例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤) 总结:利用定义判断函数奇偶性的格式步骤: ○1首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2确定f(-x)与f(x)的关系; ○3作出相应结论: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 例2.(习题1.3 B组每1题) 说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数. 2.利用函数的奇偶性补全函数的图象 规律:偶函数的图象关于y轴对称; 奇函数的图象关于原点对称. 说明:这也可以作为判断函数奇偶性的依据.

函数的奇偶性的经典总结

函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2 )(,(2)x x x f -=3 )( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在(x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。 (6)常函数()()为常数c c x f =是偶函数,()f x =0既是偶函数又是奇函数。 (7)在公共定义域内偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数和、差仍为奇函数;奇(偶)数个奇函数积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(8)对于复合函数()()[]x g f x F =;若()x g 为偶函数, ()f x 为奇(偶)函数,则()x F 都为

函数的奇偶性的经典总结

x x x f 1)(+=1 )(2+= x x x f x x f 1)(=函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-,0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及 ) ()(x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2)(,(2)x x x f -=3)( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3)(x x f =,x x f sin )(=, (3)常见的奇函数有:2)(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时,) ()(x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时,) ()(x g x f 是偶函数。

(完整版)函数奇偶性知识点和经典题型归纳

函数奇偶性 知识梳理 1. 奇函数、偶函数的定义 (1)奇函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=-, 则这个函数叫奇函数. (2)偶函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=, 则这个函数叫做偶函数. (3)奇偶性:如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性. (4)非奇非偶函数:无奇偶性的函数是非奇非偶函数. 注意:(1)奇函数若在0x =时有定义,则(0)0f =. (2)若()0f x =且()f x 的定义域关于原点对称,则()f x 既是奇函数又是偶函数. 2.奇(偶)函数的基本性质 (1)对称性:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)单调性:奇函数在其对称区间上的单调性相同,偶函数在其对称区间上的单调性相反. 3. 判断函数奇偶性的方法 (1)图像法 (2)定义法 ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f(-x)与f(x)的关系; ○ 3 作出相应结论: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 例题精讲 【例1】若函数2()f x ax bx =+是偶函数,求b 的值. 解:∵函数 f (x )=ax 2+bx 是偶函数, ∴f (-x )=f (x ).∴ax 2+bx= ax 2-bx. ∴2bx=0. ∴b =0. 【例3】已知函数21()f x x =在y 轴左边的图象如下图所示,画出它右边的图象. 题型一 判断函数的奇偶性 【例4】判断下列函数的奇偶性. (1)2()||(1)f x x x =+; (2)1()f x x x =;

函数的奇偶性知识点

函数的奇偶性 1.偶函数: 如果对于f(x)定义域内的任意一个x,都有f(-x)=f(x), 那么函数f(x)就叫偶函数. 奇函数: 如果对于f(x)定义域内的任意一个x,都有f(-x)=-f(x) ,那么函数f(x)就叫奇函数. 奇函数的图象关于原点对称;偶函数的图象关于y轴对称 判断函数的奇偶性,包括两个必备条件:一是定义域关于原点对称,先考虑定义域是解决问题的前提,如果一个函数的定义域关于坐标原点不对称,那么这个函数就失去了是奇函数或是偶函数的条件;二是判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立. 利用定义判断函数奇偶性的格式步骤:(1)首先确定函数的定义域,并判断其定义域是否关于原点对称;(2)确定f(-x)与f(x)的关系;(3)作出相应结论. 说明:根据奇偶性,函数可划分为四类:①偶函数②奇函数③既奇又偶函数④非奇非偶函数 2.奇函数的性质:○1定义域关于原点对称;○2f(-x)=-f(x)或f(-x)+f(x)=0;○3图象关于原点对称;○4在关于原点对称的区间上具有相同的单调性;○5如果0在f(x)的定义域内,则一定有f(0)=0 偶函数的性质:○1定义域关于原点对称;○2f(-x)=f(x)或f(-x)-f(x)=0;○3图象关于y轴对称;○4在关于原点对称的区间上具有相反的单调性;○5如果一个函数既是奇函数有是偶函数,那么有f(x)=0 3.判断函数的奇偶性为什么要判断定义域在x轴上所示的区间是否关于原点对称呢?答:由定义知,若x是定义域内的一个元素,-x也一定是定义域内的一个元素,所以函数y=f(x)具有奇偶性的一个必不可少的条件是:定义域在x轴上所示的区间关于原点对称.即:如果所给函数的定义域在x轴上所示的区间不是关于原点对称,这个函数一定不具有奇偶性.例如:函数f(x)=x3在R上是奇函数,但在[-2,1]上既不是奇函数也不是偶函数. 4.函数奇偶性的判断:定义域关于原点对称是函数具有奇偶性的前提条件。判断函数的奇偶性,首先要检验其定义域是否关于原点对称,若关于原点对称,再严格按照奇偶性的定义或其等价形式进行推理判断.函数定义域影响奇偶性,若首先求得定义域不关于原点对称,则该函数为非奇非偶函数; 判断函数的奇偶性,一般都按照定义严格进行,一般步骤是: (1)考查定义域是否关于原点对称; (2)考查表达式f(-x)是否等于f(x)或-f(x): 若f(-x)= - f(x),则f(x)为奇函数; 若f(-x)= f(x),则f(x)为偶函数; 若f(-x)= f(x),且f(-x)=- f(x),则f(x)既是奇函数又是偶函数; 若f(-x)≠-f(x)且f(-x)≠f(x),则f(x)既不是奇函数又不是偶函数,即非奇非偶函数. 5.函数奇偶性定义的理解:(1)函数的奇偶性与单调性的差异.奇偶性是函数在定义域上的对称性,单调性是反映函数在某一区间上函数值的变化趋势.奇偶性是相对于函数的整个定义域来说的,这一点与函数的单调性不同,从这个意义上来讲,函数的单调性是函数的“局部”性质,而奇偶性是函数的“整体”性质,只有对定义域中的每一个x,都有f(-x)=-f(x)[或f(-x)=f(x)],才能说f(x)是奇(偶)函数.(2)定义域关于原点对称是函数具有奇偶性的前提条件.由函数奇偶性的定义知,若x是定义域中的一个数值,则-x必然在定义域中,因此,函数y=f(x)是奇函数或偶函数的一个必不可少的条件是定义域在数轴上所示的区间关于原点对称.换言之,若所给函数的定义域不关于原点对称,则函数一定不具有奇偶性.如函数y=2x在(-∞,+∞)上是奇函数,但在[-2,3] 上则无奇偶性可言.(3)既奇又偶函数的表达式是f(x)=0,x∈A,定义域A是关于原点对称的非空数集.(4)若奇函数在原点处有定义,则有f(0)=0. 6.奇、偶函数的图象特征:(1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形.反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数.(2)如果一个函数是偶函数,则这个函数的图象关于y轴成轴对称图形.反之,如果一个函数的图象关于y轴成轴对称图形,

函数的奇偶性

函数的奇偶性 【学习目标】 1.理解函数的奇偶性定义; 2.会利用图象和定义判断函数的奇偶性; 3.掌握利用函数性质在解决有关综合问题方面的应用. 【要点梳理】 要点一、函数的奇偶性概念及判断步骤 1.函数奇偶性的概念 偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: (1)奇偶性是整体性质; (2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; (3)f(-x)=f(x)的等价形式为:() ()()0, 1(()0)() f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:() ()()01(()0)() f x f x f x f x f x -+-==-≠, ; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0; (5)若f(x)既是奇函数又是偶函数,则必有f(x)=0. 2.奇偶函数的图象与性质 (1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. (2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数. 3.用定义判断函数奇偶性的步骤 (1)求函数()f x 的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; (2)结合函数()f x 的定义域,化简函数()f x 的解析式; (3)求()f x -,可根据()f x -与()f x 之间的关系,判断函数()f x 的奇偶性. 若()f x -=-()f x ,则()f x 是奇函数; 若()f x -=()f x ,则()f x 是偶函数; 若()f x -()f x ≠±,则()f x 既不是奇函数,也不是偶函数; 若()f x -()f x =且()f x -=-()f x ,则()f x 既是奇函数,又是偶函数 要点二、判断函数奇偶性的常用方法

函数的奇偶性问题练习题(含答案)

. .. 函数的奇偶性问题 一、选择题 1.已知函数f (x )=ax 2 +bx +c (a ≠0)是偶函数,那么g (x )=ax 3 +bx 2 +cx () A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 解析:f (x )=ax 2 +bx +c 为偶函数,x x =)(?为奇函数, ∴g (x )=ax 3 +bx 2 +cx =f (x )·)(x ?满足奇函数的条件. 答案:A 2.已知函数f (x )=ax 2 +bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则() A .3 1 = a , b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 解析:由f (x )=ax 2 +bx +3a +b 为偶函数,得b =0. 又定义域为[a -1,2a ],∴a -1=2a ,∴3 1 =a .故选A . 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2 -2x ,则f (x )在R 上的表达式是( ) A .y =x (x -2) B .y =x (|x |-1) C .y =|x |(x -2) D .y =x (|x |-2) 解析:由x ≥0时,f (x )=x 2 -2x ,f (x )为奇函数, ∴当x <0时,f (x )=-f (-x )=-(x 2 +2x )=-x 2 -2x =x (-x -2). ∴(2) (0)()(2) (0),, x x x f x x x x ?? ?-≥=--<即f (x )=x (|x |-2)答案:D 4.已知f (x )=x 5 +ax 3 +bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 解析:f (x )+8=x 5 +ax 3 +bx 为奇函数, f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A 5.函数1 11 1)(22+++-++= x x x x x f 是( ) A .偶函数 B .奇函数 C .非奇非偶函数 D .既是奇函数又是偶函数 解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.若)(x ?,g (x )都是奇函数,2)()(++=x bg a x f ?在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( ) A .最小值-5 B .最大值-5 C .最小值-1 D .最大值-3 解析:)(x ?、g (x )为奇函数,∴()2()()f x a x bg x φ-=+为奇函数. 又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3. ∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C 二、填空题 7.函数2 122)(x x x f ---= 的奇偶性为____奇函数____(填奇函数或偶函数) . 8.若y =(m -1)x 2 +2mx +3是偶函数,则m =____0_____. 解析:因为函数y =(m -1)x 2 +2mx +3为偶函数, ∴f (-x )=f (x ),即(m -1)(-x )2 +2m (-x )+3=(m —1)x 2 +2mx +3,整理,得m =0. 9.已知f (x )是偶函数,g (x )是奇函数,若1 1)()(-=+x x g x f ,则f (x )的 解析式为____1 1)(2 -= x x f ___. 解析:由f (x )是偶函数,g (x )是奇函数,

奇偶性的概念

奇偶性的概念 学习目标 1.理解函数奇偶性的定义.2.掌握函数奇偶性的判断和证明方法.3.会应用奇、偶函数图象的对称性解决简单问题. 知识点一函数奇偶性的几何特征 思考下列函数图象中,关于y轴对称的有哪些?关于原点对称的呢? 答案①②关于y轴对称,③④关于原点对称. 梳理一般地,图象关于y轴对称的函数称为偶函数,图象关于原点对称的函数称为奇函数.知识点二函数奇偶性的定义 函数奇偶性的概念: (1)偶函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.其实质是函数f(x)上任一点(x,f(x))关于y轴的对称点(-x,f(x))也在f(x)图象上.(2)奇函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.其实质是函数f(x)上任一点(x,f(x))关于原点的对称点(-x,-f(x))也在f(x)的图象上. 知识点三奇(偶)函数的定义域特征及奇(偶)函数的性质 1.奇(偶)函数的定义域关于原点对称. 2.重要性质 (1)奇函数在区间[a,b]和[-b,-a](b>a>0)上有相同的单调性. (2)偶函数在区间[a,b]和[-b,-a](b>a>0)上有相反的单调性.

1.关于y 轴对称的图形都是偶函数的图象.(×) 2.若f (x )是奇函数,f (1)=2,则f (-1)=-2.(√) 3.存在既是奇函数又是偶函数的函数,且不止一个.(√) 4.有些函数既非奇函数,又非偶函数.(√) 类型一 证明函数的奇偶性 例1 (1)证明f (x )=x 3-x 2 x -1既非奇函数又非偶函数; (2)证明f (x )=(x +1)(x -1)是偶函数; (3)证明f (x )=1-x 2+x 2-1既是奇函数又是偶函数. 考点 函数的奇偶性判定与证明 题点 判断简单函数的奇偶性 证明 (1)因为它的定义域为{x |x ∈R 且x ≠1},所以对于定义域内的-1,其相反数1不在定义域内,所以f (x )=x 3-x 2 x -1 既非奇函数又非偶函数. (2)函数的定义域为R ,因为函数f (x )=(x +1)(x -1)=x 2-1,又因为f (-x )=(-x )2-1=x 2-1=f (x ),所以函数为偶函数. (3)定义域为{-1,1},因为对定义域内的每一个x ,都有f (x )=0,所以f (-x )=f (x )=-f (x )=0,故函数f (x )= 1-x 2+ x 2-1既是奇函数又是偶函数. 反思与感悟 利用定义法判断函数是否具有奇偶性时,首先应看函数定义域是否关于原点对称,即对于定义域内的任意一个x ,则-x 也一定属于定义域. 跟踪训练1 (1)证明f (x )=(x -2) 2+x 2-x 既非奇函数又非偶函数; (2)证明f (x )=x |x |是奇函数. 考点 函数的奇偶性判定与证明 题点 判断简单函数的奇偶性 证明 (1)由2+x 2-x ≥0,得定义域为[-2,2),关于原点不对称,故f (x )为非奇非偶函数. (2)函数的定义域为R ,因为f (-x )=(-x )|-x |=-x |x |=-f (x ),所以函数为奇函数.

相关主题