搜档网
当前位置:搜档网 › Multisim仿真应用手册

Multisim仿真应用手册

Multisim仿真应用手册
Multisim仿真应用手册

电子电路仿真应用手册

清华大学电子学教学组 2009年6月

前言

本手册基于Multisim V7仿真环境,从最基本的仿真电路图的建立开始,结合实际的例子,对模拟和数字电路中常用的测试方法进行介绍。这些应用示例包括:常用半导体器件特性曲线的测试、放大电路静态工作点和动态参数的测试、电压传输特性的测试、波形上升时间的测试、逻辑函数的转换与化简、逻辑分析仪的使用方法等。

更高版本的Multisim仿真环境与之类似。此外,本手册侧重于测试方法的介绍,仅对主要步骤进行说明,如碰到更细节的问题,可参阅《Multisim V7教学版使用说明书》或其它帮助文档。

目录

1 Multisim主界面简介 (2)

2仿真电路图的建立 (2)

3常用半导体器件特性曲线的测试方法 (3)

3.1 晶体三极管特性曲线的测试 (3)

3.1.1 IV分析仪测试方法 (3)

3.1.2 直流扫描分析方法 (3)

3.2 结型场效应管特性曲线的测试 (4)

3.2.1 IV分析仪测试方法 (4)

3.2.2 直流扫描分析方法 (4)

3.3 二极管、稳压管伏安特性曲线的测试 (5)

4放大电路静态工作点的测试方法 (5)

4.1 虚拟仪器测试方法 (5)

4.2 静态工作点分析方法 (5)

5放大电路动态参数的测试方法 (6)

5.1 电压放大倍数的测试 (6)

5.1.1瞬态分析测试方法 (6)

5.1.2虚拟仪器测试方法 (6)

5.2 输入电阻的测试 (6)

5.3 输出电阻的测试 (7)

5.4频率响应的测试 (7)

5.4.1交流分析方法 (7)

5.4.2 波特图仪测试方法 (7)

6电压传输特性的测试方法 (8)

7上升时间的测试方法 (9)

8逻辑函数的转换与化简 (10)

8.1 逻辑函数转换为真值表 (10)

8.2 真值表转换为逻辑函数 (10)

9逻辑分析仪的使用方法 (11)

图2.2 移动连线

图2.1 示例电路

1 Multisim 主界面简介

运行MultisimV7,自动进入电路图编辑界面。当前电路图的缺省命名为“Circuit1”,在保存文件时可以选择存放路径并重新命名。MultisimV7主界面如图1.1所示。

图1.1 Multisim 主界面

2

仿真电路图的建立

下面以单管放大电路为例,介绍建立电路的步骤。其中三极管选用实际器件MRF9011LT1_A ,其它元件都选用虚拟器件。

步骤一:放置元件

从元件库中取出图2.1所示各元件,调整元件方向

后放置在图中适合位置。分别修改信号源、直流电压

源、电阻和电容的属性,包括元件名称和取值。

步骤二:连接线路

用鼠标左键单击元件管脚,光标变为,拖动鼠

标至目标元件管脚再次单击,即可完成连接。在连线

过程中按ESC 或单击右键可终止连接。如果需要断开

已连好的连线并移动至其它位置,将光标放在要断开

的位置,此时光标变为如图2.2所示形状。单击后光标

变为,移动光标至新的管脚连接位置,再次单击完

成连线。

在Multisim 中,默认选项不显示电路的节点号,如果需要显示,则点击工具栏中Options ,选定Preferences 即弹出图 2.3所示界面,选中Show node names (简述为Options ?Preferences ?Show node names ,以下均用简述方法表述),见图中虚线所示,即可在电路图中显示出各个节点号。

图2.3 显示电路节点号 设计工具栏菜单栏 元件工具栏

仪表工

栏 仿真开关 使用中元件列表

3 常用半导体器件特性曲线的测试方法

半导体器件的特性曲线可以通过IV 分析仪和直流扫描分析这两种方法得到。

3.1 晶体三极管特性曲线的测试

3.1.1 IV 分析仪测试方法

IV 分析仪(IV-Analysis )可用于分析半导体器件的输出特性曲

线。以NPN 型晶体管MRF9011LT1_A 为例,从仪表工具栏中单击

选取IV 分析仪,双击该图标打开显示面板。在Components 下拉菜

单中选择BJT NPN 选项,面板右下方则显示晶体管的b 、e 和c 三

极连接顺序的示意图。建立测试电路如图3.1所示。点击面板上的

Sim_Param 按钮,设定U CE (V_ce )和I B (I_b )

扫描范围分别为0~12V 和0~40μA ,如图3.2所示。点击Simulate 按钮进行仿真,得到晶体

管的输出特性曲线如图3.3所示。面板下方显示光标所在位置的某

条曲线i B 、u CE 及i C 的值,单击其它曲线可显示相应数值。

3.1.2 直流扫描分析方法

利用Multisim 中的“直流扫描分析(DC Sweep Analysis )”可以得到晶体三极管的输出特性曲线和输入特性曲线。

以输出特性曲线的测试为例,测试电路如图3.4所示。在Multisim

中,电压源VCC 所在支路的电流以从集电极流出的方向为正,而晶体三

极管的I C 以流入集电极的方向为正,因此串联一个0V 的电压源V1来保

证测试集电极支路的电流方向与I C 方向相同。

为测试输出特性()常数==I u f i B CE C ,选取菜单命令

Simulate ?Analyses ?DC Sweep ,设定U CE (vccvcc )和I B (i:xi1)分别

为扫描电压和扫描电流,扫描范围分别为0~12V 和0~40μA ,如图3.5所

示。Source2的默认下拉菜单中没有电流源,令其显示的方法为:点击Change Filter 按钮,勾中Display submodules 选项。输出变量为V1(vv1)所在的支路电流,如图3.6所示。点击Simulate 按钮进行仿真,扫描结果如图3.7所示。

类似地,利用直流扫描分析方法同样可以得到晶体三极管的输入特性曲线

()常数==U u f i CE BE B

图3.2 设置扫描参数 图3.3 晶体三极管的输出特性曲线

图3.1 测试电路 i B u CE i C

图3.4 输出特性

曲线测试电路

图3.11 测试电路

图3.7 晶体三极管的输出特性曲线

3.2 结型场效应管特性曲线的测试

3.2.1 IV 分析仪测试方法

以N 沟道结型场效应管2N5486为例,建立输出特性曲线测试电路如

图3.8所示。设置参数的操作步骤同3.1.1。设定U DS (V_ds )和U GS (V_gs )扫描范围分别为0~12V 和-5~0V ,如图3.9所示。可得到NMOS 管的输出特性曲线如图3.10所示。

3.2.2 直流扫描分析方法

以转移特性曲线的测试为例,测试电路如图3.11所示。为了得到

场效应管的转移特性曲线,设定U GS (vv2)为扫描电压,扫描范围

为-5~0V ,如图3.12所示;输出为V1(vv1)所在的支路电流。扫描

结果如图3.13所示。

图3.9设置参数 图3.10场效应管输出特性曲线

图3.5 设置扫描参数 图3.6 指定输出变量

图3.8 测试电路

3.3 二极管、稳压管伏安特性曲线的测试

二极管和稳压管伏安特性曲线的测试可以参照3.1及3.2节的介绍进行,这里不再赘述。

4 放大电路静态工作点的测试方法

在Multisim 中,电路的静态工作点既可以使用虚拟仪器测量,也可以通过“静态工作点分析(DC Operation Point )”方法得到。下面以图2.1中的共射放大电路为例,分别利用这两种方法得到各节点的直流电压和各支路的直流电流。

4.1 虚拟仪器测试方法

从仪表工具栏中单击选取万用表,建立测试电路如图4.1所示。双击万用表面板,点击Simulate 按钮后得到节点1、2和3的直流电压值,然后通过计算得出各支路电流值。

图4.1 静态工作点仿真结果

4.2 静态工作点分析方法

测试电路同图2.1,分析步骤如下:

(1) 选取菜单命令Simulate ?Analyses ?DC

Operating Point ,在Output variables 页中选择节点1

($1)、节点2($2)、节点3($3)和VCC (vccvcc )

所在的支路电流作为输出。

(2) 点击Simulate 按钮进行仿真,仿真分析结果如

图4.2所示。

支路电流显示为负值,原因参见3.1.2中的说明。

图3.12设置参数 图3.13场效应管转移特性曲线

图4.2 静态工作点分析结果

5 放大电路动态参数的测试方法

5.1 电压放大倍数的测试

5.1.1瞬态分析测试方法

测试电路同图2.1,测试步骤如下:

(1) 选取菜单命令Simulate ?Analyses ?Transient Analysis 。由于输入信号源的频率为10kHz ,扫描时间应大于一个周期,所以扫描的起始与终止时间可以设置为0~0.0005s 之间,如图5.1所示。

(2) 在Output variables 页中分别选择节点7($7)、节点4($4)作为输出。

(3) 点击Simulate 按钮进行仿真,仿真结果如图5.2所示。

(4) 在图5.2中点击Show/Hide Cursors 按钮

,可以读取波形峰峰值,利用式 |u

A &|=U op-p / U ip-p 可计算出电压放大倍数。

图5.1 瞬态分析参数设置

图5.2 瞬态分析仿真结果 5.1.2 虚拟仪器测试方法

也可以利用虚拟仪器直接测试电压放大倍数,测试电路如图5.3所示,点击仿真按钮后,双击示波器,得到如图5.4所示波形,直接读数并计算可得到电压放大倍数。

5.2 输入电阻的测试

输入电阻的测试方法详见《电子电路实验》第15页。测试电路如图5.5所示。

用示波器分别测量R 1左右两侧的动态电位U O1和U O2,根据式

1O2

O1O2i R U U U R ??= 计算可得输入电阻。

图5.5 输入电阻测试电路图 5.3 输出电阻的测试

输出电阻的测试方法见《电子电路实验》第15~16页。测试电路同图2.1。

用示波器分别测量电路的开路输出电压U OO 和带负载输出电压U O ,根据式

L O OO O 1R U U R ????

??????= 计算可得输出电阻。

5.4频率响应的测试

5.4.1交流分析方法

测试电路同图2.1。测试步骤如下:

(1)选取菜单命令Simulate ?Analyses ?AC Analysis ,在Frequency Parameters 页中设置起止频率为1Hz~1GHz ,其余为默认设置,如图5.6所示。

(2)在Output variables 页中选择节点4($4)作为输出。

(3)点击Simulate 按钮进行分析,得到电路的幅频和相频特性曲线,如图5.7所示。

(4)在图5.7中点击Show/Hide Cursors 按钮,可以读取波形的上各点的值。从而得到电路的上下限截止频率:f L ≈136.84Hz 、f H ≈ 82.30MHz 。

5.4.2 波特图仪测试方法

也可以利用波特图仪直接观察电路的频率响应。从仪表工具栏中单击选取波特仪,将“IN ”和“OUT ”端子分别接电路的输入和输出信号,观测结果如图5.8和图5.9所示。

图5.3 电压放大倍数测试电路图 图5.4 示波器显示波形

图6.1 测试电路图

图5.6 交流分析参数设置 图5.7 交流分析仿真结果

6

电压传输特性的测试方法

电压传输特性的测试既可以采用直流扫描分析方法,

也可以通过示波器的X-Y 显示方式观测得到。下面以反相比

例放大电路为例介绍利用“直流扫描分析”得到电路的电压

传输特性曲线。

测试电路如图 6.1所示,其中集成运放选用实际器件

741,其它元件均采用虚拟器件。测试步骤如下:

(1)选取菜单命令Simulate ?Analyses ?DC Sweep ,设定

vv1为扫描电压,扫描范围为-2~2V ,如图6.2所示;输出为

节点3($3)的电压,如图6.3所示。

(2) 点击Simulate 按钮进行仿真,仿真结果如图6.4所示。

(3) 在图6.4中点击Show/Hide Cursors

按钮

,可以读取电路的线性输入范围,直流

电压增益,正、反向最大输出电压等特性参数。

图5.8幅频特性曲线 图5.9相频特性曲线

图6.2 直流扫描分析扫描范围设置 图6.3 直流扫描分析输出设置

图6.4 直流扫描分析结果

7 上升时间的测试方法

Multisim中,可以使用虚拟示波器得到波形的上升时间和下降时间。测试电路如图7.1所示,这是一个矩形波发生电路,下面使用虚拟示波器测量电路的输出电压幅值和矩形波的上升时间。

图7.1 矩形波发生电路图7.2 矩形波测试步骤如下:

(1)将示波器通道A与输出电压u o相连接;双击示波器图标,屏幕上弹出显示面板,如图7.2所示,从图中可知矩形波幅值U op-p=17.035V。

(2)点击Timebase栏下的Scale项,将波形展宽,以清晰地显示矩形波上升沿,如图7.3所示。

(3)鼠标在示波器显示面板内移到游标1处,单击右键,屏幕上弹出游标位置设置窗口,如图7.4所示;点击Set Y_Value <= 项,屏幕弹出游标1的Y值设置窗口,见图7.5所示;根据上升沿的定义,上升沿10℅处的Y值是-6.8145V。

在Y值设置窗口内填入正确数值,游标1即跳到矩形波的10℅处。同理设置游标2到矩形波的90℅处。游标1和游标2的位置如图7.3所示。

从图7.3可读出矩形波的上升时间是29.572μs。

图7.3 矩形波上升沿图7.4 游标位置设置图7.5 游标1 Y值设置

8逻辑函数的转换与化简

Multisim中的逻辑转换器(Logic Converter),可以实现逻辑函数的转换与化简。逻辑转换器中共有六个功能,使用它们可以在真值表、最小项之和形式的函数式、最简与或式和逻辑电路图之间相互转换。

从仪表工具栏单击选取逻辑转换器,双击该图标,屏幕上弹出显示面板,如图8.1所示。

图 8.1 逻辑转换器图标及显示面板

图8.1中共有6个功能按钮,其对应的功能如表8.1所示。

表8.1 逻辑转换器按钮-功能对应表

按钮功能

逻辑电路转换为真值表。

真值表转换为逻辑表达式。

真值表转换为最简逻辑表达式。

逻辑表达式转换为真值表。

逻辑表达式转换为逻辑电路。

逻辑表达式转换为由与非门构成的逻辑电路。

下面举例说明逻辑转换器的使用方法。

8.1 逻辑函数转换为真值表

化简具有约束的逻辑函数Y= A′B′C′D+A′BCD+AB′C′D′。

给定约束条件为A′B′CD+A′BC′D+ABC′D′+AB′C′D+ABCD+ABCD′+AB′CD′=0。

转换步骤如下:

(1)在图8.1的逻辑表达式窗口输入逻辑函数A′B′C′D+A′BCD+AB′C′D′。

(2)点击按钮,完成逻辑表达式到真值表的转换,转换结果如图8.1所示。

8.2 真值表转换为逻辑函数

将图8.1所示的真值表转化为逻辑函数式,并化简为最简与或式。

(1)删去逻辑转换器显示面板底栏中的逻辑函数式,点击按钮,图8.1中的真值表将被转换为刚才输入的逻辑函数式。

(2)在显示面板中,A、B、C、D四个端口按钮目前处于工作状态,列表栏中的第一列和第二列分别显示十进制和二进制数,将鼠标移到第三列连续点击左键,将会出现“0、1、X”三种状态。根据给定的约束条件,对图8.1所示的真值表加以修改,如图8.2所示。

(3)化简为最简与或形式。点击钮,可将转化结果化简为最简与或形式,并在显示面板底栏中显示,如图8.2所示。化简结果为Y=A′D+AD′从上面可以发现,逻辑转换器中没有异或符号,处理方式是将异或运算写成A B=A'B+AB'

⊕。

图8.2 最简与或式化简结果

9逻辑分析仪的使用方法

Multisim中的逻辑分析仪(Logic Analyzer),可以分析时序逻辑电路,观测多路信号的时序关系。下面举例说明逻辑分析仪的使用方法。

分析电路如图9.1所示,这是一个计数器电路,要求给出电路时序图,并分析是几进制计数器。

9.1 利用74LS90组成的计数器

按图9.1建立仿真电路图,分析步骤如下:

(1)从仪表工具栏中单击选取逻辑分析仪和信号发生器;将逻辑分析仪和信号发生器按图9.2连接到电路中。逻辑分析仪图中有十九个端口(1~F、C、Q、T),其中1~F接测试点,C是外部时钟信号输入端口,Q是时钟控制信号输入端口,T是触发控制信号输入端口。

图9.2电路连线图

(2)打开信号发生器设置窗口,按图9.3进行参数设置。

(3)双击逻辑分析仪图标,屏幕上弹出显示面板,如图9.4所示。仿真后可得到计数器的时钟波形和输出波形。

图9.3 信号发生器设置图9.4 波形显示

分析图9.4中的波形图可知,图9.1所示电路为十进制计数器。

最详细最好的Multisim仿真教程

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使用Multisim进行模拟电路仿真的基本方法。 目录 1. Multisim软件入门 2. 二极管电路 3. 基本放大电路 4. 差分放大电路 5. 负反馈放大电路 6. 集成运放信号运算和处理电路 7. 互补对称(OCL)功率放大电路 8. 信号产生和转换电路 9. 可调式三端集成直流稳压电源电路 13.1 Multisim用户界面及基本操作 13.1.1 Multisim用户界面 在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。 Multisim来源于加拿大图像交互技术公司(Interactive Image T echnologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。 IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。 1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。 IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim 经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。 下面以Multisim10为例介绍其基本操作。图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

Multisim基础使用方法详解

第2章Multisim9的基本分析方法 主要容 ? 2.1 直流工作点分析(DC Operating Point Analysis ) ? 2.2 交流分析(AC Analysis) ? 2.3 瞬态分析(Transient Analysis) ? 2.4 傅立叶分析(Fourier Analysis) ? 2.5 失真分析(Distortion Analysis) ? 2.6 噪声分析(Noise Analysis) ? 2.7 直流扫描分析(DC Sweep Analysis) ? 2.8 参数扫描分析(Parameter Sweep Analysis) 2.1 直流工作点分析 直流工作点分析也称静态工作点分析,电路的直流分析是在电路中电容开路、电感短路时,计算电路的直流工作点,即在恒定激励条件下求电路的稳态值。 在电路工作时,无论是大信号还是小信号,都必须给半导体器件以正确的偏置,以便使其工作在所需的区域,这就是直流分析要解决的问题。了解电路的直流工作点,才能进一步分析电路在交流信号作用下电路能否正常工作。求解电路的直流工作点在电路分析过程中是至关重要的。 2.1.1构造电路 为了分析电路的交流信号是否能正常放大,必须了解电路的直流工作点设置得是否合理,所以首先应对电路得直流工作点进行分析。在Multisim9工作区构造一个单管放大电路,电路中电源电压、各电阻和电容取值如图所示。

注意:图中的1,2,3,4,5等编号可以从Options---sheet properties—circuit—show all 调试出来。 执行菜单命令(仿真)Simulate/(分析)Analyses,在列出的可操作分析类型中选择DC Operating Point,则出现直流工作点分析对话框,如图A所示。直流工作点分析对话框B。 1. Output 选项 Output用于选定需要分析的节点。 左边Variables in circuit 栏列出电路中各节点电压变量和流过电源的电流变量。右边Selected variables for 栏用于存放需要分析的节点。 具体做法是先在左边Variables in circuit 栏中选中需要分析的变量(可以通过鼠标拖拉进行全选),再单击Add按钮,相应变量则会出现在Selected variables for 栏中。如果Selected variables for 栏中的某个变量不需要分析,则先选中它,然后点击Remove按钮,该变量将会回到左边Variables in circuit 栏中。 2.Analysis Options 和Summary选项表示:分析的参数设置和Summary页中排列了该分析所设置的所有参数和选项。用户通过检查可以确认这些参数的设置。 2.1.3 检查测试结果

Multisim基础使用方法详解

M u l t i s i m基础使用方 法详解 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

第2章 Multisim9的基本分析方法 主要内容 ?直流工作点分析(DC Operating Point Analysis ) ?交流分析(AC Analysis) ?瞬态分析(Transient Analysis) ?傅立叶分析(Fourier Analysis) ?失真分析(Distortion Analysis) ?噪声分析(Noise Analysis) ?直流扫描分析(DC Sweep Analysis) ?参数扫描分析(Parameter Sweep Analysis) 直流工作点分析 直流工作点分析也称静态工作点分析,电路的直流分析是在电路中电容开路、电感短路时,计算电路的直流工作点,即在恒定激励条件下求电路的稳态值。 在电路工作时,无论是大信号还是小信号,都必须给半导体器件以正确的偏置,以便使其工作在所需的区域,这就是直流分析要解决的问题。了解电路的直流工作点,才能进一步分析电路在交流信号作用下电路能否正常工作。求解电路的直流工作点在电路分析过程中是至关重要的。 2.1.1构造电路

为了分析电路的交流信号是否能正常放大,必须了解电路的直流工作点设置得是否合理,所以首先应对电路得直流工作点进行分析。在Multisim9工作区构造一个单管放大电路,电路中电源电压、各电阻和电容取值如图所示。 注意:图中的1,2,3,4,5等编号可以从Options---sheet properties—circuit—show all 调试出来。 执行菜单命令(仿真)Simulate/(分析)Analyses,在列出的可操作分析类型中选择DC Operating Point,则出现直流工作点分析对话框,如图A所示。直流工作点分析对话框B。 1. Output 选项 Output用于选定需要分析的节点。 左边Variables in circuit 栏内列出电路中各节点电压变量和流过电源的电流变量。右边Selected variables for 栏用于存放需要分析的节点。 具体做法是先在左边Variables in circuit 栏内中选中需要分析的变量(可以通过鼠标拖拉进行全选),再单击Add按钮,相应变量则会出现在Selected variables for 栏中。如果Selected variables for 栏中的某个变量不需要分析,则先选中它,然后点击Remove按钮,该变量将会回到左边Variables in circuit 栏中。 Options 和Summary选项表示:分析的参数设置和Summary页中排列了该分析所设置的所有参数和选项。用户通过检查可以确认这些参数的设置。 2.1.3 检查测试结果 点击B图下部Simulate按钮,测试结果如图所示。测试结果给出电路各个节点的电压值。根据这些电压的大小,可以确定该电路的静态工作点是否合理。如果不合理,可以

模拟电子技术课程设计(Multisim仿真).

《电子技术Ⅱ课程设计》 报告 姓名 xxx 学号 院系自动控制与机械工程学院 班级 指导教师 2014 年 6 月18日

目录 1、目的和意义 (3) 2、任务和要求 (3) 3、基础性电路的Multisim仿真 (4) 3.1 半导体器件的Multisim仿真 (4) 3.11仿真 (4) 3.12结果分析 (4) 3.2单管共射放大电路的Multisim仿真 (5) 3.21理论计算 (7) 3.21仿真 (7) 3.23结果分析 (8) 3.3差分放大电路的Multisim仿真 (8) 3.31理论计算 (9) 3.32仿真 (9) 3.33结果分析 (9) 3.4两级反馈放大电路的Multisim仿真 (9) 3.41理论分析 (11) 3.42仿真 (12) 3.5集成运算放大电路的Multisim仿真(积分电路) (12) 3.51理论分析 (13) 3.52仿真 (14) 3.6波形发生电路的Multisim仿真(三角波与方波发生器) (14) 3.61理论分析 (14) 3.62仿真 (14) 4.无源滤波器的设计 (14) 5.总结 (18) 6.参考文献 (19)

一、目的和意义 该课程设计是在完成《电子技术2》的理论教学之后安排的一个实践教学环节.课程设计的目的是让学生掌握电子电路计算机辅助分析与设计的基本知识和基本方法,培养学生的综合知识应用能力和实践能力,为今后从事本专业相关工程技术工作打下基础。这一环节有利于培养学生分析问题,解决问题的能力,提高学生全局考虑问题、应用课程知识的能力,对培养和造就应用型工程技术人才将能起到较大的促进作用。 二、任务和要求 本次课程设计的任务是在教师的指导下,学习Multisim仿真软件的使用方法,分析和设计完成电路的设计和仿真。完成该次课程设计后,学生应该达到以下要求: 1、巩固和加深对《电子技术2》课程知识的理解; 2、会根据课题需要选学参考书籍、查阅手册和文献资料; 3、掌握仿真软件Multisim的使用方法; 4、掌握简单模拟电路的设计、仿真方法; 5、按课程设计任务书的要求撰写课程设计报告,课程设计报告能正确反映设计和仿真结果。

数字时钟的Multisim设计与仿真

电子电路 设计和仿真 Multisim 学院: 专业和班级: 姓名:学号: 数字时钟的Multisim 设计和仿真 一、设计和仿真要求 学习综合数字电子电路的设计、实现和调试 1.设计一个24或12小时制的数字时钟。 2.要求:计时、显示精确到秒;有校时功能。采用中小规模集成电路设计。 3.发挥:增加闹钟功能。 二、总体设计和电路框图 1.设计思路 1).由秒时钟信号发生器、计时电路和校时电路构成电路。 2).秒时钟信号发生器可由555定时器构成。 3).计时电路中采用两个60进制计数器分别完成秒计时和分计时;24进制计数器完成时计时;采用译码器将计数器的输出译码后送七段数码管显示。 4).校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。2.电路框图

二、子模块具体设计 1.由555定时器构成的1Hz 秒时钟信号发生器。 由下面的电路图产生1Hz 的脉冲信号作为总电路的初输入时钟脉冲 图2.时钟信号发生电路 2. 分、秒计时电路及显示部分 -VC K ? OTT - ? THR ? T£L1 - O0&I H L : ? r GND ,,, 48kQ R2 48kQ —10uF 士伯 DtiF ....... ■ ■ j - ■ ■ >100Q

在数字钟的控制电路中,分和秒的控制都是一样的,都是由一个十进制计数器和一个六进制计数器串联而成的,在电路的设计中我采用的是统一的器件74LS160D 的反馈置数法来实现十进制功能和六进制功能,根据74LS160D的 结构把输出端的0110 (十进制为6)用一个与非门74LS00引到CLR端便可置0,这样就实现了六进制计数。 由两片十进制同步加法计数器74LS160级联产生,采用的是异步清零法显示部分用的是七段数码管和两片译码器74LS48D 。 图3.分秒计时电路 3.时计时电路及显示部分 由两片十进制同步加法计数器74LS160级联产生,采用的是同步置数法, u1输出端为0011 (十进制为3)与u2输出端0010 (十进制为2)经过与非门接两片的置数端。 显示部分用的是七段数码管和两片译码器74LS48D 。

(完整版)Multisim10仿真软件简介与使用

Multisim10仿真软件简介与使用 Multisim10.0是加拿大交互图像技术公司推出的最新电子仿真软件,是Multisim系列的改进版。该版使文件管理和操作更方便,元件调用更便捷,元件的标注更加直观实用,增加了仿真的真实感,使虚拟的电子实验平台更加接近实际的实验平台。Multisim10.0是一种在电子技术界广为应用的优秀计算机仿真设计软件,被誉为“计算机里的电子实验室”。 1.Multisim10.0的基本操作界面 Multisim10.0软件以图形界面为主,具有一般Windows应用软件的风格,可以使用户自如使用。启动Multisim10.0后,出现如图3-4-1界面。 仪器仪表栏菜单栏工具栏 仿真电源开关元器件栏 状态栏 电路工作区 图3-4-1 主界面窗口 (1)菜单栏 Multisim10.0的菜单包括主菜单、一级菜单和二级菜单,通过菜单可以对Multisim10.0的所有功能进行操作。如图3-4-2所示。 图3-4-2 主菜单 (2)工具栏 Multisim10.0提供了多种工具栏,如系统工具栏、主工具栏、元件工具栏、仪表工具栏。 ①系统工具栏提供了文档常用的新建文件、打开文件、保存文件、打印、放大、缩 小等操作。如图3-4-3所示。 图3-4-3 系统工具栏 ②元件工具栏提供了从Multisim元件数据库中选择、放置元件到原理图中的按钮。如图3-4-4所示。从左到右元件库依次为电源库、基本元件库、二极管库、晶体管库、模拟元件库、TTL库、CMOS库、其它数字元件库、数模混合元件库、指示器库、电源器件库、混合项元件库、高级的外设器件库、射频元件库、电气元件库、MCU器件库、设置层次库、放置总线库。

Multisim14使用multisim12元件库的方法

M u l t i s i m14使用 m u l t i s i m12元件库的 方法 -CAL-FENGHAI.-(YICAI)-Company One1

Multisim14使用multisim12元件库的方法 如题,步骤如下: 1、下载multisim12,multisim14,multisim12库文件。 2、安装multisim14,安装multisim12,安装方法及安装包自己百度 3、打开multisim12,导入multisim12库文件。工具----数据库----数据库管理 器---导入-----选择下载好的数据库,按照提示操作。 4、导入成功后,打开数据库管理器(打开顺序:工具----数据库---数据库管 理器),点击右下角的关于,查找已导入数据库的存放位置。如导入到用户数据,则复制用户数据库地址,如下图,我的存放地址为:C:\Users\Administrator\AppData\Roaming\National Instruments\Circuit Design Suite\\database

5、打开数据库存放位置,可看到当前数据库, usr文件为数据库文件。 6、关闭multisim12,运行multisim14,执行工具----数据库----转换数据库--- 选择v12→v14-----选择源数据库名称

7、打开到multisim12中usr库文件存放位置,即第四步所示地址,右下角 选择所有文件,这是可看到第三步导入的库文件存放文件,选择该文件,点击打开,点击开始,选择自动重命名或覆盖、忽略,点击确定。 8、等待导入结束后,即可使用。 该方法可用于其他版本数据库导入,如multisim10数据库导入multisim12或14等。 另外,也可以下载别人转换好的数据库文件,但是是否可行,有待验证。

multisim仿真说明手册

Multisim7仿真分析命令介绍 1. 直流工作点分析(DC Operating Point Analysis) 直流工作点分析是对电路进行直流分析,分析完毕后给出电路中所有结点的电压和所有直流电压源中的电流。 进行直流工作点分析时,系统会自动假定电路的交流信号为0,且电路中的电容开路,电感短路。 以单管共射放大电路为例介绍如何用直流工作点分析得到电路中部分结点的电压和流过元器件内部结点的电流。 单管共射放大电路 (1)电路结点标注 点击主菜单Options->Preferences,选中circuit页show区中,点击OK按钮返回电路图窗口。

Preferences窗口的Circuit页 (2)仿真方式选择 点击主菜单Simulate->Analysis-> DC Operating Point Analysis。 DC Operating Point Analysis窗口

(3)输出变量选择 Output Variables页用来选定输出分析的变量。 在DC Operating Point Analysis窗口的Output variables页窗口中,左边Variables in circuit区中给出了针对电路中已标注的所有结点,该分析方法能够分析计算的所有变量。可以通过选中需要分析计算的变量点击Add的方法将想要观测的变量添加到右边Select variables for区中,用于软件后台的分析计算。 选择输出变量 其中,$1表示结点1的电压,vv2#branch表示流经电源V2的电流。(4)内部结点添加 有些情况下,元器件有内部结点的存在(如:三极管),若想分析计算元器件内部结点的电流电压参数,可选择左边Variables in circuit区下边的 ,在more options中选择添加元器件模型和想要分析计算的参数。

Multisim仿真应用手册_92309562

电子电路仿真应用手册 2009年6月 前言 本手册基于Multisim V7仿真环境,从最基本的仿真电路图的建立开始,结合实际的例子,对模拟和数字电路中常用的测试方法进行介绍。这些应用示例包括:常用半导体器件特性曲线的测试、放大电路静态工作点和动态参数的测试、电压传输特性的测试、波形上升时间的测试、逻辑函数的转换与化简、逻辑分析仪的使用方法等。 更高版本的Multisim仿真环境与之类似。此外,本手册侧重于测试方法的介绍,仅对主要步骤进行说明,如碰到更细节的问题,可参阅《Multisim V7教学版使用说明书》或其它帮助文档。 目录 1 Multisim主界面简介 (2) 2仿真电路图的建立 (2) 3常用半导体器件特性曲线的测试方法 (3) 3.1 晶体三极管特性曲线的测试 (3) 3.1.1 IV分析仪测试方法 (3) 3.1.2 直流扫描分析方法 (3) 3.2 结型场效应管特性曲线的测试 (4) 3.2.1 IV分析仪测试方法 (4) 3.2.2 直流扫描分析方法 (4) 3.3 二极管、稳压管伏安特性曲线的测试 (5) 4放大电路静态工作点的测试方法 (5) 4.1 虚拟仪器测试方法 (5) 4.2 静态工作点分析方法 (5) 5放大电路动态参数的测试方法 (6) 5.1 电压放大倍数的测试 (6) 5.1.1瞬态分析测试方法 (6) 5.1.2虚拟仪器测试方法 (6) 5.2 输入电阻的测试 (6) 5.3 输出电阻的测试 (7) 5.4频率响应的测试 (7) 5.4.1交流分析方法 (7) 5.4.2 波特图仪测试方法 (7) 6电压传输特性的测试方法 (8) 7上升时间的测试方法 (9) 8逻辑函数的转换与化简 (10) 8.1 逻辑函数转换为真值表 (10) 8.2 真值表转换为逻辑函数 (10) 9逻辑分析仪的使用方法 (11)

最详细最好的multisim仿真教程

最详细最好的multisim仿真教程第13章 Multisim模拟电路仿真 本章Multisim10电路仿真软件,讲解使用Multisim进行模拟电路仿真的基本方法。目录 1. Multisim软件入门 2. 二极管电路 3. 基本放大电路 4. 差分放大电路 5. 负反馈放大电路 6. 集成运放信号运算和处理电路 7. 互补对称(OCL)功率放大电路 8. 信号产生和转换电路 9. 可调式三端集成直流稳压电源电路 13.1 Multisim用户界面及基本操作 13.1.1 Multisim用户界面 在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。 Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。 IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。 IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、 Multisim7、 Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。 下面以Multisim10为例介绍其基本操作。图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。 图13.1-1 Multisim10用户界面 菜单栏与Windows应用程序相似,如图13.1-2所示。

multisim使用手册

Multisim使用手册 Multisim是一种EDA仿真工具,它为用户提供了丰富的元件库和功能齐全的各类虚拟仪器。 A1 Multisim 8 基本界面 启动Windows“开始”菜单“所有程序”中的Electronics Workbench/Multisim 8,打开Multisim 8的基本界面如图A1-1所示。 Multisim 8的基本界面主要由菜单栏、系统工具栏、快捷键栏、元件工具栏、仪表工具栏、连接https://www.sodocs.net/doc/c22997599.html,按钮、电路窗口、使用中的元件列表、仿真开关(Simulate)和状态栏等项组成。 图A1-1 Multisim 8的基本界面 A1.1 菜单栏 与所有Windows应用程序类似,菜单中提供了软件中几乎所有的功能命令。Multisim 8菜单栏包含着11个主菜单,如图A1-2所示,从左至右分别是File(文件菜单)、Edit(编辑菜单)、View(窗口显示菜单)、Place(放置菜单)、Simulate(仿真菜单)、Transfer(文件输出菜单)、Tools(工具菜单)、Reports(报告菜单)、Options(选项菜单)、Window(窗口菜单)和Help(帮助菜单)等。在每个主菜单下都有一个下拉菜单。

A1-2 菜单栏 1.File(文件)菜单 主要用于管理所创建的电路文件,如打开、保存和打印等,如图A1-3所示。 图A1-3 File菜单 New:提供一个空白窗口以建立一个新文件。 Open:打开一个已存在的*.ms8、*.ms7、*.msm、*.ewb或*.utsch等格式的文件。 Close:关闭当前工作区内的文件。 Save:将工作区内的文件以*.ms8的格式存盘。 Save As:将工作区内的文件换名存盘,仍为*.ms8格式。 Print..:打印当前工作区内的电路原理图。 Print Preview:打印预览。 Print Options:打印选项,其中包括Printer Setup(打印机设置)、Print Circuit Setup(打印电路设置)、Print Instruments(打印当前工作区内的仪表波形图)。 Recent Circuits:最近几次打开过的文件,可选其中一个打开。 New Project、Open Project、Save Project和Recent Projects命令是指对某些专题文件进行的处理,仅在专业版中出现,教育版中无功能。 2.Edit(编辑)菜单 主要用于在电路绘制过程中,对电路和元件进行各种技术性处理,如图A1-4所示。

模电multisim仿真设计

模拟电子技术基础课程设计说明书题目: Multisim仿真应用 学生:明 学号:1 院(系):理学院 专业:应用物理学 指导教师:冠强

2014 年 6 月 10日

目录 第0节背景 (1) 第1节Multisim应用举例——二极管的特性的研究 (1) 第2节 Multisim应用举例——Rb变化对Q点和电压放大倍数的影响 (2) 第3节 Multisim应用举例——直接耦合多级放大电路的调试 (4) 第4节 Multisim应用举例——消除互补输出级交越失真方法的研究 (6) 第5节 Multisim应用举例——静态工作点稳定电路频率影响的研究 (8) 第6节 Multisim应用举例——交流负反馈对放大倍数稳定性的影响 (10) 设计体会及今后改进意见 (12) 参考文献 (12)

第0节背景 Multisim是一个完整的设计工具系统,提供了一个非常大的元件数据库,并提供原理图输入接口、全部的数模Spice仿真功能、VHDL设计接口与仿真功能、 FPGA/CPLD综合、RF设计能力和后处理功能还可以进行从原理图到PCB布线工具包(如:Ultiboard)的无缝隙数据传输。 随着计算机的飞速发展,以计算机辅助设计为基础的电子设计自动化技术(EDA)已经成为电子学领 域的重要学科。EDA工具使电子电路和电子系统的设计产生了革命性的变化,它摒弃了靠硬件调试 来大道设计目标的繁琐过程,实现了硬件设计软件化。 Multisim具有齐全的元器件模型参数库和比较齐全的仪器仪表库,可模拟实验室的操作进行 各种实验。学习Multisim可以提高仿真能力、综合能力和设计能力,还可进一步提高实践能力。 第1节Multisim应用举例——二极管的特性的研究 1.1 题目 研究二极管对直流量和交流量表现的不同特点。 1.2 仿真电路 仿真电路如图1-1所示。因为只有在低频小信号下二极管才能等效成一个电阻所以图流信号的频率为1kHz、数值为10mV(有效值)。由于交流信号很小,输出电压不失真故可以认为直流电压表(测平均值)的读书是电阻上直流电压值。

基于Multisim的数字时钟的设计及仿真方案说明书

数字时钟具有“秒”、“分”、“时”的十进制数字显示,能够随时校正分钟和小时,当时钟到整点时能够进行整点报时,还能够进行定时设置。其涉及的电路由6部分组成。(1)能产生“秒脉冲”、“分脉冲”和“时脉冲”的脉冲产生和分频电路;(2)对“秒脉冲”、“分脉冲”和“时脉冲”计数的计数电路;(3)时间显示电路;(4)校时电路;(5)报时电路;(6)定时输入电路和时间比较电路。由脉冲发生器产生信号通过分频电路分别产生小时计数、分计数、秒计数。当秒计数满60后,分钟加1;当分满60后,时加1;当时计数器计满24时后,又开始下一个循环技术。同时,可以根据需要随时进行校时。把定时信号和显示信号通过比较电路确定能否产生定时报警信号。显示信号通过整点译码电路产生整点报警信号。 数字时钟设计与开发以及仿真分析: 系统具有“时”、“分”、“秒”的十进制数字显示,因此,应有计数电路分别对“秒脉冲”、“分脉冲”和“时脉冲”计数;同时应有时间显示电路,显示当前时间;还应有脉冲产生和分频电路,产生“秒脉冲”、“分脉冲”和“时脉冲”[5]。 系统具有校时功能,因此,应有校时电路,设定数字时钟的当前值。 系统具有整点报时功能,因此,应有译码电路将整点时间识别出来,同时应有报时电路。 系统具有定时功能,因此,应有定时输入电路和时间比较电路。 综上考虑,可如图2.1所示设计数字时钟的电路原理结构图。

图2.1 数字时钟的电路原理结构图 如图2.1所示,数字时钟电路有3个开关,它们的功能如下。 (1)S1:S1为瞬态开关,手动输入计数脉冲。 (2)S2:校时/定时/校时选择电路输入选择开关,当开关切换到上触点,为定时输入;当开关切换到中间触点,为校时输入;当开关切换到下触点,为校时选择电路输入。 (3)S3:为计时/校时选择开关,当开关切换到右边触点时,数字时钟为计时状态;当开关切换到左边触点时,数字时钟为校时状态。 左边两个计数器(小时计数、分计数)接收手动输入脉冲,为定时功能设定定时时间。 右边3个计数器(小时计数、分计数、秒计数)接收手动输入或计时脉冲,实现校时和计时功能。 比较电路是将设定的定时时间和当前的时间进行比较,当两者时间相同时,产生定时报警信号,驱动报警电路。 整点译码电路识别整点时间,以产生整点报时信号。 脉冲产生和分频电路产生数字时钟所需的秒脉冲、分脉冲和小时脉冲。 时间显示电路显示当前时间和定时时间。 4.2 数字时钟设计 4.2.1 小时计时电路 小时计时电路如图4.1所示。

Multisim14仿真设计流程

Multisim 14仿真设计流程 用一个案例(模拟小信号放大及数字计数电路)来演示 Multisim 仿真大体流程,这个案例来自Multisim 软件自带 Samples,Multsim 也有对应的入门文档(Getting Started)。只要用户安装了Multsim 软件,就会有这样的一个工程在软件里,这样就不需要再四处搜索案例来学习。 执行菜单【File】→【Open samples…】即可弹出“打开文件”对话框,从中找到“Getting Started” 下的“Getting Started Final”(Final 为最终完成的仿真文件)打开即可。 此案例的难度与复杂度都不高,因为过于复杂的电路会让 Multisim 仿真初学者精力过于分散,难以从宏观上把握 Multisim 电路仿真设计流程。在这个案例中,我们对于 Multisim 软件的使用操作(如调用元器件、连接元器件、编辑参数、运行仿真)都会做尽量详细的描述,以期达到尽快让新手熟悉 Multisim 目的,这也是为更简要阐述后续案例打基础。 本书在行文时描述的 Multisim 步骤操作,均使用菜单方式,事实上,大多数操作可以直接使用工具栏上的快捷按钮,读者可自行熟悉,执行的结果与菜单操作都是一致的 1 电路原理 我们将要完成的仿真电路如下图所示:

2 一切不以原理为基础的仿真都是耍流氓,所以这里我们简要阐述一下原理:以 U4-741 运算放大 器为核心构成的同相比例放大器,对来自 V1 的交流信号进行放大(其中,R4 为可调电阻,可对放大 倍数进行调整)。放大后的信号,一路送入示波器进行观测,另一路作为时钟脉冲信号送入 U2-74LS190N(可预置同步 BCD 十进制加减法计数器)进行计数,计数结果输出为十进制,经 U3-74LS47N(BCD-七段数码管译码器)译码后驱动七段数码管进行数字显示。另外 U2-74LS190N 配置为 加法器,同时将行波时钟输出第 13 脚(RCO)驱动发光二极管。 左下区域有两个单刀双掷开关进行计数控制,S1 接到 U2 的第 4 脚(CTEN)计数使能控制引脚,低有效,当 S1 切换到接地(GND)时,计数才开始,否则计数停止;S2 接到 U2 的第 11 脚(LOAD),也是低有效,当 S2 切换到接地(GND)时,就把预置数(ABCD)赋给(Q A Q B Q C Q D),这里电路配置的(ABCD)都是接地(GND),因此相当于 S2 开关为清零功能。 右上区域还有三个旁路电路,左侧的插座与仿真没有关系。 新建仿真文件 1、首先我们打开 Multsim 软件,如下图所示,默认有一个名为 Design1 的空白文件已经打开在 工作台(WorkSpace)中。

Multisim14电子电路仿真方法和样例

Multisim14电子电路仿真方法和样例 2019年9月

本手册基于Multisim14仿真环境,从最基本的仿真电路图的建立开始,结合实际的例子,对模拟和数字电路中常用的测试方法进行介绍。这些应用示例包括:常用半导体器件特性曲线的测试、放大电路静态工作点和动态参数的测试、电压传输特性的测试、波形上升时间的测试、逻辑函数的转换与化简、逻辑分析仪的使用方法等。 此外,本手册侧重于测试方法的介绍,仅对主要步骤进行说明,如碰到更细节的问题,可参阅《Multisim 14教学版使用说明书》或其它帮助文档。

1.MULTISIM14主界面简介 (4) 2.仿真电路图的建立 (4) 3.常用半导体器件特性曲线的测试方法 (5) 3.1晶体三极管特性曲线的测试 (5) 3.1.1 IV分析仪测试方法 (5) 3.1.2 直流扫描分析方法 (5) 3.2结型场效应管特性曲线的测试 (6) 3.2.1 IV分析仪测试方法 (6) 3.2.2 直流扫描分析方法 (7) 3.3二极管、稳压管伏安特性曲线的测试 (7) 4.放大电路静态工作点的测试方法 (7) 4.1虚拟仪器测试方法 (7) 4.2静态工作点分析方法 (8) 5.放大电路动态参数的测试方法 (8) 5.1电压放大倍数的测试 (8) 5.1.1瞬态分析测试方法 (8) 5.1.2 虚拟仪器测试方法 (9) 5.2输入电阻的测试 (9) 5.3输出电阻的测试 (10) 5.4频率响应的测试 (10) 5.4.1交流分析方法 (10) 5.4.2 波特图仪测试方法 (10) 6.电压传输特性的测试方法 (11) 7.上升时间的测试方法 (12) 8.逻辑函数的转换与化简 (13) 8.1逻辑函数转换为真值表 (13) 8.2真值表转换为逻辑函数 (13) 9.逻辑分析仪的使用方法 (14)

multisim 电路仿真 课程设计

4.1 仿真设计 1、用网孔法和节点法求解电路。 如图4.1-1所示电路: 3Ω (a)用网孔电流法计算电压u的理论值。 (b)利用multisim进行电路仿真,用虚拟仪表验证计算结果。(c)用节点电位法计算电流i的理论值。 (d)用虚拟仪表验证计算结果。 解: 电路图: (a) i1=2 解得 i1=2 5i2-31-i3=2 i2=1 i3=-3 i3=-3 u=2 v (b)如图所示: (c)列出方程 4/3 U1- U2=2 解得 U1=3 v U2=2 v 2A1Ω _ + 1Ω 2V - 3A 图4.1-1 i

2U 1- U 2=2 i=1 A 结果:计算结果与电路仿真结果一致。 结论分析:理论值与仿真软件的结果一致。 2、叠加定理和齐次定理的验证。 如图4.1-2所示电路: (a)使用叠加定理求解电压u 的理论值; (b)利用multisim 进行电路仿真,验证叠加定理。 (c)如果电路中的电压源扩大为原来的3倍,电流源扩大为原来的2倍,使用齐次定理,计算此时的电压u ; (d)利用multisim 对(c )进行电路仿真,验证齐次定理。 电路图: (a ) I 1=2 7 I 2-2 I 1- I 3=0 3 I 3- I 2-2 I 4=0 解得 U 1=7(V ) I 4=-3 U 1 U 1=2(I 1- I 2) 如图所示电压源单独作用时根据网孔法列方程得: 3 I 1-2 I 2- I 3= 4 I 2=-3 U 2 7 I 3 - I 1=0 解得 U 2=9(V ) U 2=4-2 I 3 所以 U= U 1+ U 2=16(V ) (b )如图所示。 2Ω 1Ω 2Ω 4Ω 2A 3u + 4V - + u - 图4.1-2

最全面的Multisim14仿真设计流程指南

1 第2章 Multisim 仿真流程 本节我们用一个案例(模拟小信号放大及数字计数电路)来演示Multisim 仿真大体流程,这个案例来自Multisim 软件自带Samples ,Multsim 也有对应的入门文档(Getting Started ),只要用户安装了Multsim 软件,就会有这样的一个工程在软件里,这样就不需要再四处搜索案例来学习。 执行菜单【File 】→【Open samples…】即可弹出“打开文件”对话框,从中找到“Getting Started ”下的“Getting Started Final ”(Final 为最终完成的仿真文件)打开即可 此案例的难度与复杂度都不高,因为过于复杂的电路会让Multisim 仿真初学者精力过于分散,难以从宏观上把握Multisim 电路仿真设计流程。在这个案例中,我们对于Multisim 软件的使用操作(如调用元器件、连接元器件、编辑参数、运行仿真)都会做尽量详细的描述,以期达到尽快让新手熟悉Multisim 目的,这也是为更简要阐述后续案例打基础。 本书在行文时描述的Multisim 步骤操作,均使用菜单方式,事实上,大多数操作可以直接使用工具栏上的快捷按钮,读者可自行熟悉,执行的结果与菜单操作都是一致的 2.1 电路原理 我们将要完成的仿真电路如下图所示:

2 一切不以原理为基础的仿真都是耍流氓,所以这里我们简要阐述一下原理:以U4-741运算放大器 为核心构成的同相比例放大器,对来自V1的交流信号进行放大(其中,R4为可调电阻,可对放大倍数 进行调整)。放大后的信号,一路送入示波器进行观测,另一路作为时钟脉冲信号送入U2-74LS190N(可 预置同步BCD十进制加减法计数器)进行计数,计数结果输出为十进制,经U3-74LS47N(BCD-七段 数码管译码器)译码后驱动七段数码管进行数字显示。另外U2-74LS190N配置为加法器,同时将行波时 钟输出第13脚(RCO)驱动发光二极管。 左下区域有两个单刀双掷开关进行计数控制,S1接到U2的第4脚(CTEN)计数使能控制引脚, 低有效,当S1切换到接地(GND)时,计数才开始,否则计数停止;S2接到U2的第11脚(LOAD),也是低有效,当S2切换到接地(GND)时,就把预置数(ABCD)赋给(Q A Q B Q C Q D),这里电路配置 的(ABCD)都是接地(GND),因此相当于S2开关为清零功能。 右上区域还有三个旁路电路,左侧的插座与仿真没有关系。 2.1.1 新建仿真文件 1、首先我们打开Multsim软件,如下图所示,默认有一个名为Design1的空白文件已经打开在工作 台(WorkSpace)中。

multisim小常识

电子仿真软件MultiSIM使用方法及技巧 电子仿真软件MultiSIM最初由加拿大的IIT 公司推出,从Multisim2001开始 到后来的Multisim7和Multisim8止;Multisim9到目前的Multisim10版本, 已改由美国国家仪器公司(NI公司)所推出。Multisim版本每次升级,软件功能都有相应的提高,但它们的操作方法和电子电路虚拟仿真这一块内容几乎没有太大的变化。也就是说,读者只要掌握和学会了Multisim7软件的使用方法,其它的版本也就触类旁通了。软件更新快,读者也不一定要一味去赶时髦, 电子仿真软件MultiSIM最初由加拿大的IIT 公司推出,从Multisim2001开始 到后来的Multisim7和Multisim8止;Multisim9到目前的Multisim10版本, 已改由美国国家仪器公司(NI公司)所推出。Multisim版本每次升级,软件功能都有相应的提高,但它们的操作方法和电子电路虚拟仿真这一块内容几乎没有太大的变化。也就是说,读者只要掌握和学会了Multisim7软件的使用方法,其它的版本也就触类旁通了。软件更新快,读者也不一定要一味去赶时髦,这要看你用软件做什么内容来决定,如果是初学者和一般电子电路虚拟仿真,学会和掌握Multisim7软件的使用方法已足够。一是上手快,二是获得软件容易。 当然,读者要进一步提高,要学LabVIEW技术,要学单片机仿真,要学UltiBoard 制版,那当然需要安装Multisim9或Multisim10版本了,但目前介绍这方面的专业书籍资料不太多,且新版本软件刚推出时不易得到、存在不够稳定等缺点;再说LabVIEW技术也不像电子电路仿真那样容易学会,它是属于构建虚拟仪器技术范畴;至于单片机仿真,软件目前只适用汇编语言,不能用C语言编程;且模块也仅有8051和8052两种,单片机仿真技术方面还不是太理想,有待于版本进一步升级和提高。 电子仿真软件MultiSIM的元件库中虽然收集了大量的常用电子元件,供读者调用搭建电路进行虚拟仿真,但有些读者有时用到的电子元件,MultiSIM的元件 库中没有怎么办?下面就这个话题谈谈自己的一些处理方法,或许对读者有一些启发。 一、没有“热释电人体红外传感器”怎么办? “热释电人体红外传感器”是一种新产品,电子仿真软件MultiSIM的元件库中没有。我们知道“热释电人体红外传感器”是一种能接收人体发出的微弱红外线,然后将它转换成微弱电信号的一种器件。既然我们知道了它的工作机理,很简单,我们可以用一个开关来代替它。将开关和电源连在一起,开关打开时表示电路没有接收到信号;开关闭合一下随即打开,表示电路已接收到人体走动的红外线信号,并已转换成电信号被接收,电路会动作,或控制的节能灯亮了,或控制的继电器闭合了等。图一是“热释电人体红外感应节能灯”的虚拟仿真电路,读者可以去试一下,开关J1闭合一下随即打开,看红色指示灯是否会亮一段时间,然后自动熄灭。在实际电路中,电路是控制交流灯泡的,这里采取了用红色指示灯来代替的变通方法,一般来说只要虚拟仿真成功了,做成实物也就没有大问题了(注:图中电阻R19是为了仿真时红色指示灯发光稳定添加的,实际电路可以不用;图一是在Multisim10软件下做的仿真,读者完全可以在Multisim7或“汉化特殊版Multisim8.3.30”软件下实现)。

multisim 使用指导

Multi sim 原理图输入,仿真与可编程逻辑 入门指导

前言 祝贺您选择了Multisim。我们有信心将数年来增加的超级设计 功能交付给您。Electronics Worbench是世界领先的电路设计 工具供应商,我们的用户比其它任何的EDA开发商的用户都多。 所以我们相信,您将对Multisim以及您可能选择的任何其它 的Electronics Workbench产品所带来的价值感到满意。 文件惯例 当涉及到工具按钮时,相应的工具按钮出现在文字的左边。 虽然multisim的电路显示模式是彩色的,但本手册中以黑白 模式显示电路。(您可以将此定制成您喜好的设置) 当您看到这样的图标时,所描述的功能只有特定的版本才有。 用户可以购买相应的附加模块。 Multisim 用Menu/Item表示菜单命令。例如,File/Open表示 在File菜单中选择Open命令。 本手册用箭头( )表示程序信息。 Multisim文件系列 Multisim文件包括“Multisim入门指导”、“User Guide”和 在线帮助。所有的用户都会收到这两本手册的PDF版本。用户 还会收到所购买Multisim版本的印刷版手册。 入门指导 “入门指导”向您介绍Multisim界面,并指导您学习电路设 计(circuit)、仿真(similation)、分析(analysis)和报

告(reporting)。 User Guide “User Guide”详细介绍了Multisim的各项功能,它是基于 电路设计层次进行组织的,详细地描述了Multisim的各个方 面。 在线帮助 Multisim提供在线帮助文件系统以支持您使用,选择 Help/Multisim Manua l可显示详细描述Multisim程序的文件,或者选择Help/Multisim Help显示包含参考资料(来自于印 刷版的附录)的帮助文件,比如对Multisim所提供元器件的 详细介绍。所有的帮助文件窗口都是标准窗口,并提供内容列 表与索引。 Adobe PDF文件 Multisim光盘中提供“Getting Start and Tutorial”和“User Guide”的PDF文件,并且可从Windows的Start菜单进入。 目录 第一章导论

相关主题