搜档网
当前位置:搜档网 › 理解非线性有限元分析

理解非线性有限元分析

理解非线性有限元分析
理解非线性有限元分析

有限元非线性计算特点

有限元非线性计算特点 文章通过几个典型的工程计算模型,分析比较有限元线性与非线性计算结果,阐释了有限元非线性计算的特点及优点。 标签:工程计算;线性;非线性 1 引言 有限元单元法已成为强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题,有限元的线性分析已被广泛采用。但对于许多航空工程中遇到的问题,如进气道等,仅仅采用线性求解是不真实的,而采用非线性计算将更符号实际情况。本文借助MSC/NASTRAN有限元分析程序,对于典型的工程计算模型分析比较线性与非线性计算结果,从而给出非线性计算相对于线性计算的优点及特点。 2 有限元非线性计算的特点及优点 为了明确有限元非线性计算结果与线性计算结果的差异,更好的展现有限元非线性计算的特点,本节将借助于有限元分析软件MSC/NASTRAN,对一受外载的矩形薄板根据不同的边界条件,进行非线性及线性静力分析,通过分析比较计算结果,说明有限元非线性静力计算中的一些特点。 2.1 非线性与线性计算结果随载荷的变化 首先,给出薄板尺寸、载荷。 模型尺寸:薄板尺寸为500×500×1.5mm。 载荷:受法向气动压力(pressure),气动压力由小到大变化依次为0.01MPa、0.02MPa、0.04MPa、0.08MPa、0.16MPa。 取薄板中央节点位移、应力及薄板边缘中部节点位移,比较线性计算结果和非线性计算结果。在分别进行有限元线性及非线性分析后,给出位移、应力及支反力结果随载荷的变化曲线。图1、图3、图5分别为采用限元线性计算得到的参考点的位移、应力及支反力变化曲线;图2、图4、图6分别为采用有限元非线性计算得到的参考点的位移、应力及支反力变化曲线。 由圖1、3、5可见,采用线性静力分析后,参考点位移、应力、支反力均随载荷增加而线性增大,位移、应力、支反力与载荷呈明显的线性关系,这是线性静力分析的特点。对于本例,可以预言,在其它条件不变的情况下,计算出一套载荷下的结果,就可以按照线性关系求出压力载荷下的位移、应力及支反力结果。

第18章 接触问题有限元分析技术

第18章接触问题的有限元分析技术 第1节基本知识 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行准确而有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在求解问题之前,不知道接触区域,表面之间是接触或分开是未知的、突然变化的,这些随载荷、材料、边界条件和其它因素而定;其二,大多数的接触问题需要计算摩擦,有几种摩擦和模型可供挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一、接触问题分类 接触问题分为两种基本类型:刚体─柔体的接触和半柔体─柔体的接触。在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触;另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS支持三种接触方式:点─点、点─面和平面─面。每种接触方式使用的接触单元适用于某类问题。 二、接触单元 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个节点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元。有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元。下面分类详述ANSYS使用的接触单元和使用它们的过程。 1.点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下)。 如果两个面上的节点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 2.点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组节点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是

非线性有限元分析

轨道结构的非线性有限元分析 姜建华 练松良 摘 要 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。钢轨垫层刚度、钢轨抗扭刚度和扣件扣压力的大小是影响轨距扩大的主要因素。根据非线性有限元接触理论,建立了能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型;并研究计算了不同扣件压力下,由于受载车轮与钢轨侧向滑动接触引起的轨距扩大问题。 关键词 轮轨关系,扣件压力,非线性弹性力学,有限元分析 1 引言 实际工程中常见的非线性问题一般可以归纳为三类:材料非线性、几何非线性以及边界条件非线性。材料非线性问题是由于材料的非线性本构关系所引起的,例如材料的弹塑性变形,材料的屈服和硬化等;几何非线性问题是由于结构的位移或变形相当大,以至必须按照变形后的几何位置来建立平衡方程;边界条件非线性问题是指边界条件随位移变化所引起的非线性问题。通常情况下,我们所遇到的非线性问题多数是上述三类非线性问题的组合[1,2]。 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。比如基于轮轨接触的材料非线性、几何非线性及边界条件非线性问题,以及扣件、钢轨、垫层三者间相互作用时所表现的边界条件非线性行为等。所以,机车车辆在轨道结构上行驶时引起的力学现象是相当复杂的。以往在研究轨道各部分应力应变分布规律时,通常采用连续弹性基础梁理论或连续点支承,偶尔简单考虑扣件的作用和弹性垫层的使用。不管用哪一种支承方式建立模型,都由于这样那样的假设而带有一定程度的近似性。所以,如何利用现代力学理论的最新成果以及日益发展的计算机技术,根据轨道结构的具体情况,建立更为完整更为准确的轨道结构计算模型,为轨道设计部门提供更加可靠的设计依据或研究思路,已十分必要。 本文提出了用非线性有限元理论研究轮轨系统和轨道结构的思路。作为算例之一,本文将根据非线性有限元理论,建立能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型。 2 轨道结构的有限元接触模型 对于非线性问题,不管是材料非线性、几何非线性,还是边界条件非线性,总是最终归结为求解一组非线性平衡方程及其控制方程。例如用位移作为未知数进行有限元分析时,最后可得到一组平衡方程及其控制方程为 : 图1 轮轨系统的对称性模型简图 [K(u)]{u}={R}(1) (u)= (u)(2)其中:{u}为节点位移列阵;{R}为节点载荷列阵; [K(u)]为总体刚度矩阵; (u)为边界条件。它们 36 姜建华:同济大学工程力学系,副教授、博士,上海200092

非线性有限元方法及实例分析

非线性有限元方法及实例分析 梁军 河海大学水利水电工程学院,南京(210098) 摘 要:对在地下工程稳定性分析中常用的非线性方程组的求解方法进行研究,讨论了非线性计算的迭代收敛准则,并利用非线性有限元方法分析了一个钢棒单轴拉伸的实例。 关键词:非线性有限元,方程组求解,实例分析 1引 言 有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。有限元的线性分析已经设计工具被广泛采用。但对于绝大多数水利工程中遇到的实际问题如地下洞室等,将其作为非线性问题加以考虑更符合实际情况。根据产生非线性的原因,非线性问题主要有3种类型[1]: 1.材料非线性问题(简称材料非线性或物理非线性) 2.几何非线性问题 3.接触非线性问题(简称接触非线性或边界非线性) 2 非线性方程组的求解 在非线性力学中,无论是哪一类非线性问题,经过有限元离散后,它们都归结为求解一个非线性代数方程组[2]: ()()()00 021212211=… …==n n n n δδδψδδδψδδδψΛΛΛ (1.1) 其中n δδδ,,,21Λ是未知量,n ψψψ,,,21Λ是n δδδ,,,21Λ的非线性函数,引用矢量记 号 []T n δδδδΛ21= (1.2) []T n ψψψψΛ21= (1.3) 上述方程组(1.1)可表示为 ()0=δψ (1.4) 可以将它改写为 ()()()0=?≡?≡R K R F δδδδψ (1.5) 其中()δK 是一个的矩阵,其元素 是矢量的函数,n n ×ij k R 为已知矢量。在位移有限 元中,δ代表未知的结点位移,()δF 是等效结点力,R 为等效结点荷载,方程()0=δψ表示结点平衡方程。 在线弹性有限元中,线性方程组

非线性有限元分析

非线性有限元分析 1 概述 在科学技术领域,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。 已经发展的数值分析方法可以分为两大类。一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。 另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。 1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。有限单元法的基本思想是将连续的求解区域离散为一组有限个,且按一定方式相互联接在一起的单元的组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。并且可以利用在每一个单元假设的近似函数来分片地表示全求解域上待求的未知场函数,从而使一个连续的无限自由度问题变成离散的有限自由度问题。 现已证明,有限单元法是基于变分原理的里兹法的另一种形式,从而使里兹法分析的所有理论基础都适用于有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法。利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,而且事先不要求满足任何边界条件,因此可以用来处理很复杂的连续介质问题。 在短短四十余年的时间里,有限单元的分析方法已经迅速地发展为适合于使用各种类型计算机解决复杂工程问题的一种相当普及的方法。如今,有限元广泛地应用于各个学科门类,已经成为工程师和科研人员用于解决实际工程问题,进行科学研究不可或缺的有力工具。有限单元法的应用围已由弹性力学平面问题扩展到空间问题,板壳问题,由静力平衡问题扩展到稳定问题,动力问题和波动问题。分析的对象从弹性材料扩展到塑性,粘弹性,粘塑性和复合材料等,从固体

过盈配合应力的接触非线性有限元分析

过盈配合应力的接触非线性有限元分析 作者:许小强赵洪伦 摘要基于非线性有限元软件MARC,提出过盈配合应力的动态和静态两种有限元分析方法,并以铁道车辆某高速轮对组装的过盈装配为例进行了有限元仿真计算,比较了两种方法的计算结果,分析了过盈量、摩擦系数、形状误差对装配应力的影响,结果对于确定合理过盈量和改进加工工艺具有参考意义。 关键词过盈配合接触非线性接触应力 0引言 在机械工程实际中普遍采用过盈配合来传递扭矩和轴向力,例如轴承配合、轴瓦配合、铁道车辆的轮轴、制动盘等。它是利用过盈量产生半径方向的接触面压力,并依靠由该面压力产生的摩擦力来传递扭矩和轴向力。由于过盈配合两个相配合的接触面上不能粘贴应变片,因此难以对其应力状态进行测定,对整个组装过程的应力状态更难以进行跟踪研究,而且这种配合方式往往承受着交变载荷的作用,配合面间可能发生相对滑动,这一滑动是随着应力变化而变化的,因而配合面边缘的接触状态和应力状态也随着应力的交变而变化,表现出复杂的状态,因此一般只能凭经验确定采用的过盈量。从力学角度看,这类问题属于接触非线性问题,传统的弹性接触解法已难以处理,可采用光弹性模拟实验进行研究,但只能反映应力分布趋势。近年来,随着非线性理论的不断完善和计算机技术的飞速发展,利用非线性有限元法来分析这类问题已日趋成熟。 铁道车辆随着向高速、重载不断发展,对轮轴的安全性要求也越来越高。研究表明,轮轴配合部位的应力状态对车轴的疲劳强度具有重要的影响,因此对轮对配合部位的宏观接触应力状态进行研究将有助于指导轮对制造标准的制定、高速重载轮对的设计和加工工艺的改进,以提高轮对的抗疲劳性能。 本文利用著名非线性有限元软件MARC,针对过盈配合的压力压装法和温差组装法对这类问题提出动态和静态两种仿真计算方法,并以铁道车辆某高速轮对的配合为例进行了计算,对比了两种计算方法的结果,分析了过盈量、摩擦系数、形状误差等因素对装配应力的影响。

ABAQUS有限元接触分析的基本概念

ABAQUS有限元接触分析的基本概念2009-11-24 00:06:28 作者:jiangnanxue 来源:智造网—助力中国制造业创新—https://www.sodocs.net/doc/d21727150.html, CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。世界上几大CAE公司各自以其独到的技术占领着相应的市场。ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。 《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。 《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。 16.1.1 点对面离散与面对面离散 【常见问题16-1】 在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surface-dis - cre-tization)和面对面离散方法(surface-to-surface discretization),二者有何差别? 『解答』 在点对面离散方法中,从面(slave surface)上的每个节点与该节点在主面(master surface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。 使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。 面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。 在如图16-l和图16-2所示的实例中,比较了两种情况。

基于PANDA框架的非线性静力学有限元

基于PANDA框架的非线性静力学有限元 论文导读:基于PANDA框架。能够分析千万自由度规模的弹塑性静力学问题。非线性求解策略。形成了面向对象有限元并行计算框架PANDA。并行计算,基于PANDA框架的非线性静力学有限元。关键词:PANDA,静力学,非线性,有限元,并行计算 1 引言 特种武器结构复杂,在整个库存到靶序列(Stockpile to TargetSequence,STS)全寿命周期内要经历复杂严酷的载荷和环境条件,结构响应呈现出高度的材料非线性、边界非线性和几何非线性。为提高特种武器的设计、试验和库存维护水平,对武器结构在各种条件下响应的精细建模和分析至关重要,需要充分考虑结构的几何细节和物理内涵,所建立的有限元模型可达上千万自由度规模乃至更高,而传统的商用有限元程序由于国外对我国的出口限制,非线性有限元模型的分析规模被限制在几百万自由度以下,且计算周期较长,无法快速响应设计和维护的需要。 为了提升特种武器的工程数值模拟能力,适应不断提高的武器工程数值模拟需求,迎接和加速由现阶段小规模低效率计算向大规模高效并行计算的转变,2007年中国工程物理研究院启动了院预研重大项目“武器工程大规模并行计算框架研究及基础平台开发”。该项目在已有源码程序的基础上,通过在有限元并行计算方法方面开展研究与软件开发,初步形成了面向对象有限元并行计算框架PANDA,并基于PANDA框架初步开发了可应用于部分静力、振动、冲击和传热武器工

程问题求解的大规模有限元并行计算模拟程序。 针对特种武器研制中的非线性静力学有限元大规模精细分析需求,充分消化吸收开放源代码的程序设计思想和技巧,基于PANDA框架,开发非线性静力学有限元分析所需的单元类型、材料模型、非线性并行求解策略,集成大规模线性方程组并行求解算法,初步形成了可求解小应变、有限应变线弹性和弹塑性静力学问题的非线性静力学程序。悬臂梁弹塑性有限元分析模型达到了千万自由度规模,并行求解时间低于一小时。本文介绍了基于PANDA框架的单元类型、材料模型、非线性求解策略设计,并初步验证了非线性静力学有限元并行计算程序的计算精度和千万自由度规模分析能力。 2 基于PANDA框架的非线性静力学有限元并行计算程序设计 通过中国工程物理研究院的预研重大项目,采用面向对象、层次化、组件化的设计思想,对工程结构非结构网格有限元分析程序的基本数据结构、并行通信、求解控制等方面的共性和可重用部分进行抽象和程序实现,并集成了区域分割、解法器等服务组件,形成了面向对象有限元并行计算框架PANDA,提供经过系统规划设计的应用程序开发接口,以提供服务的形式引导应用程序的设计和实现,初步建立了结构分析有限元并行计算应用程序的集成开发环境。科技论文,并行计算。 基于PANDA框架,结构分析有限元并行计算应用程序的开发工作变得较为简单和高效,程序开发工作量大为减少。在PANDA框架既设的应用软件架构下,应用程序开发者可以将精力集中到本应用程序独

非线性有限元分析(学习总结报告)

非线性有限元 博士研究生专业课课程报告

目录 第一章绪言 (1) 1.1 非固体力学非线性问题的分类[1] (1) 1.2 非线性问题的分析过程[1] (2) 1.3 非线性有限元分析的基本原理 (2) 1.4 钢筋混凝土非线性分析的特点、现状及趋势 (3) 第二章非线性方程组的数值解法 (4) 2.1逐步增量法[3,4,5] (4) 2.2迭代法[3,4,5] (6) 2.3收敛标准 (8) 2.3.1.位移收敛准则 (8) 2.3.2.不平衡力收敛准则 (8) 2.3.3.能量收敛准则 (9) 2.4结构负刚度的处理[4,5] (9) 第三章材料的本构关系 (13) 3.1 钢筋的本构关系 (13) 3.1.1 单向加载下的应力应变关系 (13) 3.1.2 反复加载下的应力应变关系 (14) 3.2 混凝土的本构关系 (14) 3.2.1 单向加载下的应力应变关系 (14) 3.2.2 重复加载下的应力应变关系 (14) 3.2.3 反复加载下的应力应变关系 (14) 3.3 恢复力模型的分类 (14) 3.4 恢复力的获得方法 (15) 第四章非线性有限元在结构倒塌反应中的应用 (17) 4.1 钢筋混凝土结构倒塌反应研究现状 (17) 4.2 钢筋混凝土的有限元模型 (17) 4.2.1分离式模型 (18) 4.2.2组合式模型 (19) 4.2.3整体式模型 (20) 4.3 倒塌反应中RC结构有限元分析方法的选择 (20) 4.3.1隐式有限单元法 (21) 4.3.2显式有限单元法 (22) 4.4 钢筋混凝土框架结构的倒塌反应分析 (22) 4.4.1基于隐式有限单元法的倒塌分析 (22) 4.4.2 基于显式有限单元法的倒塌分析 (23) 4.5显式有限法在倒塌反应分析中的问题 (24)

过盈配合应力的接触非线性有限元分析

过盈配合应力的接触非线性有限元分析 摘要基于非线性有限元软件MARC,提出过盈配合应力的动态和静态两种有限元分析方法,并以铁道车辆某高速轮对组装的过盈装配为例进行了有限元仿真计算,比较了两种方法的计算结果,分析了过盈量、摩擦系数、形状误差对装配应力的影响,结果对于确定合理过盈量和改进加工工艺具有参考意义。 关键词过盈配合接触非线性接触应力 0 引言 在机械工程实际中普遍采用过盈配合来传递扭矩和轴向力,例如轴承配合、轴瓦配合、铁道车辆的轮轴、制动盘等。它是利用过盈量产生半径方向的接触面压力,并依靠由该面压力产生的摩擦力来传递扭矩和轴向力。由于过盈配合两个相配合的接触面上不能粘贴应变片,因此难以对其应力状态进行测定,对整个组装过程的应力状态更难以进行跟踪研究,而且这种配合方式往往承受着交变载荷的作用,配合面间可能发生相对滑动,这一滑动是随着应力变化而变化的,因而配合面边缘的接触状态和应力状态也随着应力的交变而变化,表现出复杂的状态,因此一般只能凭经验确定采用的过盈量。从力学角度看,这类问题属于接触非线性问题,传统的弹性接触解法已难以处理,可采用光弹性模拟实验进行研究,但只能反映应力分布趋势。近年来,随着非线性理论的不断完善和计算机技术的飞速发展,利用非线性有限元法来分析这类问题已日趋成熟。 铁道车辆随着向高速、重载不断发展,对轮轴的安全性要求也越来越高。研究表明,轮轴配合部位的应力状态对车轴的疲劳强度具有重要的影响,因此对轮对配合部位的宏观接触应力状态进行研究将有助于指导轮对制造标准的制定、高速重载轮对的设计和加工工艺的改进,以提高轮对的抗疲劳性能。 本文利用著名非线性有限元软件MARC,针对过盈配合的压力压装法和温差组装法对这类问题提出动态和静态两种仿真计算方法,并以铁道车辆某高速轮对的配合为例进行了计算,对比了两种计算方法的结果,分析了过盈量、摩擦系数、形状误差等因素对装配应力的影响。 1 过盈装配接触非线性问题的求解方法 1.1 接触非线性问题的求解方法 过盈问题是接触问题的一种,属于边界条件高度非线性的复杂问题,其特点是在接触问题中某些边界条件不是在计算开始就可以给出,而是计算的结果,两接触体间的接触面积和压力分布随外载荷的变化而变化,同时还包括正确模拟接触面间的摩擦行为和可能存在的接触传热。用有限元法解接触问题以往常采用的物理模型是节点对模型,即将两接触物体的接触面划分成相同的网格,组成一一对应的节点对,并假定两接触体的接触力通过节点对传递,这种模型需预先知道接触发生的确切部位,以便施加边界单元,对于结构复杂问题和考虑摩擦的动态接触问题,点对模型将给结构离散和方程求解带来极大困难,从而难以解决。近年来提出的点面接触模型是把两接触体分为主动体和被动体,在分析时研究主动体的节点与被动体接触表面上相接触的自由度关系及变形的一致关系,从而确定接触边界条件,然后从边界变形协调的变分原理出发,建立整个接触系统的控制方程。这种模型能有效处理复杂接触表面和动态接触问题。

非线性问题有限元分析

【问题描述】如图I所示的模型,纵向尺寸均为100mm,水平尺寸均为30mm,圆角半径均为10mm,模型厚度为4mm。 图I 本例中所使用的模型 【要求】在ANSYS Workbench软件平台上,通过改变材料属性,分别对该模型进行线性材料静力分析以及非线性材料的静力分析,并加以对比。 1.分析系统选择 (1)运行ANSYS Workbench,进入工作界面,首先设置模型单位。在菜单栏中找到Units下拉菜单,依次选择Units>Metric(kg,mm,s,℃,mA,N,mV)命令。 (2)在左侧工具箱【Toolbox】下方“分析系统”【Analysis Systems】中双击“静力结构分析”【Static Structural】系统,此时在右侧的“项目流程”【Project Schematic】中会出现该分析系统共7个单元格。相关界面如图1所示。

图1 Workbench中设置静力分析系统

2.输入材料属性 (1)在右侧窗口的分析系统A中双击工程材料【Engineering Data】单元格,进入工程数据窗口。 (2)我们首先进行的是线性材料问题,选用系统默认的结构钢作为材料即可。 (3)可以看见,系统本身默认结构钢【Structural Steel】已在备选材料窗口中,在此不必再另行选择,直接单击【Project】选项卡回到项目流程界面即可。 3.导入几何模型 (1)双击分析系统A中的“几何”【Geometry】单元格。 (2)找到菜单栏中的文件【File】选项,依次选择【File】>【Import External Geometry File】,在弹出的对话框中找到模型文件“non-linear.igs”并打开。 (3)单击工具栏中的【Generate】选项,即选项,确认生成导入的模型。导入完成后的模型如图2所示。 (4)至此,模型导入步骤完成。 图2 导入的模型

非线性有限元基础

1 §1.2 线性有限元的回顾 线性有限元的理论虽然不是本课程的重点,而线性有限元法是非线性有限元法的基础;非线性有限元法又是线性有限元法的发展。因为非线性问题的求解通常是采用分段线性化的思想,使其成为一系列的线性问题。因此有必要首先回顾线性有限元的一些基本内容。主要是线性有限元的基本理论和方法,以及当前应用最广的等参元理论。 固体力学的理论(材力、弹力、结构力学,无论是线性还是非线性)是建立在本构方程、几何(运动)方程以及平衡方程三方面方程的基础上的,由此导出的控制方程的解是满足上述充分、必要条件的唯一解,而且是反映了结构真实受载后的运动状态(变形)。在结构分析中许多情况下,本构和几何方程可以处理成线性,使控制方程线性化,求解也大大简化,同时可达到工程上的精度要求,这就是线性有限元的基本理论。 §1.2.1 线性本构关系(广义虎克定律) 影响结构材料性能有诸多因素(应力、应变、变形率、温度、湿度、时效等),而通常建立本构方程时仅考虑应力、应变两个物理参数,认为两者成线性关系的经典的弹性理论,即著名的虎克定律。 各向同性材料的Hooke 定律 ij ijkl kl D σε= 或 ij ijkl kl C εσ= ()1其中ijkl D 和ijkl C 分别为弹性阵和柔度阵。 由剪应力互等定理,弹性阵()99ijkl D ?独立材料参数的个数由81个减少为21个。进而对于正交异性的材料参数为9个独立的参数,对于各向同性材料: 01121, 2,322(1) ,e i j i j i j E G G E d dS d i j νν εσδ -+= += = ()2 仅有两个独立的材料常数,即E 和ν,其中E 为弹性模量,ν为泊松比。 §1.2.2线性几何方程(小变形情况) 线性(小变形)关系: ()(){}1 ,,2 ij T U U U i j j i ε+=?= ()3 位移边界条件:u S 边界上 U U = 其中U 为位移向量, U 为边界u S 上的指定位移,()T ?为微分算子。 实际结构可根据它们的几何特点,将三维问题简化为二维问题,这里主要有:平面应力、平面应变和轴对称状态。 1)平面应力(薄壁结构) 外力仅作用在平面内,两表面无外力作用(离心力作用下圆盘)两表面应力分量(且在整个厚度方向上),yz σ=xz σ=zz σ=0,而xx σ、yy σ、xy σ沿厚度均匀分布。 按Hooke 定律,

几何非线性有限元分析课件(2)

1 第8章 几何非线性有限元分析 8.2 几何非线性问题的表达格式 虚位移原理(虚功原理):() t t t t t t t t ij t t ij V e dV W τδ+?+?+?+?+?= ? () () t t t t t t t t t t t t t t k k k k S V W t u dV f u dV δδ+?+?+?+?+?+?+?= + ? ? ,,11()()( ) 2 2 j i t t ij t t i j t t j i t t t t j i u u e u u x x δδδ+?+?+?+?+???= + = + ? ? 虚功原理的初始参考构型表示形式: ( )t t t t t t ji ij V S dV W δε+?+?+?= ?

2 为了便于求解:将应力和应变分解成: 00 t t t j i j i j i S S S +?= + 从t 到t t +?时刻引起的应力增量 0t t t ji ji ji εεε+?=+ 从t 到t t +?时刻引起的应变增量 0( )()t t ji ji δεδε+?= 将应变增量进一步分解:000ij ij ij e εη=+ 00,0,0,0 ,0 ,0, 1()2t t ij i j j i k j k i k j k i e u u u u u u =+++ 0 ,0,12 ij k j k i u u η= 00 00 0()()()t t t t ji ij ji ij ji ij V V V S dV S dV W S e dV δεδηδ+?+ = - ? ? ?

基于非线性有限元法的弹簧刚度分析

基于非线性有限元法的弹簧刚度分析 摘要本文以铁路车辆三大件式转向架用螺旋弹簧为研究对象。传统的弹簧的垂向和横向刚度分析一般采用经验公式来计算,这在线弹性范围不会存在问题。而实际工作中,弹簧运动过程往往存在大的变形,属于非线性的范畴,所以本文要研究其在非线性范围内有限元计算结果和传统经验公式的对比,以便于指导设计研究。 关键词非线性;有限元;弹簧;横向刚度;垂向刚度 前言 螺旋弹簧在铁路车辆三大件式转向架中起着垂向支撑和减震的双重作用,是三大件式转向架必不可少的组成部分之一,其刚度的大小和匹配关系着整个转向架的动力学性能,因此对弹簧刚度的研究有着非常重要的意义。 弹簧刚度作为弹簧的主要参数之一,在以往的设计中往往是按照经验公式对其轴向刚度和横向刚度进行计算,在线性阶段该方法也许不会有什么问题,可是当弹簧变形到一定程度的时候会出现弹簧自接触的问题,即弹簧由于变形而发生了自身的一部分与另一部分接触,此时的弹簧参数已经由类线性参数变成了非线性参数,而按照经验公式则无法判断何时弹簧进入非线性,所以弹簧的设计仅仅依靠经验公式会存在一定的风险。由于有限元软件的普及[1],本文将使用有限元的方法对弹簧刚度进行分析,从而更进一步提高刚度计算的精度。 1 研究对象 本次分析使用的模型為某型转向架上的一种弹簧,该弹簧所用材料为60SiMnAT,有效圈数为5.5圈,线径24mm,中径115mm,剪切模量为78.5GPa,自由高252mm。其材料属性如下表。 2 研究方法 按照刚度的定义,即结构抵抗变形的能力,也就是产生单位位移所需要的力,其单位为N/mm。在进行弹簧横向刚度和轴向刚度的分析时,弹簧的两个端面与接触面之间做刚性接触处理,并假定在整个过程中上下支撑面保持平行,对弹簧进行强迫位移分析,并取得每一个位移值对应的支反力,从而求得其刚度曲线。分析采用UGNX软件,分析假想图如下。 3 结果及分析 根据分析结果可以得到如下轴向支反力与轴向位移关系图、轴向刚度与轴向位移关系图、横向刚度与轴向位移关系图等。

滚动轴承接触的非线性有限元分析

2009年第23卷第1期测试技术学报V o l.23 N o.1 2009 (总第73期)JOURNAL OF TEST AND M EASURE M ENT TECHNOLOG Y(Sum N o.73) 文章编号:167127449(2009)0120023205 滚动轴承接触的非线性有限元分析Ξ 熊小晋1,张晓昆鸟1,2,熊晓燕1 (1.太原理工大学科研处,山西太原030024; 2.煤炭科学研究总院太原研究院,山西太原030024) 摘 要: 利用M SC.Patran M arc软件建立了滚动轴承的二维有限元分析模型,进行了接触非线性有限元 分析,得到接触应力、应变随接触状态的变化情况.当不考虑摩擦接触时,压力与变形间呈现一定的非线性 关系.当考虑摩擦接触时,下板面最大等效应力增加,应力分布形状发生改变,最大切向应力发生点向接触 部位靠近,说明摩擦因素对接触表面切向应力大小与最大切向应力发生点产生影响. 关键词: 滚动轴承;接触力学;摩擦;非线性有限元分析 中图分类号: TH133.33 文献标识码:A Non li near FE M Analysis of Con tact Problem of Rolli ng Bear i ng X I ON G X iao jin1,ZHAN G X iaokun1,2,X I ON G X iaoyan1 (1.Scien tific R esearch D epartm en t,T aiyuan U n iversity of T echno logy,T aiyuan030024,Ch ina; 2.T aiyuan B ranch,Ch ina Coal R esearch In stitu te,T aiyuan030024,Ch ina) Abstract: A tw o2di m en si onal fin ite elem en t m odel of ro lling bearing w as develop ed u sing the M SC. Patran M arc softw are.T h rough the non linear FE M analysis of con tact,the changes of con tact stress and strain in differen t con tact states w ere ob tained.W hen neglecting fricti on con tact,there is a certain non2linear relati on sh i p betw een p ressu re and defo rm ati on.W hen con sidering fricti on con tact,the b iggest equ ivalen t stress increases,the shap e of stress distribu ti on changes,and at the sam e ti m e,the b iggest tangen tial stress po in t gets clo se to the con tact p art.It is indicated that fricti on can influence the tangen tial stress value and the b iggest tangen tial stress po in t. Key words:ro lling bearing;con tact dynam;fricti on;non linear FE M analysis 随着科技与工业的发展,滚动轴承的使用范围越来越广泛.轴承作旋转运动时,其内的滚动体与滚道发生接触,产生各种旋转运动与摩擦,轴承的刚度、承载能力甚至使用寿命主要取决于内部滚动体与滚道之间的接触性质.所以对滚动轴承接触力学问题的研究以及利用有限元法对滚动轴承进行接触非线性分析、解决轴承问题已经成为科研人员研究的重要方向. M SC.Patran M arc兼具M SC.Patran强大的网格划分功能、CAD继承工具和M arc强大的非线性处理功能.它支持多种复杂的材料模型以及材料的试验数据拟合,很容易模拟复杂的接触边界条件以及涉及多种加载历程的问题,尤其是M arc中自适应网格重划分功能可用于精确求解接触变形难题.本文暨利用此软件对滚动轴承进行接触非线性分析,得到滚动轴承接触应力、应变随接触状态的变化情况. Ξ收稿日期:2008204209  基金项目:国家自然科学基金资助项目(50405043);山西省自然科学基金资助项目(200801104322)  作者简介:熊小晋(19662),男,工程师,主要从事动态测试与故障诊断研究.

接触问题的非线性问题

第五章 接触问题的非线性有限元分析 5.1引言 在工程结构中,经常会遇到大量的接触问题。火车车轮与钢轨之间,齿轮的啮合是典型的接触问题。在水利和土木工程中,建筑物基础与地基,混凝土坝分缝两侧,地下洞室衬砌与围岩之间,岩体结构面两侧都存在接触问题。对于具有接触面的结构,在承受荷载的过程中,接触面的状态通常是变化的,这将影响接触体的应力场。而应力场的改变反过来又影响接触状态,这是一个非线性的过程。由于接触问题对工程实践的重要性,本章将作为专门问题进行研究。 最早对接触问题进行系统研究的是H. Hertz ,他在1882年发表了《弹性接触问题》一书中,提出经典的Hertz 弹性接触理论。后来Boussinesg 等其他学者又进一步发展了这个理论。但他们都是采用一些简单的数学公式来研究接触问题,因而只能解决形状简单(如半无限大体)、接触状态不复杂的接触问题。 二十世纪六十年代以后,随着计算机和计算技术的发展,使应用数值方法解决复杂接触问题成为可能。目前,分析接触问题的数值方法大致可分为三类:有限元法、边界元法和数学规划法。 数学规划法是一种优化方法,求解接触问题时,根据接触准则或变分不等式建立数学模型,然后采用二次规划或罚函数方法给出解答。 边界元方法也被用来求解接触问题,1980年和1981年,Anderson 先后发表两篇文章,用于求解无摩擦弹性接触和有摩擦弹性接触问题。近年来虽有所发展,但仍主要用于解决弹性接触问题。 就目前的发展水平来看,数学规划法和边界元法只适合于解决比较简单的弹性接触问题。对于相对复杂的接触非线性问题,如大变形、弹塑性接触问题,还是有限元方法比较成熟、比较有效。 早在1970年,Wilson 和Parsons 提出一种位移有限元方法求解接触问题。Chan 和Tuba ,Ohte 等进一步发展了这类方法。它的基本思想是假定接触状态,求出接触力,检验接触条件,若与假定的接触状态不符,则重新假定接触状态,直至迭代计算得到的接触状态与假定状态一致为止。具体做法是: 对于弹性接触的两个物体,通过有限元离散,建立支配方程 111R δK = (5.1) 式中,1K 为初始的整体劲度矩阵,它与接触状态有关,通常根据经验和实际情况假定。1δ是结点位移列阵,1R 为结点荷载列阵。 求解式(5.1),得到结点位移1δ,再计算接触点的接触力1P ,将1δ和1P 代入与假定接触状态相应的接触条件,如果不满足接触条件,就要修改接触状态。根据修改后新的接触状态,建立新的劲度矩阵2K 和支配方程 222R δK = (5.2) 再由式(5.2)解得2δ,进一步计算接触力2P ,将2δ和2P 代入接触条件,验算接触条件是

有限元接触分析

第五章接触问题的非线性有限元分析 5.1引言 在工程结构中,经常会遇到大量的接触问题。火车车轮与钢轨之间,齿轮的啮合是典型的接触问题。在水利和土木工程中,建筑物基础与地基,混凝土坝分缝两侧,地下洞室衬砌与围岩之间,岩体结构面两侧都存在接触问题。对于具有接触面的结构,在承受荷载的过程中,接触面的状态通常是变化的,这将影响接触体的应力场。而应力场的改变反过来又影响接触状态,这是一个非线性的过程。由于接触问题对工程实践的重要性,本章将作为专门问题进行研究。 最早对接触问题进行系统研究的是H. Hertz,他在1882年发表了《弹性接触问题》一书中,提出经典的Hertz弹性接触理论。后来Boussinesg 等其他学者又进一步发展了这个理论。但他们都是采用一些简单的数学公式来研究接触问题,因而只能解决形状简单(如半无限大体)、接触状态不复杂的接触问题。 二十世纪六十年代以后,随着计算机和计算技术的发展,使应用数值方法解决复杂接触问题成为可能。目前,分析接触问题的数值方法大致可分为三类:有限元法、边界元法和数学规划法。 数学规划法是一种优化方法,求解接触问题时,根据接触准则或变分不等式建立数学模型,然后采用二次规划或罚函数方法给出解答。 边界元方法也被用来求解接触问题,1980年和1981年,Anderson先后发表两篇文章,用于求解无摩擦弹性接触和有摩擦弹性接触问题。近年来虽有所发展,但仍主要用于解决弹性接触问题。 就目前的发展水平来看,数学规划法和边界元法只适合于解决比较简单的弹性接触问题。对于相对复杂的接触非线性问题,如大变形、弹塑性接触问题,还是有限元方法比较成熟、比较有效。 早在1970年,Wilson和Parsons提出一种位移有限元方法求解接触问题。Chan和Tuba,Ohte等进一步发展了这类方法。它的基本思想是假定接触状态,求出接触力,检验接触条件,若与假定的接触状态不符,则重新假定接触状态,直至迭代计算得到的接触状态与假定状态一致为止。具体做法是: 对于弹性接触的两个物体,通过有限元离散,建立支配方程 1 1 1 R δ K=(5.1) 式中, 1 K为初始的整体劲度矩阵,它与接触状态有关,通常根据经验和实 际情况假定。 1 δ是结点位移列阵, 1 R为结点荷载列阵。 求解式(5.1),得到结点位移 1 δ,再计算接触点的接触力 1 P,将 1 δ和1 P代入与假定接触状态相应的接触条件,如果不满足接触条件,就要修改 接触状态。根据修改后新的接触状态,建立新的劲度矩阵 2 K和支配方程 2 2 2 R δ K=(5.2) 再由式(5.2)解得 2 δ,进一步计算接触力 2 P,将 2 δ和 2 P代入接触条件, 验算接触条件是否满足。这样不断的迭代循环,直至 n δ和 n P满足接触条件为止,此时得到的解答就是真实接触状态下的解答。

有限单元法作业非线性分析 程序

几何非线性大作业荷载增量法 和弧长法程序设计 一、几何非线性大作业(Newton-Raphson法) 用荷载增量法(Newton-Raphson法)编写几何非线性程序: (1)用平面梁单元,可分析平面杆系 (2)算例:悬臂端作用弯矩。悬臂梁最终变形形成周长为悬臂梁长度的圆。 1.1 Newton-Raphson算法基本思想 图1.1 Newton-Raphson算法基本思想

1.2 悬臂梁参数 基本参数:L=2m, D=0.03m, A=7.069E-4m2, I=3.976E-08m4 ,E=2.0E11N/m2 图1.2 悬臂梁单元信息 将悬臂梁分成10个单元,如图1.2所示 2.1 MATLAB输入信息 材料信息单元信息 约束信息(0为约束,1为放松)荷载信息(FX,FY,M)

节点信息 2.2 求解过程 梁弯成圆形:理论弯矩M=EIY"=24981.944N.m ,直径为0.642m 运用ABAQUS和MATLAB进行求解对比: 图1.3 加载图 图1.4 ABAQUS变形图

图1.5 MATLAB变形曲线 ABAQUS和MATLAB变形对比,最终在理论荷载作用下都弯成了一个圆,其直径为0.64716m,与理论值相对比值为:(0.64716-0.642)/0.642=0.00804.非常接近。 2.3 加载点荷载位移曲线 图1.5 加载点Y方向的荷载位移曲线

加载点的最大竖向位移分别为1.4525m和1.45246m,相对比值(1.4525-1.45246)/1.45246=2.75395E-05。完全相同,说明MATLAB的计算结果很好。

相关主题