搜档网
当前位置:搜档网 › 近世代数第四章-环与域题解讲解

近世代数第四章-环与域题解讲解

近世代数第四章-环与域题解讲解
近世代数第四章-环与域题解讲解

近世代数第四章 环与域题解讲解

第四章环与域 §1 环的定义 一、主要内容 1.环与子环的定义和例子。在例子中,持别重要的是效域上的多项式环、n阶全阵环和线性变换环,以及集M的幂集环. 2.环中元素的运算规则和环的非空子集S作成子环的充要条件: 二、释疑解难 1.设R是一个关于 代数运算十,·作成的环.应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,·)(或者就直接说“R对十,·作成一个环”).但不能记为R,·,十).因为这涉及对两个代数运算所要求满足条件的不同.我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为 ,⊕,又R对 作成一个交换群,对⊕满足结合律且⊕对 满足左、右分配律,即 就是说,在环的定义里要留意两个代数运算的顺序. 2.设R对二代数运算十,·作成一个环.那么,R对“十”作成一个加群,这个加群记为(R,十);又R对“·”作成一个半群,这个乍群记为(R,·).再用左、右分配律把二者联系起来就得环(R,十.·).

1. 2.

3. 4. 5.

6. 7. 8.证明:循环环必是交换环,并且其子环也是循环环. §4.2 环的零因子和特征 一、主要内容 1.环的左、右零因子和特征的定义与例子. 2.若环R 无零因子且阶大于1,则R 中所有非零元素对加法有相同的阶.而且这个相同的阶不是无限就是一个素数. 这就是说,阶大于l 且无零因子的环的特征不是无限就是一个素数. 有单位元的环的特征就是单位元在加群中的阶. 3.整环(无零因子的交换环)的定义和例子. 二、释疑解难 1.由教材关于零因子定义直接可知,如果环有左零因子,则R 也必然有右零因子.反之亦然. 但是应注意,环中一个元素如果是一个左零因子,则它不一定是一个右零因子.例如,教材例l 中的元素??? ? ??0001就是一个例子.反之,一个右零因子也不一定是一个左零因子.例如,设置为由一切方阵 ),(00Q y x y x ∈???? ? ??

抽象代数 孟道骥版 习题解答 第四章

Chapter4 4.1 ? 1. G 4. G 4 Klein K4 . ? ?4 S4 . . (i)G 4 ? G 4 . (ii)G 4 ? ?a∈G,a2=e.? ?a,b∈G,(ab)2= e,, ab=(ab)?1=b?1a?1=ba, G Abel ? G~=K4. 2. G 6. G 6 S3 . G с 3 ? ? 2 ? с Abel ? a=b∈G, a=e,b=e, a,b 4 ? . G с 2 ? ? 3 ? |G| ? . G 2 a, 3 b. 1):a,b ? ab 6 ?? G= ab 6 . 2):a,b? ? G 6 . G k 3 ?j 2 ? 2k+j+1=6, (k,j)=(2,1) (1,3). k=2, G 3 {x,x?1,y,y?1}. xy? 3 ? xy 2 ? yx ? xy=yx, x,y 9 ? . (k,j)=(1,3). ? G S6 ? ?,? ?(b)= (1,2,3), ?(a)=σ. G 3 ? σ(1,2,3)σ?1= (σ(1),σ(2),σ(3)), {σ(1),σ(2),σ(3)}={1,2,3}. σ (1,2,3)? ? ? σ(1)=1,σ(2)=2,σ(3)=3,? σ(1)=1,σ(2)= 3,σ(3)=2. α= 456 σ(4)σ(5)σ(6) σ=(2,3)α, σ2=e, α2=e. σ,(1,2,3) ={(1,2,3),(1,3,2),e,(2,3)α,(1,2)α,(3,1)α} S3 64

65 G ~=S 3. 3. G r =st ?H G t . H ={g s |g ∈G }={h ∈G |h =e }. G = g 0 , {g s |g ∈G }={g s 0,g 2s 0,···,g ts 0},{h ∈G |h t =e }={g s 0,g 2s 0,···,g ts 0}, {g s 0,g 2s 0,···,g ts 0} G t ? G t . G ={g s |g ∈G }={h ∈G |h t =e } 4. G ?a,b ∈G.?[a,b ]=aba ?1b ?1 a,b . {aba ?1b ?1|a,b ∈G } ? G (1)? G . :1) α∈Aut G , α(G (1))=G (1);2) H G. G/H Abel ? H ?G (1). 1)α(G (1))=α( {aba ?1b ?1|a,b ∈G } )= {σ(a )σ(b )σ(a )?1σ(b )?1|a,b ∈G } =G (1).2)G/H Abel ?(G/H )(1)={e }?G (1)?H . 5. S G ? ? ?,ψ G H ? ?(x )=ψ(x ),?x ∈S. ?=ψ. ?a ∈G , G = S , a =y 1y 2···y n , y i ∈S y ?1i ∈S . ?(x )=ψ(x ),?x ∈S , ?(x ?1)=ψ(x ?1),?x ∈S ,? ?(y i )=ψ(y i ),?1≤i ≤n , ?(a )=ψ(a ), ?=ψ. 6. H G ? H =G . G = G ?H . H =G ?a ∈G , GH , aH ∩H =?, aH ?H , G ?H ?H ∪(G ?H )=G , G = G ?H . 7. G ? G с 2 . G k m ?m >1?? m k?(m ) ? ? . m ? ?(m ) ? ? . |G | ? с ?? ? 2 . 8. α∈S 3 ? . α= 1234567836548271 α= 1234567836548271 =(1358)(26).

近世代数第二章答案分解

近世代数第二章群论答案 §1.群的定义 1.全体整数的集合对于普通减法来说是不是一个群? 解:不是,因为普通减法不是适合结合律。 例如 () 321110 --=-= --=-=() 321312 ()() --≠-- 321321 2.举一个有两个元的群的例。 解:令G=,e a {},G的乘法由下表给出 首先,容易验证,这个代数运算满足结合律 (1) ()(),, = ∈ x y z x y z x y z G 因为,由于ea ae a ==,若是元素e在(1)中出现,那么(1)成立。(参考第一章,§4,习题3。)若是e不在(1)中出现,那么有 ()aa a ea a == a aa ae a ==() 而(1)仍成立。 其次,G有左单位元,就是e;e有左逆元,就是e,a有左逆元,就是a。所以G是一个群。 读者可以考虑一下,以上运算表是如何作出的。 3.证明,我们也可以用条件Ⅰ,Ⅱ以及下面的条件IV',V'来做群的

定义: IV ' G 里至少存在一个右逆元1a -,能让 =ae a 对于G 的任何元a 都成立; V ' 对于G 的每一个元a ,在G 里至少存在一个右逆元1a -,能让 1=aa e - 解:这个题的证法完全平行于本节中关于可以用条件I,II,IV,V 来做群定义的证明,但读者一定要自己写一下。 §2. 单位元、逆元、消去律 1. 若群G 的每一个元都适合方程2=x e ,那么G 是交换群。 解:令a 和b 是G 的任意两个元。由题设 ()()()2 ==ab ab ab e 另一方面 ()()22====ab ba ab a aea a e 于是有()()()()=ab ab ab ba 。利用消去律,得 =ab ba 所以G 是交换群。 2. 在一个有限群里,阶大于2的元的个数一定是偶数。 解:令G 是一个有限群。设G 有元a 而a 的阶>2n 。 考察1a -。我们有 ()1=n n a a e - ()()11==n n e a a e -- 设正整数

近世代数知识点教学文稿

近世代数知识点

近世代数知识点 第一章基本概念 1.1集合 ●A的全体子集所组成的集合称为A的幂集,记作2A. 1.2映射 ●证明映射: ●单射:元不同,像不同;或者像相同,元相同。 ●满射:像集合中每个元素都有原像。 Remark:映射满足结合律! 1.3卡氏积与代数运算 ●{(a,b)∣a∈A,b∈B }此集合称为卡氏积,其中(a,b)为有序元素对,所以一般 A*B不等于B*A. ●集合到自身的代数运算称为此集合上的代数运算。 1.4等价关系与集合的分类 ★等价关系:1 自反性:?a∈A,a a; 2 对称性:?a,b∈R, a b=>b a∈R; 3 传递性:?a,b,c∈R,a b,b c =>a c∈R. Remark:对称+传递≠自反 ★一个等价关系决定一个分类,反之,一个分类决定一个等价关系 ★不同的等价类互不相交,一般等价类用[a]表示。 第二章群 2.1 半群 1.半群=代数运算+结合律,记作(S,) Remark: i.证明代数运算:任意选取集合中的两个元素,让两元素间做此运算,观察运算后的结果是否还在定义的集合中。 ii.若半群中的元素可交换,即a b=b a,则称为交换半群。 2.单位元 i.半群中左右单位元不一定都存在,即使存在也可能不唯一,甚至可能都 不存在;若都存在,则左单位元=右单位元=单位元。 ii.单位元具有唯一性,且在交换半群中:左单位元=右单位元=单位元。 iii.在有单位元的半群中,规定a0=e. 3.逆元

i.在有单位元e的半群中,存在b,使得ab=ba=e,则a为可逆元。 ii.逆元具有唯一性,记作a-1且在交换半群中,左逆元=右逆元=可逆元。 iii.若一个元素a既有左逆元a1,又有右逆元a2,则a1=a2,且为a的逆元。 4.子半群 i.设S是半群,≠T S,若T对S的运算做成半群,则T为S的一个 子半群 ii.T是S的子半群a,b T,有ab T 2.2 群 1.群=半群+单位元+逆元=代数运算+结合律+单位元+逆元 Remark:i. 若代数运算满足交换律,则称为交换群或Abel群. ii. 加群=代数运算为加法+交换群 iii.单位根群Um={m=1},数域P上全体n阶可逆(满秩)矩 阵集合GL(n,P),数域P上全体n阶的行列式为1的矩阵集合 SL(n,p). 2. 群=代数运算+结合律+左(右)单位元+左(右)逆元 =代数运算+结合律+单位元+逆元 =代数运算+结合律+?a,b G,ax=b,ya=b有解 3. 群的性质 i. 群满足左右消去律 ii.设G是群,则?a,b G,ax=b,ya=b在G中有唯一解 iii.e是G单位元? e2=e iv.若G是有限半群,满足左右消去律,则G是一个群 4. 群的阶 群G的阶,即群G中的元素个数,用表示。若为无限群,则=。 Remark:i.克莱因四元群是一个Abel群 ii.四阶群只有克莱因四元群和模4的剩余类群 2.3元素的阶

近世代数第一章练习题

近世代数试题 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填 在题干的括号内。每小题3分,共15分) 1.设A=R(实数域),B=R+(正实数域) φ:a→10a?a∈A 则φ是从A到B的( )。 A.满射而非单射 B.单射而非满射 C.一一映射 D.既非单射也非满射 2.设A={所有实数x},A的代数运算是普通乘法,则以下映射作成A到A的一个子集A的同态满射的是( )。 A.x→10x B.x→2x C.x→|x| D.x→-x 3.设S3={(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S中与元(1 2 3)不能交换的元的个数是( )。 A.1 B.2 C.3 D.4 4.整数环Z中,可逆元的个数是( )。 A.1个 B.2个 C.4个 D.无限个 5.剩余类加群Z18的子群有( )。 A.3个 B.6个 C.9个 D.12个 二、填空题(每空3分,共27分) 1.设A是n元集,B是m元集,那么A到B的映射共有____________个. 2.n次对称群S n的阶是____________. 3.一个有限非可换群至少含有____________个元素. 4.设G是p阶群,(p是素数),则G的生成元有____________个. 5.除环的理想共有____________个. 6.剩余类环Z6的子环S={[0],[2],[4]},则S的单位元是____________. 7.设I是唯一分解环,则I[x]与唯一分解环的关系是____________. 8.在2, i+3, π2, e-3中,____________是有理数域Q上的代数元. 9.2+ 3在Q上的极小多项式是____________. 三、解答题(第1、2小题各12分,第3小题10分,共34分) 1.设G是6阶循环群,找出G的全部生成元,并找出G的所有子群. 2.求剩余类环Z6的所有子环,这些子环是不是Z6的理想? 3.设Z是整数环,则(2)∩(3)、(2,3)是Z的怎样一个理想?(2)∪(3)是Z的理想吗?为什么?

近世代数课后习题参考答案(张禾瑞)-1(新)

近世代数课后习题参考答案 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A = ,B B A ? , 及由B A ?得B B A ? ,故B B A = , 2 映射 1.A =}{ 100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不 只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c

b b c a a a a a c c a b b d a a c a a a 4 结合律 1.A ={所有不等于零的实数}. 是普通除法:b a b a = .这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律: 2 1 2)11(= , 2)21(1= ,从而 )21(12)11( ≠. 2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律 c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c . 3.A ={c b a ,,},由表 所给的代数运算适合不适合结合律? 解? 经过27个结合等式后可以得出所给的代数运算适合结合律. 5 交换律 1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律? 解? 一般地a b b a -≠- 除非b a =. 2.},,,{d c b a A =,由表 a b c d a a b c d b b d a c c c a b d d d c a b 所给出代数运算适合不适合交换律? a b c a a b c b b c a c c a b

(完整版)《实变函数》考试说明解读

《实变函数》考试说明 近世代数是广播电视大学数学专业(本科)的一门重要的专业基础课,本期近世代数期末考试内容是教材《实变函数》的内容。试题有填空题、证明题,试题的难易程度和教材《实变函数》的习题相当。希望同学们在期末复习时,做好教材《实变函数》中的每章的习题。 第一章集合 一提要 第一节集合及其运算。 第二节映射及其基数。 第三节可列集 第四节不可列集 二教学要求 1)理解集的概念,分清集的元与集的归属关系,集与集之间的包含关系的区别。 2)掌握集之间的交、差、余运算。 3)掌握集列的上、下限集的概念及其交并表示。 4)理解集列的收敛、单调集列的概念。 5)掌握――映射,两集合对等及集合基数等概念。 6)理解伯恩斯坦定理(不要求掌握证明),能利用定义及伯恩斯坦定理证明两集合对等。 7)理解可数集,不可数集的意义,掌握可数集、基数为C的集合的性质, 理解不存在最大基数的定理的意义。

第二章点集 一.提要 第一节聚点、内点、界点等概念 第二节开集、闭集、完备集。 第三节直线上的开集、闭集及完备集的构造。 第四节点集间的距离 第五节康托集及其性质 二.基本要求 1)明了n维欧氏空间中极限概念主要依赖于距离这个概念,从而了解邻域概念在极限理论中的作用。 2)理解聚点,孤立点、内点、外点、界点的意义,掌握有关性质。 3)理解开集、闭集、完备集的意义,掌握其性质。 4)理解直线上开集、闭集、完备集的构造。 5)理解康托集的构造、特性。 第三章勒贝格测度论 一.提要 第一节勒贝格外测度及其内测度。 第二节勒贝格可测集及其性质。 第三节勒贝格可测集的构造。

二.基本要求 1)理解测度的意义。 2)理解外测度的意义,掌握其有关性质。 3)理解可测集的定义,掌握可测集的性质。 4)了解并掌握不可测集的存在性这一结论。 第四章勒贝格可测函数 一.提要 第一节点集上和函数。 第二节勒贝格右测函数。 3)可测函数列的收敛性。 4)可测函数的构造。 二.基本要求 1)掌握可测函数的定义及等价定义。 2)掌握可测函数的有关性质。 3)理解简单函数的定义,掌握可测函数与简单函数的关系。 4)掌握可测函数列的收敛点集和发散点集的表示方法。 5)掌握叶果洛夫定理,鲁津定理。 6)理解依测度收敛的意义,掌握依测度收敛与a·e收敛的联系与区别。

近世代数1

第一章 §1.1集合 §1.2映射与变换 教学内容:集合,子集,集合相等的概念 集合关系及运算的定义和性质 映射,单射,满射,双射,逆映射的定义及例子 变换,置换等的定义及例子 映射的象及逆象的定义,映射的乘法 教学重点:集合的关系及运算,映射变换的定义,映射的乘法在很多课程中都学过有关集合的知识,一些基本的概念和结论不再重复,这里,只复习一下不太熟悉的知识,并在符号上做一个统一的规定。 1、用Z表示整集合,Z*表示非零整数集,用ψ表示有理数集,ψ*表示非零有理数数集等。 Z+ ,ψ+…R,C… 2、AB表示A是B的子集,A=B或AB AB表示A是B的真子集,即B中有不存在A的元素 AB表示A不是B的子集 AB表示A不是B的真子集 A=BAB且BA 3、如果集合A含有无穷多个元素,则记为=,如果A含有n个元素,则记为=n。(A的阶),有+=+ 4、称集合A-B={aaA, aB}为集合A与B的差集。易知有A-B=A 5、集合A有很多子集,将A的所有子集放在一起(包括空集)也组成一个集合,称为A的幂集,记作P(A)。=(=n) 映射是函数的推广,函数的定义中要求有两个数集,而映射中,是一般的集合 6、定义:设A,B是两个集合,如果有一个法则,他对于A中每个元素,在B中都有一个唯一确定的元素y与它对应,则称为从A到B的映射。这种关系常表示为 :AB 或:xy 或y=(x) xy 且称y为x在之下的像,称x为y在之下的原像或逆像。 由定义可知,映射必须满足三个条件: ①A中每个元素都有像,②A中元素的像是唯一的,③A中元素的像在B里。 例:P6例1-6

例1.不是映射,不满足①例2.不是映射,不满足②例3.不是映射,不满足③ 例4.是映射,不单不满例4.是映射,不单,满例6.是映射, 单不满 7、映射是函数概念的推广,是对应法则,A是定义域,B包含值域,根据B是否与值域相等,可将映射区分为是否是满射。A中不同元 素的像可能相同,也可能不同,据此可区分映射是否为单射。 定义:设为A到B的一个映射,如果B中每个元素在A中都有逆 像,则称为A到B的一个满射。如果A 中不同的元素在B中的像也不同,则称是从A到B的一个单射。如果既是满射又是单射,则称是从A到B的一个双射,或一一映射。 例:P7,例 4-8 例7,双射,例8,满射,不单。 8、设有映射:AB,A,B.用()表示中所有元素在之下的像的全体组成的集合,称为在之下的像,()B。用()表示中所有元素在之下的逆像全体组成的集合,称为在之下的逆像,()A。 易知:是满射(A)=B. 9、设:AB是双射,(思考,为什么?),则:BA 也是一个映射,且为双射(为什么?), xy=(x) yx 称为的逆映射。 注意:双射才有逆映射。 定理:设A,B是两个有限集合,且=,是A到B的一个映射,则是单射是满射是双射 证明:略。 10、设б与都是A到B的映射,如果xA,都有б(x)=(x),则称б与相等,记作б= 11、设:AB б:C 则AC x(x) y(y), x(x)((x)) 是一个A到C的映射,记为,即:AC 并称为与的合成或乘积。 x((x)) 12、集合A 到自身的映射,叫做集合A的一个变换,类似可定义单变换,满变换,双射变换(一一变换)等。 将集合A每个元素映为自身的变换,称为A的恒等变换,:AB 它是一个一一变换。 xx,

近世代数习题第二章

第二章 群论 近世代数习题第二章 第一组 1-13题;第二组 14-26题;第三组 27-39题;第四组 40-52 题,最后提交时间为11月25日 1、设G 是整数集,则G 对运算 4++=b a b a 是否构成群? 2、设G 是正整数集,则G 对运算 b a b a = 是否构成群? 3、证明:正整数对于普通乘法构成幺半群. 4、证明:正整数对于普通加法构成半群,不含有左右单位元. 5、G 是整数集,则G 对运算 1=b a 是否构成群? 6、设b a ,是群G 中任意两元素. 证明:在G 中存在唯一元素x ,使得b axba =. 7、设u 是群G 中任意取定的元素,证明:G 对新运算aub b a = 也作成群. 8、证:在正有理数乘群中,除1外,其余元素阶数都是无限. 9、证:在非零有理数乘群中,1的阶是1,-1的是2,其余元素阶数都是无限. 10、设群G 中元素a 阶数是n ,则 m n e a m |?=. 11、设群G 中元素a 阶数是n ,则 ) ,(||n m n a m =.,其中k 为任意整数. 设(m,n )=d,m=dk,n=dl,(k,l)=1. 则(a^m)^l=a^(ml)=a^(kdl)=(a^(n))^k=e. 设(a^m )^s=e,,即a^(ms)=e,所以n|ms,则l|ks,又因为(l,k)=1,所以l|s,即a^m 的阶数为l. 12、证明:在一个有限群中,阶数大于2的元素个数一定是偶数. 13、设G 为群,且n G 2||=,则G 中阶数等于2的一定是奇数. 14、证明:如果群G 中每个元素都满足e x =2 ,则G 是交换群. 对每个x ,从x^2=e 可得x=x^(-1),对于G 中任一元x ,y ,由于(xy )^2=e ,所以xy=(xy )^(-1)=y^(-1)*x(-1)=yx. 或者 :(ab)(ba)=a(bb)a=aea=aa=e ,故(ab)的逆为ba ,又(ab)(ab)=e ,这是因为ab 看成G 中元素,元素的平方等于e. 由逆元的唯一性,知道ab=ba 15、证明:n 阶群中元素阶数都不大于n . 16、证明:p 阶群中有1-p 个p 阶元素,p 为素数. 17、设群G 中元素a 阶数是n ,则 )(|t s n a a t s -?=. 18、群G 的任意子群交仍是子群.

最新近世代数复习提纲

近世代数复习提纲 群论部分 一、基本概念 1、群的定义(四个等价定义) 2、基本性质 (1)单位元的唯一性; (2)逆元的唯一性; (3)11111(),()ab b a a a -----==; (4)ab ac b c =?=; (5)1ax b x a b -=?=;1ya b y ba -=?=。 3、元素的阶 使m a e =成立的最小正整数m 叫做元素a 的阶,记作||a m =;若这样的正整数不存在,则称a 的阶是无限的,记作||a =∞。 (1)11|,||||()|||a g ag g G a a --=?∈=。 (2)若m a e =,则 ①||a m ≤; ②||a m =?由n a e =可得|m n 。 (3)当群G 是有限群时,a G ?∈,有||a <∞且||||a G 。 (4)||||r n a n a d =?= ,其中(,)d r n =。 证明 设|||r a k =。因为()()n r r n d d a a e ==,所以n k d 。 另一方面,因为()r k rk a a e ==,所以n rk ,从而 n r k d d ,又(,)1r n d d =,所以 n k d ,故n k d =。

注:1? ||||||ab a b ≠,但若ab ba =,且(||,||)1a b =,则有||||||ab a b =(P70.3)。 2? ||,||G a G a <∞??∈<∞;但,||||a G a G ?∈<∞?<∞/。 例1 令{|,1}n G a C n Z a =∈?∈?=,则G 关于普通乘法作成群。显然,1是G 的单位元,所以a G ?∈,有||a <∞,但||G =∞。 二、群的几种基本类型 1、有限群:元素个数(即阶)有限的群,叫做有限群。 2、无限群:元素个数(即阶)无限的群,叫做无限群。 3、变换群:集合A 上若干一一变换关于变换乘法作成的群,叫做集合A 上的变换群。 (1)变换群的单位元是A 的恒等变换。 (2)A 的所有一一变换的集合关于变换的乘法作成A 上最大的变换群。 (3)一般地,变换群不是交换群。 (4)任一个群都与一个变换群同构。 4、置换群:有限集合A 上的一一变换叫做置换,若干置换作成的变换群叫做置换群。即有限集合上的变换群叫做置换群。 例2 设(123),(13)(24)αβ==是5S 中元素,求αβ。 解 12345123451234512345(123)(13)(24)(142)23145321451432541325αβ????????==== ????? ????????? (1)n 元集合A 的所有置换作成的置换群,叫做n 次对称群,记作n S 。 (2)||!n S n =。 (3)每个n 元置换都可表示为若干个没有公共数字的循环置换的乘积。 (4)11221()()k k i i i i i i -=L L 。 (5)任一有限群都与一个置换群同构。 5、循环群:若群G 中存在元素a ,使得(){|}n G a a n Z ==∈,则称G 是循环群。 (1)循环群是交换群(P61.1)。 (2)素数阶群是循环群(P70.1)。

近世代数习题解答

近世代数习题解答 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A = ,B B A ? , 及由B A ?得B B A ? ,故B B A = , 2 映射 1.A =}{100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不 只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c b b c a a a a a

c c a b b d a a c a a a 4 结合律 1.A ={所有不等于零的实数}. 是普通除法:b a b a = .这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律: 2 1 2)11(= , 2)21(1= ,从而 )21(12)11( ≠. 2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律 c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c . 3.A ={c b a ,,},由表 所给的代数运算适合不适合结合律? 解? 经过27个结合等式后可以得出所给的代数运算适合结合律. 5 交换律 1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律? 解? 一般地a b b a -≠- 除非b a =. 2.},,,{d c b a A =,由表 a b c d a a b c d b b d a c c c a b d d d c a b 所给出代数运算适合不适合交换律? 解? d d c = , a c d = a b c a a b c b b c a c c a b

高等代数第四章整环里的因子分解

第四章整环里的因子分解 §1、素元、唯一分解 一、整除、单位、相伴元 定义在整环I中,若a=bc,则称a能被b整除,也说b整除a,记为b|a。b不能整除a记作b|a。 定义整环I的一个元ε叫做I的一个单位,假如ε是一个有逆元的元。元b叫做元a的相伴元(a与b相伴),假若b是a 和一个单位ε的乘积:b=εa。 单位元必是单位,反之不然。 例1在整数环Z中,单位即是1和-1,b是a的相伴元?b=±a。在数域F的多项式环F[x]中,单位即是零次多项式c∈F*,g(x)是f(x)的相伴元?g(x)=cf(x)。

定理1 两个单位ε1和ε2的乘积ε1ε2也是单位。单位ε的逆元ε-1也是一个单位。 推论整环I中全体单位的集U关于乘法作成群。 二、素元 定义单位以及元a的相伴元叫做a平凡因子。其余的a的因子,假如还有的话,叫做a的真因子。 定义整环I的一个元p叫做一个素元(注:应是不可约元),假如p0 ≠,p不是单位,并且p只有平凡因子。 例2 在例1的Z中,素元就是素数。在F[x]中,素元就是不可约多项式。 定理2 单位ε同素元p的乘积εp也是一个素元。 定理3整环I的一个非零元a有真因子?a=bc,b和c都不是单位。

推论假定a≠0,并且a有真因子b:a=bc。那么c也是a的真因子。 三、唯一分解 定义一个整环I的一个元a说是在I 里有唯一分解,假如以下条件能被满足:(i)a=p1p2…p r(p i是I的素元) (ii)若同时 a=q1q2…q s(q i是I的素元) 那么r=s 并且我们可以把q i的次序掉换一下,使得 q i=εi p i (εi是 I的单位) 零元和单位都不能唯一分解。 例3 在整环I={}Z +, 3中: a∈ - b a b (1)ε是单位1 = ?。 ? ε = 1 ε2± (2)若4 α2=,则α是素元。 (3)4∈I有两种不同的分解(不相伴分解): ()()3 + - = - ? = 1 1 3 2 2 4-

近世代数知识点

近世代数知识点 第一章基本概念 1.1 集合 A 的全体子集所组成的集合称为A 的幂集,记作2 A. 1.2 映射 证明映射: 单射:元不同,像不同;或者像相同,元相同。 满射:像集合中每个元素都有原像。 Remark :映射满足结合律! 1.3 卡氏积与代数运算 { (a,b ) la €A,b €B }此集合称为卡氏积,其中(a,b )为有序元素对,所以一般A*B不等于B*A. 集合到自身的代数运算称为此集合上的代数运算。 1.4 等价关系与集合的分类 ★等价关系:1 自反性:? a€A,a~a; 2 对称性:? a,b€R, a~b=>b ~a€R; 3 传递性:? a,b,c€R,a~b,b ~c =>a ~c€R. Remark :对称+传递工自反 ★一个等价关系决定一个分类,反之,一个分类决定一个等价关系 ★不同的等价类互不相交,一般等价类用[a] 表示。

第二章群 2.1 半群 1. 半群=代数运算 +结合律,记作( S,°) Remark: i. 证明代数运算:任意选取集合中的两个元素,让两元素间做此运算,观察运算后的结果是否还在定义的集合中。 ii. 若半群中的元素可交换,即 a°b=b °a, 则称为交换半群。 2. 单位元 i. 半群中左右单位元不一定都存在,即使存在也可能不唯一,甚至可能都不 存在;若都存在,则左单位元 =右单位元 =单位元。 ii. 单位元具有唯一性,且在交换半群中:左单位元= 右单位元 = 单位元。 iii. 在有单位元的半群中,规定 a0=e. 3. 逆元 i. 在有单位元 e 的半群中,存在 b, 使得 ab=ba=e, 则 a 为可逆元。 ii. 逆元具有唯一性,记作 a-1且在交换半群中,左逆元=右逆元= 可逆元。 iii. 若一个元素a既有左逆元al,又有右逆元a2,则a1=a2,且为a的逆元。 4. 子半群 i. 设S是半群,? T?S若T对S的运算做成半群,贝U T为S的一个 子半群

近世代数习题解答张禾瑞二章

近世代数习题解答 第二章群论 1群论 1. 全体整数的集合对于普通减法来说是不是一个群? 证不是一个群,因为不适合结合律. 2. 举一个有两个元的群的例子. 证G={1,-1}对于普通乘法来说是一个群. 3. 证明,我们也可以用条件1,2以及下面的条件 4,5'来作群的定义: 4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立 5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa e A_1 证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e 因为由4 G有元a能使a'a =e 1 1 1 ' 所以(a a)e = (a a)(a a ) 即a a = e (2)一个右恒等元e 一定也是一个左恒等元,意即 由ae = a 得ea = a 即ea = a 这样就得到群的第二定义. (3)证ax二b可解 取x = a 这就得到群的第一定义. 反过来有群的定义得到4,5'是不困难的. 2单位元,逆元,消去律 1. 若群G的每一个元都适合方程x2二e,那么G就是交换群. 证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba . 2. 在一个有限群里阶大于2的元的个数是偶数. _1 n —1 n n —1 —1 证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e 若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ ? a m=e 这与a的阶是n矛盾「a的阶等于a °的阶 _4 _4 2 (2) a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾 (3) a b 贝U a「b' 斗

近世代数第一章基本概念自测练习答案

自测练习参考答案 一、判断题 1.(× ) 2. (√ ) 3.(× )解释:同时还要适合结合律 4. (√ ) 5. (√ ) 6. (√ ) 7.(× ): 二、选择题 1. (D ) 2. (D ) 3. (C ) 4. (B )解释:和第9节课后习题1完全类似,但也是大家作业中出现问题最多的一道题。详细答案如下:(按解答题格式写) 解:首先,A 的一一变换有3!=6个,具体为 :,,?→→→1112233 :,,?→→→2122331 :,,?→→→3133221 :,,?→→→4122133 :,,?→→→5112332 :,,?→→→6132231 其次,如果是的自同构,则必保持运算即.A ??,,()()(),x y A x y x y ???∈= 也即(这是是自同构的必要条件) ().??=11.可见,只有和??15满足此条件. 说明和??15可能为的自同构.A 经验证,和的确是的自同构.A ??15 5. (C ) 三、简答题 1.105,84,63;42;21:1→→→→→Φ 105,84,63,42,01:2→→→→→Φ则1Φ,2Φ是X 到Y 的两个单射。

2. A a a a a a a ∈→Φ212121,},,min{),(:,就是一个A A ?到A 的一个满射。 3. 设Z 为整数集,2Z 为偶数集,x x 2:1→Φ, )1(2:2+→Φx x ,其中Z x ∈,则1Φ,2Φ就是Z 到2Z 的两个不同的映射。 4. (1) ()2,f x x x Z =?∈;(2),2(),21k x k f x k x k =?=?=+? (3) ()1,f x x x Z =+?∈ 5. 解:1R 不是等价关系,因为1),(R c c ?,即不具有反身性,尽管具有对称性、传递性; 2R 是等价关系,因为具有反身性、对称性、传递性; 3R 不是等价关系,因为3),(R c a ?,即不具有传递性,尽管具有反身性、对称性; 4R 不是等价关系,因为4),(R b c ?,即不具有对称性,尽管具有反身性、传递性.

近世代数习题解答(张禾瑞)四章

近世代数习题解答 第四章 整环里的因子分解 1 素元、唯一分解 1. 证明:0不是任何元的真因子。 证 当0≠a 时 若b a 0=则0=a 故矛盾 当0=a 时,有00ε= (ε 是单位) 就是说0是它自己的相伴元 2. 我们看以下的整环I ,I 刚好包含所有可以写成 m m n (2是任意整数,0≥n 的整数) 形式的有理数,I 的哪些个元是单位,哪些个元是素元? 证 1)I 的单位 总可以把m 表为 p p m k (2=是0或奇数,k 非负整数)我们说 1±=p 时,即k m 2±=是单位,反之亦然 2)I 的素元 依然是k p p m k ,(2=的限制同上) 我们要求 ⅰ)0≠p ⅱ)1±≠p ⅲ)p k 2只有平凡因子 满足ⅰ)—— ⅲ)的p 是奇素数 故p m k 2=而p 是奇素数是 n m 2是素元,反之亦然, 3.I 是刚好包含所有复数b a bi a ,(+整数)的整环,证明5不是I 的素元,5有没有唯一分解? 证 (1)I 的元ε是单位,当而且只当12=ε 时, 事实上,若bi a +=ε是单位 则11-=εε 2'221εε= 即2'21εε= 但222b a +=ε是一正整数,同样2'ε也是正整数, 因此,只有12=ε 反之,若1222=+=b a ε,则0,1=±=b a 或1,0±==b a 这些显然均是单位

此外,再没有一对整数b a ,满足12 2=+b a ,所以I 的单位只有i ±±,1。 (2)适合条件52=α的I 的元α一定是素元。 事实上,若52=α则0≠α 又由α)1(也不是单位 若2225,λβαβλα=== 则12=β或52=β ββ?=12是单位λαβλ?=?-12是α的相伴元 λλβ?=?=1522是单位βαλβ?=?-1是α的相伴元 不管哪种情形,α只有平凡因子,因而α是素元。 (3)I 的元5不是素元。 若βα=5则2225λβ= 这样,2β只可能是25,5,1 当52=β由)1(β是单位 当1522=?=λβ由)1(λ是单位 此即λβ,中有一是5的相伴元 现在看52=β的情形 5,222=+=+=b a bi a ββ可能的情形是 ???==21 b a ???-=1b a ???=1b a ???-=-=21b a ???=1b a ???-==12b a ???=-=12b a ???-=1b a 显然)2)(2(5i i -+= 由(2)知52=β的β是素元,故知5是素元之积 (4)5的单一分解 )21)(21(5i i -+=)21)(1)(21)(1(i i --+-= )21)()(21)(()21)()(21)((i i i i i i i i --+=-+-= i ±±,1均为单位 2 唯一分解环 1.证明本节的推论 证 本节的推论是; 一个唯一分解环I 的 n 个元n a a a ,,21 在I 里一定有最大公因子 , n a a a ,,21 的两个最大公因子只能查一个单位因子。 用数学归纳法证 当2=n 时,由本节定理3知结论正确。 假定对1-n 个元素来说结论正确。

近世代数第四章整环里的因式分解

第四章整环里的因式分解 §1. 素元、唯一分解 本讲中, 总假定为整环, 为的商域. 1. 整除 定义1 设D为整环, D b ,, 如果存在D a∈ c∈, 使得 则称整除, 记作; 并称是的一个因子, 是的倍元. ?整环中的整除概念是整数环中整除概念的推广, 因此有许多与整数的整除相类似的性质. ?整除有下列常用的性质: (1) 如果, , 则; (2) 如果, , , 则. 2.相伴 定义2整环D的一个元叫做D的一个单位,假如是一个有逆元的元。元叫做元的相伴元,假如是和一个单位的乘积:

定理1两个单位的乘积也是一个单位.单位的逆元也是一个单位. 例1因为整数环的单位仅有1与-1,故任一非零元有2个相伴元:与a -. 例2有四个单位,1,-1,i,-i,所以任一非零元,有四个相伴元: 定义3 单位以及元的相伴元叫做的平凡因子.若还有别的因子,则称为的真因子. 3. 素元 定义4 设D为整环,D p∈,且既非零也非单位,如果只有平凡因子,则称为一个素元. 定理2单位ε与素元的乘积也是一个素元. 定理3整环中一个非零元有真因子的充分且必要条件是: ,这里,都不是单位.

推论设,并且有真因子:.则也是的真因子. 定义5 我们称一个整环D的元在D中有唯一分解,如果以下条件被满足: (i) (为D的素元) (ii) 若同时有 (为的素元) 则有,并且可以调换的次序,使得(为的单位) 整环的零元和单位不能有唯一的分解.所以唯一分解问题研究的 对象只能是非零也非单位的元. 例3给整环.那么有: (1)的单位只有. (2)适合条件的元一定是素元. 首先,;又由(1),也不是单位.设为的因子: 那么

相关主题