搜档网
当前位置:搜档网 › InPlant两相流流体力学计算软件培训资料

InPlant两相流流体力学计算软件培训资料

工程流体力学复习知识总结

一、 是非题。 1. 流体静止或相对静止状态的等压面一定是水平面。 (错误) 2. 平面无旋流动既存在流函数又存在势函数。 (正确) 3. 附面层分离只能发生在增压减速区。 (正确) 4. 等温管流摩阻随管长增加而增加,速度和压力都减少。 (错误) 5. 相对静止状态的等压面一定也是水平面。 (错误) 6. 平面流只存在流函数,无旋流动存在势函数。 (正确) 7. 流体的静压是指流体的点静压。 (正确) 8. 流线和等势线一定正交。 (正确) 9. 附面层内的流体流动是粘性有旋流动。 (正确) 10. 亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。(正确) 11. 相对静止状态的等压面可以是斜面或曲面。 (正确) 12. 超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加。(正确) 13. 壁面静压力的压力中心总是低于受压壁面的形心。 (正确) 14. 相邻两流线的函数值之差,是此两流线间的单宽流量。 (正确) 15. 附面层外的流体流动时理想无旋流动。 (正确) 16. 处于静止或相对平衡液体的水平面是等压面。 (错误) 17.流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。 (错误 ) 18流体流动时切应力与流体的粘性有关,与其他无关。 (错误) 二、 填空题。 1、1mmH 2O= 9.807 Pa 2、描述流体运动的方法有 欧拉法 和 拉格朗日法 。 3、流体的主要力学模型是指 连续介质 、 无粘性 和不可压缩性。 4、雷诺数是反映流体流动状态的准数,它反映了流体流动时 惯性力 与 粘性力 的对比关系。 5、流量Q1和Q2,阻抗为S1和S2的两管路并联,则并联后总管路的流量Q 为 , 总阻抗S 为 。串联后总管路的流量Q 为 ,总阻抗S 为 。 6、流体紊流运动的特征是 脉动现像 ,处理方法是 时均法 。 7、流体在管道中流动时,流动阻力包括 沿程阻力 和 局部阻力 。 8、流体微团的基本运动形式有: 平移运动 、 旋转流动 和 变形 运动 。 9、马赫数气体动力学中一个重要的无因次数,他反映了 惯性力 与 弹性力 的相对比值。 10、稳定流动的流线与迹线 重合 。 11、理想流体伯努力方程=++g 2u r p z 2常数中,其中r p z +称为 测压管 水头。 12、一切平面流动的流场,无论是有旋流动或是无旋流动都存在 流线 ,因而 一切平面流动都存在 流函数 ,但是,只有无旋流动才存在 势函数 。 13、雷诺数之所以能判别 流态 ,是因为它反映了 惯性力

流体力学复习要点(计算公式)

D D y S x e P gh2 gh1 h2 h1 b L y C C D D y x P hc 第一章 绪论 单位质量力: m F f B m = 密度值: 3 m kg 1000=水ρ, 3 m kg 13600=水银ρ, 3 m kg 29.1=空气ρ 牛顿内摩擦定律:剪切力: dy du μ τ=, 内摩擦力:dy du A T μ= 动力粘度: ρυ μ= 完全气体状态方程:RT P =ρ 压缩系数: dp d 1dp dV 1ρρκ= -=V (N m 2 ) 膨胀系数:T T V V V d d 1d d 1ρρα - == (1/C ?或1/K) 第二章 流体静力学+ 流体平衡微分方程: 01;01;01=??-=??-=??- z p z y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ 液体静力学基本方程:C =+ +=g p z gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱mm 73610/9800012 ===m m N at 2/101325 1m N atm = 注: h g P P →→ρ ; P N at →→2m /98000乘以 2/98000m N P a = 平面上的静水总压力:(1)图算法 Sb P = 作用点e h y D +=α sin 1 ) () 2(32121h h h h L e ++= ρ 若01 =h ,则压强为三角形分布,3 2L e y D == ρ 注:①图算法适合于矩形平面;②计算静水压力首先绘制压强分布图, α 且用相对压强绘制。 (2)解析法 A gh A p P c c ρ== 作用点A y I y y C xc C D + = 矩形12 3 bL I xc = 圆形 64 4 d I xc π= 曲面上的静水总压力: x c x c x A gh A p P ρ==;gV P z ρ= 总压力z x P P P += 与水平面的夹角 x z P P arct an =θ 潜体和浮体的总压力: 0=x P 排浮gV F P z ρ== 第三章 流体动力学基础 质点加速度的表达式??? ? ? ? ??? ??+??+??+??=??+??+??+??=??+??+??+??=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a z z z y z x z z y z y y y x y y x z x y x x x x A Q V Q Q Q Q Q G A = === ? 断面平均流速重量流量质量流量体积流量g udA m ρρ 流体的运动微分方程: t z t y t x d du z p z d du y p Y d du x p X = ??-=??-=??- ρρρ1;1;1 不可压缩流体的连续性微分方程 : 0z u y u x u z y x =??+??+?? 恒定元流的连续性方程: dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν 无粘性流体元流伯努利方程:g 2u g p z g 2u g p z 2 2 222 111++=++ρρ 粘性流体元流伯努利方程: w 2 2222111'h g 2u g p z g 2u g p z +++=++ρρ

工程流体力学基本概念复习

▲连续介质模型:将流体作为无穷多稠密、没有间隙的流体质点构成的连续介质 ▲压缩性质和膨胀性质:流体在一定的温度下压强增大,体积减小;压强一定,温度变化,体积相应变化。所有流体都具有这种特性。 ▲流体黏性:流体流动时产生的内摩擦力的性质,是物体固有属性,但只有在运动状态下才能显现。 ▲影响粘性的因素:①压强:压强改变对气体和液体的粘性的影响有所不同。由于压强变化,对分子的动量交换影响非常小,所以气体的粘性随压强的变化很小。压强增大时对分子的间距影响明显,故液体的粘性受压强变化的影响较气体大。②温度:温度升高时气体的分子热运动加剧,气体的粘性增大,分子距增大对气体粘性的影响可以忽略不计。对于液体,由于温度升高体积膨胀,分子距增大,分子间的引力减小,故液体的粘性随温度的升高而减小。而液体温度升高引起的液体分子热运动的变化对粘性的影响可以忽略不计。 ▲理想流体:为了处理工程实际问题方便起见建立一个没有黏性的理想流体模型,即把假想没有黏性的流体作为理想流体。 ▲牛顿流体:剪切应力和流体微团角变形速度成正比的流体即符合牛顿内摩擦定律的流体 ▲非牛顿流体:剪切应力和角变形之间不符合牛顿内摩擦定律的流体称为非牛顿流体 ▲表面张力:自由液体分子间引力引起的,其作用结果使得液面好像一张紧的弹性膜 ▲毛细现象:由于内聚力和附着力的差别使得微笑间隙的液面上升和下降的现象 ▲绝对压强:以绝对真空为基准度量的压强 ▲相对压强/计示压强:以大气压为基准的度量 ▲真空:当被测流体的绝对压强低于大气压时,测得的计示压强为负值,负的表压强 ▲流体静压强:当流体处于平衡或相对平衡状态时,作用在流体上的应力只有法向应力而没有切向应力;此时,流体作用面上的法向应力就是静压强p ,nn n p dA dF p -=-(单位Pa ) ▲流体静压强特性:①流体静压强的作用方向沿作用面的内法线方向。②静止流体中任一点的流体静压强与作用面在空间的方位无关,只是坐标点的连续可微函数。 ▲欧拉平衡方程物理意义:在静止流体内部的任一点上,作用在单位质量流体上的质量力和流体静压强相平衡。 ▲流体平衡条件:只有在有势的质量力作用下,不可压缩流体才能处于平衡状态 ▲定常流动:将流场中流动参量均不随时间发生变化的流动;否则称为非定常流动

《工程流体力学》课程教学大纲(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改 赠人玫瑰,手留余香。 《工程流体力学》课程教学大纲 英文名称:Engineering Fluid Mechanics 课程编号: 学时数:72 其中实验学时数:12 课程性质:必修课 先修课程:高等数学,理论力学等 适用专业:建筑环境与能源应用工程专业 一、课程的性质、目的和任务 本课程的性质:流体力学是建筑环境与设备工程专业的一门主要技术基础课。是该专业工程技术人员必须掌握的知识。它是研究流体平衡、运动及能量间内在联系与相互转换规律的一门学科,是一门以流体基础理论为主,结合一般工程技术的课程。学生通过本课程的学习后,能够获得流体力学方面基础理论的系统知识,实验技能和一定的分析、解决问题的能力。是后续专业课程学习的基础。 课程教学所要达到的目的是:1、使学生掌握流体静止及运动时的规律以及流体与固体之间的相互作用,并掌握这些规律在工程实际当中的应用,为后续专业课程的学习打下坚实的理论基础。2、通过课堂教学和实验课使学生对工程

实践中有关的流体力学问题有较广泛而系统的理论知识、必要的实验技能和一定的分析和解决问题的实际能力。 本课程的任务:通过本课程的学习,学生应掌握流体力学的基本概念,基本理论,以及水力计算的基本方法。使学生具备必要的基础理论和一定的分析、解决实际工程中问题的能力,为学习后继专业课程及从事专业技术工作和进行科学研究奠定必要的基础。 二、课程教学内容及基本要求 第1章绪论 1.1 作用于流体上的力 1.2 流体的主要力学性质 1.3 牛顿内摩擦定律 1.4 流体的力学模型 基本要求: 了解本课程在专业及工程中的应用; 掌握流体主要物理性质,特别是粘性和牛顿内摩擦定律;作用在流体上的力;连续介质、不可压缩流体及理想流体的概念。 第2章流体静力学 2.1 流体静压强及其特性 2.2 流体静压强的分布规律 2.3 流体静压平衡微分方程及其积分形式 2.4 重力作用下流体静压分布规律 2.5 压强的测量、计算与应用 2.6 作用于平面的流体静压力 2.7 作用于曲面的流体静压力

计算流体力学软件CFD在燃烧器设计中的应用探讨

计算流体力学软件CFD在燃烧器设计中的应用探讨[摘要]本文通过对目前燃烧器的现状与技术发展的研究,探讨计算流体力学 软件CFD在燃烧器设计中应用的必要性和可行性,以CFD(计算流体力学)软件为工具,以普通大气式燃烧器为研究对象,采用实验和理论相结合的方法,充分利用现代计算机技术,达到降低燃烧器设计成本和研制费用的目的。 [关键词]燃烧器数值模拟计算流体力学 一、燃烧器的发展现状 1.部分预混式燃烧器的产生及其原理 燃烧的方法被分为扩散式燃烧、部分预混式燃烧和完全预混式燃烧。扩散式燃烧易产生不完全燃烧产物,燃烧温度很低,并未充分利用燃气的能量;而一旦预先混入一部分空气后火焰就会变的清洁,燃烧温度也可以提高,燃烧较充分。完全预混燃烧(无焰燃烧)要求事先按照化学当量比将燃气和空气均匀混合(实际应用中空气系数要大于1),燃烧充分,火焰温度很高,但稳定性较差,易回火。所以民用燃具多采用部分预混式燃烧。 1855年工程师本生发明了一种燃烧器,能从周围大气中吸入一些空气和燃气预混,在燃烧时形成不发光的蓝色火焰,这就是实验室常用的本生灯(单火孔燃烧器)。这种燃烧技术就被称作部分预混式燃烧。 本生灯燃烧所产生的火焰为部分预混层流火焰(俗称本生火焰)。它由内焰,外焰及燃烧区域外围肉眼看不见的高温区组成。火焰一般呈锥体状。燃气—空气的混合气体先在内锥燃烧,中间产物及未燃尽的部分便从锥内向外流出,且混合气体出流的速度与内锥表面火焰向内传播速度相互平衡,此外便形成一个稳定的焰面,呈蓝色。而未燃烧尽的混合气体残余物继续与大气中的空气进行二次混合燃烧,形成火焰外锥。如图1所示,完成燃烧后产生高温co2和水进而在外焰的外侧形成外焰膜(肉眼看不见的高温层): 图1. 本生灯示意图 如果混合气流是处于层流状态,则外焰面呈较光滑的锥形;如果处于紊流状态,则外焰面产生褶皱,直至产生强烈扰动,气团不断飞散、燃尽。

《工程流体力学》综合复习资料全

《工程流体力学》综合复习资料 一、 单项选择 1、实际流体的最基本特征是流体具有 。 A 、粘滞性 B 、流动性 C 、可压缩性 D 、延展性 2、 理想流体是一种 的流体。 A 、不考虑重量 B 、 静止不运动 C 、运动时没有摩擦力 3、作用在流体的力有两大类,一类是质量力,另一类是 。 A 、表面力 B 、万有引力 C 、分子引力 D 、粘性力 4、静力学基本方程的表达式 。 A 、常数=p B 、 常数=+γ p z C 、 常数=+ +g 2u γp z 2 5、若流体某点静压强为at p 7.0=绝,则其 。 A 、 at p 3.0=表 B 、Pa p 4 108.93.0??-=表 C 、 O mH p 27=水 真 γ D 、 mmHg p 7603.0?=汞 真 γ 6、液体总是从 大处向这个量小处流动。 A 、位置水头 B 、压力 C 、机械能 D 、动能 7、高为h 的敞口容器装满水,作用在侧面单位宽度平壁面上的 静水总压力为 。 A 、2 h γ B 、 2 2 1h γ C 、22h γ D 、h γ 8、理想不可压缩流体在水平圆管中流动,在过流断面1和2截面()21d d >上 流动参数关系为 。 A 、2121,p p V V >> B 、2121,p p V V << C 、2121,p p V V <> D 、2121,p p V V >< A 、2121,p p V V >> B 、2121,p p V V << C 、2121,p p V V <> D 、2121,p p V V >< 9、并联管路的并联段的总水头损失等于 。 A 、各管的水头损失之和 B 、较长管的水头损失

流体力学复习大纲

流体力学复习大纲 第1章绪论 一、概念 1、什么是流体?(所谓流体,是易于流动的物体,是液体和气体的总称,相对于固 2、 3 4 5 6 7 8 9 10;牛 公式;粘性、粘性系数同温度的关系;理想流体的定义及数学表达;牛顿流体的定义; 11、压缩性和热胀性的定义;体积压缩系数和热胀系数的定义及表达式;体积弹性模量的定义、物理意义及公式;气体等温过程、等熵过程的体积弹性模量;不可压缩流体的定义。

二、计算 1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动。 第2章流体静力学 一、概念 1、流体静压强的定义及特性;理想流体压强的特点(无论运动还是静止); 2 3 4 5 6 7 1、U 2 3; 4 第3章一元流体动力学基础 一、概念 1、描述流体运动的两种方法(着眼点、数学描述、拉格朗日及欧拉变数); 2、流场的概念,定常场与非定常场(即恒定流动与非恒定流动)、均匀场与非均匀场的概念及数学描述;

3、流线、迹线的定义、特点和区别,流线方程、迹线方程,什么时候两线重合; 4、一元、二元、三元流动的概念;流管的概念;元流和总流的概念;一元流动模型; 5、连续性方程:公式、意义;当流量沿程改变即有流体分出或流入时的连续性方程; 6、物质导数的概念及公式:物质导数(质点导数)、局部导数(当地导数)、对流导数(迁移导数、对流导数)的物理意义、数学描述;流体质点加速度的公式; 7、 8、 h轴的9 10 1 2、流线、迹线方程的计算。 3、连续方程、动量方程同伯努利方程的综合应用(注意伯努利方程的应用,注意坐标系、控制体的选取、受力分析时尤其要注意表压力是否存在); 第4章流体阻力和能量损失 一、概念

流体力学计算公式

C3.6.2 达西摩擦因子 为了确定λ与Re 的关系,人们作了大量实验和理论研究,下面介绍有代表性的结果。 1.尼古拉兹实验 尼古拉兹(J.Nikuradse,1932)分析了达西的圆管沿程阻力实验数据后,发现壁面粗糙度对λ的影响很大,决定用人工粗糙度方法实现对粗糙度的控制。他用当地黄砂砂粒经筛选后分类均匀粘贴在管内壁上,相对粗糙度ε/d 从1/30—1/1014分6种,测得λ与Re 的关系,得到尼古拉兹图(图C3.6.1)。 2. 常用计算公式 从尼古拉兹图中看到在不同Re 数和ε/d 值的区域,λ有不同的变化规律。 图C3.6.1

(1)层流区 由泊肃叶定律推导的沿程水头损失(C3.4.10)式可得 代入达西公式(C3.6.3)式,可得层流区λ的解析式 上式表明层流区λ与管壁粗糙度无关,写成常用对数形式为 上式在双对数坐标系中是一条直线,与尼古拉兹图吻合。 (2)过渡区 该区是层流向湍流的转捩区(2000ε)时(图C3.6.2)摩擦因子同壁面粗糙度无关,称为湍流光滑管区。 布拉修斯(P.Blasius,1911)运用1/ 7次指数律速度分布式,结合实验数据导出经验公式: 上式称为布拉修斯公式,适用范围为4000

计算流体力学软件Fluent在烟气脱硫中的应用

计算流体力学软件Fluent在烟气脱硫中的应用 0引言 污染最为有效的方法之一,而石灰石—石膏湿烟气脱硫是目前能大规模控制燃煤造成SO 2 法脱硫技术以其脱硫效率高、吸收剂来源丰富、成本低廉、技术成熟和运行可靠等优点获得广泛应用.从气液两相流体力学和化学反应动力学的观点看,脱硫吸收塔内流体流动的目的是强化气液两相的混合和质量传递、延长气液两相在塔内的接触时间、增大气液两相的接触面积并尽量减小吸收塔的阻力.合理的塔内流场分布对提高脱硫效率、降低脱硫投资和运行成本都具有重要意义. 目前,国内外对烟气脱硫吸收塔进行大量研究,主要采用实验方法,如研究塔的阻力特性、液滴运动速度沿塔高变化和TCA塔内温度场分布等,这些研究对指导工业应用具有重要意义,但其结果往往只针对特定的设备或结构,具有较大的局限性.随着计算机技术的迅速发展,计算流体力学(ComputationalFluidDynamic,CFD)已成为研究三维流动的重要方法:周山明等[4]利用FLUENT计算空塔和喷淋状态下的塔热态流场,结果表明脱硫吸收塔入口处流场变化最剧烈、压降损失最大,并根据计算结果改造来流烟道;孙克勤等采用混合网格和随机颗粒生成模型对烟气脱硫吸收塔的热态流场进行数值模拟;郭瑞堂等采用FLUENT结合非稳态反应传质-反应理论对湿法脱硫液柱冲的吸收进行数值模拟. 击塔内的流场和SO 2 本文尝试应用FLUENT对某脱硫吸收塔内烟气脱硫过程进行初步数值模拟,通过对内部流场进行分析验证本文模拟的合理性,进而对脱硫过程中脱硫吸收塔内是否存在湿壁现象进行深入分析研究. 1基于RANS求解器的CFD数值模拟 方法 1.1控制方程 时均的不可压缩连续性方程和N S方程 (RANS方程)如下: 1.2湍流模型和多相流模型

计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介 李志印 熊小辉 吴家鸣 (华南理工大学交通学院) 关键词 计算流体力学 数值计算 一 前 言 任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。 计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。 经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。 随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。 二 计算流体力学常用数值方法 流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区

流体力学复习要点(计算公式)

第一章 绪论 单位质量力: m F f B m = 密度值: 3 m kg 1000=水ρ, 3 m kg 13600=水银ρ,3 m kg 29.1=空气 ρ 牛顿内摩擦定律:剪切力:dy du μ τ=, 内摩擦力:dy du A T μ= 动力粘度:ρυμ= 完全气体状态方程:RT P =ρ 压缩系数: dp d 1dp dV 1ρρκ= -=V (N m 2 ) 膨胀系数:T T V V V d d 1d d 1ρρα - == (1/C ?或1/K) 第二章 流体静力学+ 流体平衡微分方程: 01;01;01=??-=??-=??- z p z y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ 液体静力学基本方程:C =+ +=g p z gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱m m 73610/9800012===m m N at 2/1013251m N atm = 注: h g P P →→ρ ; P N at →→2m /98000乘以 2/98000m N P a = 平面上的静水总压力:(1)图算法 Sb P = 作用点e h y D += 1 ) () 2(32121h h h h L e ++= 3 2L e y D = = (2)解析法 A gh A p P c c ρ== 作用点A y I y y C xc C D + = 矩形 12 3bL I xc = 圆形 64 4 d I xc π= 曲面上的静水总压力: x c x c x A gh A p P ρ==;gV P z ρ= 总压力 z x P P P += 与水平面的夹角 x z P P arctan =θ 潜体和浮体的总压力: 0=x P 排浮gV F P z ρ== 第三章 流体动力学基础 质点加速度的表达式??? ? ?? ?????+??+??+??=??+??+??+??= ??+??+??+??=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a z z z y z x z z y z y y y x y y x z x y x x x x A Q V Q Q Q Q Q G A = === ? 断面平均流速重量流量质量流量体积流量g udA m ρρ 流体的运动微分方程: t z t y t x d du z p z d du y p Y d du x p X = ??-=??-=??- ρρρ1;1;1 不可压缩流体的连续性微分方程 : 0z u y u x u z y x =??+??+?? 恒定元流的连续性方程: dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν 无粘性流体元流伯努利方程:g 2u g p z g 2u g p z 2 2 222 111++=++ρρ 粘性流体元流伯努利方程: w 2 2222111'h g 2u g p z g 2u g p z +++=++ρρ

工程流体力学复习资料

工程流体力学复习资料 第一章绪论 1.流体(Fluid):能够流动的物质叫流体,包括液体和气体。 液体——无形状,有一定的体积;不易压缩,存在自由(液)面。 气体——既无形状,也无体积,易于压缩。 自由(液)面——液体和气体的交界面。 2.流体力学定义:研究流体平衡和运动规律及其应用的一门科学。 研究任务:流体所遵循的宏观运动规律以及流体和围物体之间的相互作用。研究法:1)理论分析法: 根据实际问题建立理论模型涉及微分体积法、速度势法、保角变换法;2)实验研究法: 根据实际问题利用相似理论建立实验模型,选择流动介质,设备包括风洞、水槽、水洞、激波管、测试管系等;3)数值计算法:根据理论分析的法建立数学模型,选择合适的计算法,包括有限差分法、有限元法、特征线法、边界元法等,利用商业软件和自编程序计算,得出结果,用实验法加以验证。 流体力学可分为理论流体力学(流体力学)和应用流体力学(工程流体力学);流体力学研究的容可包括静力学——研究流体的平衡规律以及在平衡状态下流体和固体的作用力和动力学——研究流体的运动规律以及在运动状态下流体和固体的作用力。 3.流体:能够流动的物质叫流体(通俗定义) 在任微小的剪切力的作用下都能够发生连续变形的物质称为流体(力学术语定义) 固体和流体的区别:在受到剪切力持续作用时,固体的变形一般是微小的(如

金属)或有限的(如塑料),但流体却能产生很大的甚至无限大(作用时间无限长)的变形;当剪切力停止作用后,固体变形能恢复或部分恢复,流体则不作任恢复;固体的切应力由剪切变形量(位移)决定,而流体的切应力与变形量无关,由变形速度(切变率)决定;任意改变均质流体微元排列次序,不影响它的宏观物理性质,任意改变固体微元的排列无疑将它彻底破坏。 4.连续介质模型:将流体作为由无穷多稠密、没有间隙的流体质点构成的连续介质,这就是1755年欧拉提出的“连续介质模型”。 在连续性假设之下,表征流体状态的宏观物理量如速度、压强、密度、温度等在空间和时间上都是连续分布的,都可以作为空间和时间的连续函数。 流体质点:包含有足够多流体分子的微团。在宏观上,流体微团的尺度和流动所涉及的物体的特征长度相比充分的小,小到在数学上可以作为一个点来处理;在微观上,流体微团的尺度和分子的平均自由程(一个分子与其它分子相继两次碰撞之间,经过的直线路程。对个别分子而言,自由程时长时短,但大量分子的自由程具有确定的统计规律,大量分子自由程的平均值称为平均自由程)相比又要足够大。 6.密度:单位体积流体所具有的质量,表征流体在空间的密集程度

811工程流体力学

2015年硕士研究生入学考试大纲 考试科目名称:工程流体力学 一、考试要求: 1、要求考生掌握工程流体力学的基础概念、基本原理和基本计算方法,同时具有运用基础理论解决实际问题的能力。 2、考试时携带必要书写工具之外,须携带计算器。 二、考试内容: 1)流体及其主要物理性质 a:正确理解和掌握流体及连续介质的概念; b:流体主要物理性质:密度、重度和相对密度的关系;流体压缩性、膨胀性及流体粘性产生原因及温度对流体粘性的影响;牛顿内摩擦定律;正确理解理想流体和实际流体的概念等; c:作用在流体上的力。 2)流体静力学 a:熟练掌握流体静压力的概念和二个基本特性; b:掌握用微元体分析法推导流体平衡微分方程的方法; c:三种压力表示方法(绝对压力、表压力和真空度)以及单位换算关系; d:掌握绝对与相对静止流体中的等压面和压力分布规律的分析方法; e:熟练掌握水静力学基本方程式及应用; f:压力和压差的测量和计算; g:等压面的概念和特性; h:掌握在液面压力p 0=p a 和p ≠p a 两种情况下静止流体作用在平面和曲面 上的总压力的计算方法(包括总压力的大小、方向和作用点); i:正确理解压力体及浮力的概念等。 3)流体运动学与动力学基础 a:正确理解描述流体运动的拉格朗日法和欧拉法; b:随体导数及其意义;

c:掌握稳定流与不稳定流、流线与迹线、有效断面、流量、断面平均流速、流束与总流、空间和平面及一元流动、动能修正系数、缓变流、泵的扬程和功率等基本概念; d:掌握水头线(位置水头线线、测压管水头和总水头线)及水力坡降、流量系数、总压强与驻压强、系统与控制体等基本概念; e:掌握欧拉运动方程、连续性方程、伯努利方程及动量方程的推导思路,并理解方程的物理意义及使用条件和范围; f:熟练掌握连续性方程、伯努利方程和动量方程的联合应用,并能灵活运用这三个方程进行计算和对流动现象进行分析,应用动量方程进行弯管与喷嘴(或渐缩管)受力、射流的反推力及射流对挡板的作用力的计算。 4)流体阻力和水头损失 a:正确理解和掌握层流、紊流、雷诺数、水力半径、水力光滑与水力粗糙等概念; b:掌握因次分析和相似原理(特别是各种比尺及三个相似准数:雷诺数、富劳德数、欧拉数)在试验中的应用; c:掌握用N-S方程简化方法或取微元体法并结合牛顿内摩擦定律分析几种典型的层流问题(如圆管层流、平板层流等),推导出一些简单的公式; d:掌握层流、紊流状态下管路水头损失(沿程损失及局部损失)的计算方法,能选择经验公式(或有关图表)计算(或选择相应的)阻力系数; e:非圆形管路的水力计算。 5)压力管路的水力计算 a:掌握长管与短管、管路特性曲线、综合阻力系数、作用水头、流量系数、流速系数、收缩系数的概念; b:熟练掌握简单长管和短管的水力计算,能综合测压计、连续性方程、伯努利方程进行管路流量、阻力、外加功的计算; c:掌握串联管路与并联管路的水力特点和水力计算; e:掌握孔口和管嘴泄流的原理及泄流时流动阻力的分析,并会用公式进行

计算流体力学_CFD_的通用软件_翟建华

第26卷第2期河北科技大学学报Vol.26,No.2 2005年6月Journal of Hebei University of Science and T echnology June2005 文章编号:100821542(2005)022******* 计算流体力学(CFD)的通用软件 翟建华 (河北科技大学国际交流与合作处,河北石家庄050018) 摘要:对化学工程领域中的通用CFD(Computational Fluid Dynamics)模拟软件Phoenics,Flu2 ent,CFX等的具体特点和应用情况进行了综述,指出了他们各自的结构特点、特有模块、包含的数学模型和成功应用领域;给出了选用CFD软件平台的7项准则,对今后CFD技术的发展进行了预测,指出,今后CFD研究的主要方向将集中在数学模型开发、工程改造和新设备开发及与工艺软件的匹配连用等方面。 关键词:计算流体力学;模拟软件;CFX;FLUENT;PH OENICS 中图分类号:T Q015.9文献标识码:A Review of commercial CFD software ZH AI Jian2hua (Department of Int ernation Exchange and Cooperation,H ebei University of Science and Technology,Shijiazhuang H ebei 050018,China) Abstr act:The paper summar izes the features and application of the CF D simulation software like Phoenics,F luent and CFX etc in chemical engineering,and discusses their str ucture features,special modules,mathematical models and successful application areas.It also puts forward seven r ules for the good choice of commercial CF D code for the CF D simulation resea rcher s.Based on t he predict ion of the technology development,it points out the possible r esear ch direction for CF D in the future will focus on the development of mathematical model,project transformat ion,new equipment and their matching application with technologi2 cal softwa re. Key words:CF D;simulation software;CF X;FLUENT;P HOENICS CFD(Computational Fluid Dynamics)软件是计算流体力学软件的简称,是用来进行流场分析、计算、预测的专用工具。通过CFD模拟,可以分析并且显示流体流动过程中发生的现象,及时预测流体在模拟区域的流动性能,并通过各种参数改变,得到相应过程的最佳设计参数。CFD的数值模拟,能使我们更加深刻地理解问题产生的机理,为实验提供指导,节省以往实验所需的人力、物力和时间,并对实验结果整理和规律发现起到指导作用。随着计算机软硬件技术的发展和数值计算方法的日趋成熟,出现了基于现有流动理论的商用CFD软件。这使许多不擅长CFD工作的其他专业研究人员能够轻松地进行流体数值计算,从而使研究人员从编制繁杂、重复性的程序中解放出来,以更多的精力投入到研究问题的物理本质、问题提法、边界(初值)条件和计算结果的合理解释等重要方面上,充分发挥商用CFD软件开发人员和其他专业研究人员各自的智力优势,为解决实际工程问题开辟了道路。 CFD研究走过了相当漫长的过程。早期数值模拟阶段,由于缺乏模拟工具,研究者一般根据自身工作性质和研究过程,自行编制模拟程序,其优点是针对性强,对具体问题的解决有一定精度,但是,带来的问题 收稿日期:2004208221;修回日期:2004211221;责任编辑:张军 作者简介:翟建华(19642),男,河北平乡人,教授,主要从事化工CFD、高效传质与分离和精细化工方面的研究。

流体力学公式总结

工程流体力学公式总结 第二章流体得主要物理性质 ?流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。1.密度ρ= m/V 2.重度γ= G /V 3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g 4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m 5.流体得相对密度:d = γ流/γ水= ρ流/ρ水 6.热膨胀性 7.压缩性、体积压缩率κ 8.体积模量 9.流体层接触面上得内摩擦力 10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律) 11.、动力粘度μ: 12.运动粘度ν:ν=μ/ρ 13.恩氏粘度°E:°E = t 1 /t 2 第三章流体静力学 ?重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。 1.常见得质量力: 重力ΔW = Δmg、 直线运动惯性力ΔFI =Δm·a 离心惯性力ΔFR =Δm·rω2、 2.质量力为F。:F= m·am= m(fxi+f yj+fzk) am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度 实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为 fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反 3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。即:p=p(x,y,z),由此得静压强得全微分为: 4.欧拉平衡微分方程式 单位质量流体得力平衡方程为:

工程流体力学总复习题

工程流体力学总复习题 一、名词解释 1. .流体:易流动的物质,包括液体和气体。 2.理想流体:完全没有黏性的流体。 3.实际流体:具有黏性的流体。 4.黏性:是流体阻止发生变形的一种特性。 5.压缩性:在温度不变的条件下,流体在压力作用下体积缩小的性质。 6.膨胀性:在压力不变的条件下,流体温度升高时,其体积增大的性质。 7. 自由液面:与大气相通的液面。 8.重度:流体单位体积内所具有的重量。 9.压力中心:总压力的作用点。 10.相对密度:某液体的密度与标准大气压下4℃(277K)纯水的密度之比。 11.密度:流体单位体积内所具有的质量。 12.控制体:流场中某一确定不变的区域。 13.流线:同一瞬间相邻各点速度方向线的连线。 14. 迹线:流体质点运动的轨迹。 15.水力坡度:沿流程单位长度的水头损失。 16.扬程:由于泵的作用使单位重力液体所增加的能量,叫泵的扬程。 17.湿周:与液体接触的管子断面的周长。 18.当量长度:把局部水头损失换算成相当某L当管长的沿程水头损失时,L当即为当量长度。 19.系统:包含确定不变流体质点的任何集合。 20.水力粗糙:当层流底层的厚度小于管壁粗糙度时,即管壁的粗糙突起部分或全部暴露在 紊流区中,造成新的能量损失,此时的管内流动即为水力粗糙。 21.压力体:是由受压曲面、液体的自由表面或其延长面和由该曲面的最外边界引向液面或 液面延长面的铅垂面所围成的封闭体积。 22.长管:可以忽略管路中的局部水头损失和流速损失的管路。 23.短管:计算中不可以忽略的局部水头损失和流速损失的管路。 24.层流:流动中黏性力影响为主,流体质点间成分层流动主要表现为摩擦。

计算流体力学软件

计算流体力学(CFD)是近代流体力学,数值数学和计算机科学结合的产物,是一门具有强大生命力的边缘科学。它以电子计算机为工具,应用各种离散化的数学方法,对流体力学的各类问题进行数值实验、计算机模拟和分析研究,以解决各种实际问题。 计算流体力学和相关的计算传热学,计算燃烧学的原理是用数值方法求解非线性联立的质量、能量、组分、动量和自定义的标量的微分方程组,求解结果能预报流动、传热、传质、燃烧等过程的细节,并成为过程装置优化和放大定量设计的有力工具。计算流体力学的基本特征是数值模拟和计算机实验,它从基本物理定理出发,在很大程度上替代了耗资巨大的流体动力学实验设备,在科学研究和工程技术中产生巨大的影响。目前比较好的CFD软件有:Fluent、CFX,Phoenics、Star-CD,除了Fluent 是美国公司的软件外,其它三个都是英国公司的产品 ------------------------------------------------------ FLUENT FLUENT是目前国际上比较流行的商用CFD软件包,在美国的市场占有率为60%。举凡跟流体,热传递及化学反应等有关的工业均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛的应用。其在石油天然气工业上的应用包括:燃烧、井下分析、喷射控制、环境分析、油气消散/聚积、多相流、管道流动等等。 Fluent的软件设计基于CFD软件群的思想,从用户需求角度出发,针对各种复杂流动的物理现象,FLUENT软件采用不同的离散格式和数值方法,以期在特定的领域内使计算速度、稳定性和精度等方面达到最佳组合,从而高效率地解决各个领域的复杂流动计算问题。基于上述思想,Fluent开发了适用于各个领域的流动模拟软件,这些软件能够模拟流体流动、传热传质、化学反应和其它复杂的物理现象,软件之间采用了统一的网格生成技术及共同的图形界面,而各软件之间的区别仅在于应用的工业背景不同,因此大大方便了用户。其各软件模块包括: GAMBIT——专用的CFD前置处理器,FLUENT系列产品皆采用FLUENT公司自行研发的Gambit 前处理软件来建立几何形状及生成网格,是一具有超强组合建构模型能力之前处理器,然后由Fluent 进行求解。也可以用ICEM CFD进行前处理,由TecPlot进行后处理。 Fluent5.4——基于非结构化网格的通用CFD求解器,针对非结构性网格模型设计,是用有限元法求解不可压缩流及中度可压缩流流场问题的CFD软件。可应用的范围有紊流、热传、化学反应、混合、旋转流(rotating flow)及震波(shocks)等。在涡轮机及推进系统分析都有相当优秀的结果,并且对模型的快速建立及shocks处的格点调适都有相当好的效果。 Fidap——基于有限元方法的通用CFD求解器,为一专门解决科学及工程上有关流体力学传质及传热等问题的分析软件,是全球第一套使用有限元法于CFD领域的软件,其应用的范围有一般流体的流场、自由表面的问题、紊流、非牛顿流流场、热传、化学反应等等。 FIDAP本身含有完整的前后处理系统及流场数值分析系统。对问题整个研究的程序,数据输入与输出的协调及应用均极有效率。 Polyflow——针对粘弹性流动的专用CFD求解器,用有限元法仿真聚合物加工的CFD软件,主要应用于塑料射出成形机,挤型机和吹瓶机的模具设计。 Mixsim——针对搅拌混合问题的专用CFD软件,是一个专业化的前处理器,可建立搅拌槽及混合槽的几何模型,不需要一般计算流力软件的冗长学习过程。它的图形人机接口和组件数据库,让工程师

流体力学计算公式

1、单位质量力:m F f B B = 2、流体的运动粘度:ρ μ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dp d dp dV V ρρκ?=?-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dT d dT dV V v ρρα?-=?=11(v α的单位是C K ?1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dy du dy du A T (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+= 7、静水总压力: )h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghA A p p c ρ== 8、元流伯努利方程;'2221112w h g p z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,g p ρ为测压管高度或压强水头,g u ρ2是单位流体具有的动能,u gh g p p g u 22'=-=ρ,u gh C g p p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h g v g p z g v g p z +++=++222 221221111αραρ(α为修正系数通常取1) 10、文丘里流量计测管道流量:)21)(41()()(42 122211g d d d k h k g p z g p z k Q -=?=+-+=πμρρμ 11、沿程水头损失一般表达式:g v d l h f 22 λ=(l 为管长,d 为管径,v 为断面平均流速,g 为重力加速度,λ为沿程阻力系数)

相关主题