搜档网
当前位置:搜档网 › 非线性问题有限元分析

非线性问题有限元分析

非线性问题有限元分析
非线性问题有限元分析

【问题描述】如图I所示的模型,纵向尺寸均为100mm,水平尺寸均为30mm,圆角半径均为10mm,模型厚度为4mm。

图I 本例中所使用的模型

【要求】在ANSYS Workbench软件平台上,通过改变材料属性,分别对该模型进行线性材料静力分析以及非线性材料的静力分析,并加以对比。

1.分析系统选择

(1)运行ANSYS Workbench,进入工作界面,首先设置模型单位。在菜单栏中找到Units下拉菜单,依次选择Units>Metric(kg,mm,s,℃,mA,N,mV)命令。

(2)在左侧工具箱【Toolbox】下方“分析系统”【Analysis Systems】中双击“静力结构分析”【Static Structural】系统,此时在右侧的“项目流程”【Project Schematic】中会出现该分析系统共7个单元格。相关界面如图1所示。

图1 Workbench中设置静力分析系统

有限元非线性计算特点

有限元非线性计算特点 文章通过几个典型的工程计算模型,分析比较有限元线性与非线性计算结果,阐释了有限元非线性计算的特点及优点。 标签:工程计算;线性;非线性 1 引言 有限元单元法已成为强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题,有限元的线性分析已被广泛采用。但对于许多航空工程中遇到的问题,如进气道等,仅仅采用线性求解是不真实的,而采用非线性计算将更符号实际情况。本文借助MSC/NASTRAN有限元分析程序,对于典型的工程计算模型分析比较线性与非线性计算结果,从而给出非线性计算相对于线性计算的优点及特点。 2 有限元非线性计算的特点及优点 为了明确有限元非线性计算结果与线性计算结果的差异,更好的展现有限元非线性计算的特点,本节将借助于有限元分析软件MSC/NASTRAN,对一受外载的矩形薄板根据不同的边界条件,进行非线性及线性静力分析,通过分析比较计算结果,说明有限元非线性静力计算中的一些特点。 2.1 非线性与线性计算结果随载荷的变化 首先,给出薄板尺寸、载荷。 模型尺寸:薄板尺寸为500×500×1.5mm。 载荷:受法向气动压力(pressure),气动压力由小到大变化依次为0.01MPa、0.02MPa、0.04MPa、0.08MPa、0.16MPa。 取薄板中央节点位移、应力及薄板边缘中部节点位移,比较线性计算结果和非线性计算结果。在分别进行有限元线性及非线性分析后,给出位移、应力及支反力结果随载荷的变化曲线。图1、图3、图5分别为采用限元线性计算得到的参考点的位移、应力及支反力变化曲线;图2、图4、图6分别为采用有限元非线性计算得到的参考点的位移、应力及支反力变化曲线。 由圖1、3、5可见,采用线性静力分析后,参考点位移、应力、支反力均随载荷增加而线性增大,位移、应力、支反力与载荷呈明显的线性关系,这是线性静力分析的特点。对于本例,可以预言,在其它条件不变的情况下,计算出一套载荷下的结果,就可以按照线性关系求出压力载荷下的位移、应力及支反力结果。

第18章 接触问题有限元分析技术

第18章接触问题的有限元分析技术 第1节基本知识 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行准确而有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在求解问题之前,不知道接触区域,表面之间是接触或分开是未知的、突然变化的,这些随载荷、材料、边界条件和其它因素而定;其二,大多数的接触问题需要计算摩擦,有几种摩擦和模型可供挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一、接触问题分类 接触问题分为两种基本类型:刚体─柔体的接触和半柔体─柔体的接触。在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触;另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS支持三种接触方式:点─点、点─面和平面─面。每种接触方式使用的接触单元适用于某类问题。 二、接触单元 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个节点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元。有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元。下面分类详述ANSYS使用的接触单元和使用它们的过程。 1.点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下)。 如果两个面上的节点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 2.点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组节点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是

非线性有限元分析

轨道结构的非线性有限元分析 姜建华 练松良 摘 要 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。钢轨垫层刚度、钢轨抗扭刚度和扣件扣压力的大小是影响轨距扩大的主要因素。根据非线性有限元接触理论,建立了能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型;并研究计算了不同扣件压力下,由于受载车轮与钢轨侧向滑动接触引起的轨距扩大问题。 关键词 轮轨关系,扣件压力,非线性弹性力学,有限元分析 1 引言 实际工程中常见的非线性问题一般可以归纳为三类:材料非线性、几何非线性以及边界条件非线性。材料非线性问题是由于材料的非线性本构关系所引起的,例如材料的弹塑性变形,材料的屈服和硬化等;几何非线性问题是由于结构的位移或变形相当大,以至必须按照变形后的几何位置来建立平衡方程;边界条件非线性问题是指边界条件随位移变化所引起的非线性问题。通常情况下,我们所遇到的非线性问题多数是上述三类非线性问题的组合[1,2]。 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。比如基于轮轨接触的材料非线性、几何非线性及边界条件非线性问题,以及扣件、钢轨、垫层三者间相互作用时所表现的边界条件非线性行为等。所以,机车车辆在轨道结构上行驶时引起的力学现象是相当复杂的。以往在研究轨道各部分应力应变分布规律时,通常采用连续弹性基础梁理论或连续点支承,偶尔简单考虑扣件的作用和弹性垫层的使用。不管用哪一种支承方式建立模型,都由于这样那样的假设而带有一定程度的近似性。所以,如何利用现代力学理论的最新成果以及日益发展的计算机技术,根据轨道结构的具体情况,建立更为完整更为准确的轨道结构计算模型,为轨道设计部门提供更加可靠的设计依据或研究思路,已十分必要。 本文提出了用非线性有限元理论研究轮轨系统和轨道结构的思路。作为算例之一,本文将根据非线性有限元理论,建立能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型。 2 轨道结构的有限元接触模型 对于非线性问题,不管是材料非线性、几何非线性,还是边界条件非线性,总是最终归结为求解一组非线性平衡方程及其控制方程。例如用位移作为未知数进行有限元分析时,最后可得到一组平衡方程及其控制方程为 : 图1 轮轨系统的对称性模型简图 [K(u)]{u}={R}(1) (u)= (u)(2)其中:{u}为节点位移列阵;{R}为节点载荷列阵; [K(u)]为总体刚度矩阵; (u)为边界条件。它们 36 姜建华:同济大学工程力学系,副教授、博士,上海200092

非线性有限元方法及实例分析

非线性有限元方法及实例分析 梁军 河海大学水利水电工程学院,南京(210098) 摘 要:对在地下工程稳定性分析中常用的非线性方程组的求解方法进行研究,讨论了非线性计算的迭代收敛准则,并利用非线性有限元方法分析了一个钢棒单轴拉伸的实例。 关键词:非线性有限元,方程组求解,实例分析 1引 言 有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。有限元的线性分析已经设计工具被广泛采用。但对于绝大多数水利工程中遇到的实际问题如地下洞室等,将其作为非线性问题加以考虑更符合实际情况。根据产生非线性的原因,非线性问题主要有3种类型[1]: 1.材料非线性问题(简称材料非线性或物理非线性) 2.几何非线性问题 3.接触非线性问题(简称接触非线性或边界非线性) 2 非线性方程组的求解 在非线性力学中,无论是哪一类非线性问题,经过有限元离散后,它们都归结为求解一个非线性代数方程组[2]: ()()()00 021212211=… …==n n n n δδδψδδδψδδδψΛΛΛ (1.1) 其中n δδδ,,,21Λ是未知量,n ψψψ,,,21Λ是n δδδ,,,21Λ的非线性函数,引用矢量记 号 []T n δδδδΛ21= (1.2) []T n ψψψψΛ21= (1.3) 上述方程组(1.1)可表示为 ()0=δψ (1.4) 可以将它改写为 ()()()0=?≡?≡R K R F δδδδψ (1.5) 其中()δK 是一个的矩阵,其元素 是矢量的函数,n n ×ij k R 为已知矢量。在位移有限 元中,δ代表未知的结点位移,()δF 是等效结点力,R 为等效结点荷载,方程()0=δψ表示结点平衡方程。 在线弹性有限元中,线性方程组

非线性有限元分析

非线性有限元分析 1 概述 在科学技术领域,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。 已经发展的数值分析方法可以分为两大类。一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。 另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。 1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。有限单元法的基本思想是将连续的求解区域离散为一组有限个,且按一定方式相互联接在一起的单元的组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。并且可以利用在每一个单元假设的近似函数来分片地表示全求解域上待求的未知场函数,从而使一个连续的无限自由度问题变成离散的有限自由度问题。 现已证明,有限单元法是基于变分原理的里兹法的另一种形式,从而使里兹法分析的所有理论基础都适用于有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法。利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,而且事先不要求满足任何边界条件,因此可以用来处理很复杂的连续介质问题。 在短短四十余年的时间里,有限单元的分析方法已经迅速地发展为适合于使用各种类型计算机解决复杂工程问题的一种相当普及的方法。如今,有限元广泛地应用于各个学科门类,已经成为工程师和科研人员用于解决实际工程问题,进行科学研究不可或缺的有力工具。有限单元法的应用围已由弹性力学平面问题扩展到空间问题,板壳问题,由静力平衡问题扩展到稳定问题,动力问题和波动问题。分析的对象从弹性材料扩展到塑性,粘弹性,粘塑性和复合材料等,从固体

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

solidworks进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。 ◇右键单击“实体文件夹”下具体零件的某个“Body”并选择“应用材料到实体”——只有

过盈配合应力的接触非线性有限元分析

过盈配合应力的接触非线性有限元分析 作者:许小强赵洪伦 摘要基于非线性有限元软件MARC,提出过盈配合应力的动态和静态两种有限元分析方法,并以铁道车辆某高速轮对组装的过盈装配为例进行了有限元仿真计算,比较了两种方法的计算结果,分析了过盈量、摩擦系数、形状误差对装配应力的影响,结果对于确定合理过盈量和改进加工工艺具有参考意义。 关键词过盈配合接触非线性接触应力 0引言 在机械工程实际中普遍采用过盈配合来传递扭矩和轴向力,例如轴承配合、轴瓦配合、铁道车辆的轮轴、制动盘等。它是利用过盈量产生半径方向的接触面压力,并依靠由该面压力产生的摩擦力来传递扭矩和轴向力。由于过盈配合两个相配合的接触面上不能粘贴应变片,因此难以对其应力状态进行测定,对整个组装过程的应力状态更难以进行跟踪研究,而且这种配合方式往往承受着交变载荷的作用,配合面间可能发生相对滑动,这一滑动是随着应力变化而变化的,因而配合面边缘的接触状态和应力状态也随着应力的交变而变化,表现出复杂的状态,因此一般只能凭经验确定采用的过盈量。从力学角度看,这类问题属于接触非线性问题,传统的弹性接触解法已难以处理,可采用光弹性模拟实验进行研究,但只能反映应力分布趋势。近年来,随着非线性理论的不断完善和计算机技术的飞速发展,利用非线性有限元法来分析这类问题已日趋成熟。 铁道车辆随着向高速、重载不断发展,对轮轴的安全性要求也越来越高。研究表明,轮轴配合部位的应力状态对车轴的疲劳强度具有重要的影响,因此对轮对配合部位的宏观接触应力状态进行研究将有助于指导轮对制造标准的制定、高速重载轮对的设计和加工工艺的改进,以提高轮对的抗疲劳性能。 本文利用著名非线性有限元软件MARC,针对过盈配合的压力压装法和温差组装法对这类问题提出动态和静态两种仿真计算方法,并以铁道车辆某高速轮对的配合为例进行了计算,对比了两种计算方法的结果,分析了过盈量、摩擦系数、形状误差等因素对装配应力的影响。

ANSYS 有限元分析基本流程

第一章实体建模 第一节基本知识 建模在ANSYS系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。 一、实体造型简介 1.建立实体模型的两种途径 ①利用ANSYS自带的实体建模功能创建实体建模: ②利用ANSYS与其他软件接口导入其他二维或三维软件所建立的实体模型。 2.实体建模的三种方式 (1)自底向上的实体建模 由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。 (2)自顶向下的实体建模 直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。 (3)混合法自底向上和自顶向下的实体建模 可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。自由网格划分时,实体模型的建立比较1e单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。 二、ANSYS的坐标系 ANSYS为用户提供了以下几种坐标系,每种都有其特定的用途。 ①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。 ②显示坐标系:定义了列出或显示几何对象的系统。 ③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。 ④单元坐标系:确定材料特性主轴和单元结果数据的方向。 1.全局坐标系 全局坐标系和局部坐标系是用来定位几何体。在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。总体坐标系是一个绝对的参考系。ANSYS提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y-柱坐标系。4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian),1是柱坐标系 (Cyliadrical),2是球坐标系(Spherical),5是Y-柱坐标系(Y-aylindrical),如图2-1所示。

solidworks进行有限元分析的一般步骤说课材料

s o l i d w o r k s进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆ COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要,

(即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。 ▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks 会自动地创建曲面几何体)。 ▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools →Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。

ABAQUS有限元接触分析的基本概念

ABAQUS有限元接触分析的基本概念2009-11-24 00:06:28 作者:jiangnanxue 来源:智造网—助力中国制造业创新—https://www.sodocs.net/doc/f7730584.html, CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。世界上几大CAE公司各自以其独到的技术占领着相应的市场。ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。 《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。 《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。 16.1.1 点对面离散与面对面离散 【常见问题16-1】 在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surface-dis - cre-tization)和面对面离散方法(surface-to-surface discretization),二者有何差别? 『解答』 在点对面离散方法中,从面(slave surface)上的每个节点与该节点在主面(master surface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。 使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。 面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。 在如图16-l和图16-2所示的实例中,比较了两种情况。

有限元法分析过程

有限元法分析过程 有限元法分析过程大体可分为:前处理、分析、后处理三大步骤。 对实际的连续体经过离散化后就建立了有限元分析模型,这一过程是有限元的前处理过程。在这一阶段,要构造计算对象的几何模型,要划分有限元网格,要生成有限元分析的输入数据,这一步是有限元分析的关键。 有限元分析过程主要包括:单元分析、整体分析、载荷移置、引入约束、求解约束方程等过程。这一过程是有限元分析的核心部分,有限元理论主要体现在这一过程中。 有限元法包括三类:有限元位移法、有限元力法、有限元混合法。 在有限元位移法中,选节点位移作为基本未知量; 在有限元力法中,选节点力作为未知量; 在有限元混合法中,选一部分基本未知量为节点位移,另一部分基本未知量为节点力。 有限元位移法计算过程的系统性、规律性强,特别适宜于编程求解。一般除板壳问题的有限元应用一定量的混合法外,其余全部采用有限元位移法。因此,一般不做特别声明,有限元法指的是有限元位移法。 有限元分析的后处理主要包括对计算结果的加工处理、编辑组织和图形表示三个方面。它可以把有限元分析得到的数据,进一步转换为设计人员直接需要的信息,如应力分布状态、结构变形状态等,并且绘成直观的图形,从而帮助设计人员迅速的评价和校核设计方案。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰

基于PANDA框架的非线性静力学有限元

基于PANDA框架的非线性静力学有限元 论文导读:基于PANDA框架。能够分析千万自由度规模的弹塑性静力学问题。非线性求解策略。形成了面向对象有限元并行计算框架PANDA。并行计算,基于PANDA框架的非线性静力学有限元。关键词:PANDA,静力学,非线性,有限元,并行计算 1 引言 特种武器结构复杂,在整个库存到靶序列(Stockpile to TargetSequence,STS)全寿命周期内要经历复杂严酷的载荷和环境条件,结构响应呈现出高度的材料非线性、边界非线性和几何非线性。为提高特种武器的设计、试验和库存维护水平,对武器结构在各种条件下响应的精细建模和分析至关重要,需要充分考虑结构的几何细节和物理内涵,所建立的有限元模型可达上千万自由度规模乃至更高,而传统的商用有限元程序由于国外对我国的出口限制,非线性有限元模型的分析规模被限制在几百万自由度以下,且计算周期较长,无法快速响应设计和维护的需要。 为了提升特种武器的工程数值模拟能力,适应不断提高的武器工程数值模拟需求,迎接和加速由现阶段小规模低效率计算向大规模高效并行计算的转变,2007年中国工程物理研究院启动了院预研重大项目“武器工程大规模并行计算框架研究及基础平台开发”。该项目在已有源码程序的基础上,通过在有限元并行计算方法方面开展研究与软件开发,初步形成了面向对象有限元并行计算框架PANDA,并基于PANDA框架初步开发了可应用于部分静力、振动、冲击和传热武器工

程问题求解的大规模有限元并行计算模拟程序。 针对特种武器研制中的非线性静力学有限元大规模精细分析需求,充分消化吸收开放源代码的程序设计思想和技巧,基于PANDA框架,开发非线性静力学有限元分析所需的单元类型、材料模型、非线性并行求解策略,集成大规模线性方程组并行求解算法,初步形成了可求解小应变、有限应变线弹性和弹塑性静力学问题的非线性静力学程序。悬臂梁弹塑性有限元分析模型达到了千万自由度规模,并行求解时间低于一小时。本文介绍了基于PANDA框架的单元类型、材料模型、非线性求解策略设计,并初步验证了非线性静力学有限元并行计算程序的计算精度和千万自由度规模分析能力。 2 基于PANDA框架的非线性静力学有限元并行计算程序设计 通过中国工程物理研究院的预研重大项目,采用面向对象、层次化、组件化的设计思想,对工程结构非结构网格有限元分析程序的基本数据结构、并行通信、求解控制等方面的共性和可重用部分进行抽象和程序实现,并集成了区域分割、解法器等服务组件,形成了面向对象有限元并行计算框架PANDA,提供经过系统规划设计的应用程序开发接口,以提供服务的形式引导应用程序的设计和实现,初步建立了结构分析有限元并行计算应用程序的集成开发环境。科技论文,并行计算。 基于PANDA框架,结构分析有限元并行计算应用程序的开发工作变得较为简单和高效,程序开发工作量大为减少。在PANDA框架既设的应用软件架构下,应用程序开发者可以将精力集中到本应用程序独

有限元分析程序设计

结构有限元分析程序设计 绪论 §0.1 开设“有限元程序设计”课程的意义和目的 §0.2 课程特点 §0.3 课程安排 §0.4 课程要求 §0.5 基本方法复习 $0.1 意义和目的 1.有限元数值分析技术本身要求工程设计研究人员掌握 1). 有限元数值分析技术的完善标志着现代计算力学的真正成熟和实用化,已在各种 力学中得到了广泛的应用。比如:,已杨为工程结构分析中最得以收敛的技术手段,现代功用大致有: a). 现代结构论证。对结构设计从内力,位移等方面进行优劣评定,从而进 行结构优化设计。 b)可取代部份实验,局部实验+有限元分析,是现代工程设计研究方法的一大 特点。 c)结构的各种功能分析(疲劳断裂,可靠性分析等)都以有限元分析工具作为 核心的计算工具。 2). 有限元数值分析本身包括着理论+技术实现(本身功用所绝定的) 有限元数值分析本身包括着泛函理论+分片插值函数+程序设计 2. 有限元分析的技术实现(近十佘年的事)更依赖于计算机程序设计 有限元分析的技术取得的巨大的成就,从某种意义上说,得益于计算机硬件技术的发展和程序设计技术的发展,这两者的依赖性在当代表现得更加突出。(如可视化技术) 3.从学习的角度,不仅要学习理论,而且要从程序设计设计角度对这些理论的技术实现有 一个深入的了解,应当致力于掌握这些技术实现能力,从而开发它,发展它。(理论本身还有待于进一步完美相应的程序设计必须去开发) 4.程序设计不仅是实现有限元数值分析的工具和桥梁,而且在以下诸方面也有意义: 1). 精通基本概念,深化理论认识; 2). 锻炼实际工程分析,实际动手的能力; 3). 获得以后工作中必备的工具。(作业+老师给元素库) 目的:通过讲述有限元程序设计的技术与技巧,便能达到自编自读的能力。 §0.2 课程特点 总描述:理论+算法+数据结构(程序设计的意义) 理论:有限元算法,构造,步骤,解的等外性,收敛性,稳定性,误差分析 算法;指求解过程的技术方法,含两方面的含义;a. 有限元数值分析算法,b, 与数据结构有关的算法(总刚稀疏存贮,提取,节点优化编号等) 数据结构:指各向量矩阵存贮管理与实现,辅助管理结构(指针,数据记录等) 具体特点: 理论性强:能量泛函理论+有限元构造算法+数据结构构造算法 内容繁杂:理论方法+技术方法+技术技巧 技巧性强:排序,管理结构(指针生成,整型运算等)

非线性有限元分析(学习总结报告)

非线性有限元 博士研究生专业课课程报告

目录 第一章绪言 (1) 1.1 非固体力学非线性问题的分类[1] (1) 1.2 非线性问题的分析过程[1] (2) 1.3 非线性有限元分析的基本原理 (2) 1.4 钢筋混凝土非线性分析的特点、现状及趋势 (3) 第二章非线性方程组的数值解法 (4) 2.1逐步增量法[3,4,5] (4) 2.2迭代法[3,4,5] (6) 2.3收敛标准 (8) 2.3.1.位移收敛准则 (8) 2.3.2.不平衡力收敛准则 (8) 2.3.3.能量收敛准则 (9) 2.4结构负刚度的处理[4,5] (9) 第三章材料的本构关系 (13) 3.1 钢筋的本构关系 (13) 3.1.1 单向加载下的应力应变关系 (13) 3.1.2 反复加载下的应力应变关系 (14) 3.2 混凝土的本构关系 (14) 3.2.1 单向加载下的应力应变关系 (14) 3.2.2 重复加载下的应力应变关系 (14) 3.2.3 反复加载下的应力应变关系 (14) 3.3 恢复力模型的分类 (14) 3.4 恢复力的获得方法 (15) 第四章非线性有限元在结构倒塌反应中的应用 (17) 4.1 钢筋混凝土结构倒塌反应研究现状 (17) 4.2 钢筋混凝土的有限元模型 (17) 4.2.1分离式模型 (18) 4.2.2组合式模型 (19) 4.2.3整体式模型 (20) 4.3 倒塌反应中RC结构有限元分析方法的选择 (20) 4.3.1隐式有限单元法 (21) 4.3.2显式有限单元法 (22) 4.4 钢筋混凝土框架结构的倒塌反应分析 (22) 4.4.1基于隐式有限单元法的倒塌分析 (22) 4.4.2 基于显式有限单元法的倒塌分析 (23) 4.5显式有限法在倒塌反应分析中的问题 (24)

有限元分析的一般过程

一、结构的离散化 将结构或弹性体人为地划分成由有限个单元,并通过有限个节点相互连接的离散系统。 这一步要解决以下几个方面的问题: 1、选择一个适当的参考系,既要考虑到工程设计习惯,又要照顾到建立模型的方便。 2、根据结构的特点,选择不同类型的单元。对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题。 3、根据计算分析的精度、周期及费用等方面的要求,合理确定单元的尺寸和阶次。 4、根据工程需要,确定分析类型和计算工况。要考虑参数区间及确定最危险工况等问题。 5、根据结构的实际支撑情况及受载状态,确定各工况的边界约束和有效计算载荷。 二、选择位移插值函数 1、位移插值函数的要求 在有限元法中通常选择多项式函数作为单元位移插值函数,并利用节点处的位移连续性条件,将位移插值函数整理成以下形函数矩阵与单元节点位移向量的乘积形式。 位移插值函数需要满足相容(协调)条件,采用多项式形式的位移插值函数,这一条件始终可以满足。 但近年来有人提出了一些新的位移插值函数,如:三角函数、样条函数及双曲函数等,此时需要检查是否满足相容条件。 2、位移插值函数的收敛性(完备性)要求: 1)位移插值函数必须包含常应变状态。 2)位移插值函数必须包含刚体位移。 3、复杂单元形函数的构造 对于高阶复杂单元,利用节点处的位移连续性条件求解形函数,实际上是不可行的。因此在实际应用中更多的情况下是利用形函数的性质来构造形函数。 形函数的性质: 1)相关节点处的值为 1,不相关节点处的值为 0。 2)形函数之和恒等于 1。 1、建立数学模型(特征消隐,理想化,清除)((即从CAD 几何体→FEA 几何体),共 有下列三法:▲ 特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲ 理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理▲ 清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。) 2、建立有限元模型:(选择网格种类及定义分析类型;添加材料属性;施加约束;定义载 荷;网格划分) 3、求解有限元模型:再在此基础上计算应变和应力等其它物理量;在热分析中,FEA 首先 计算的是网格中每个节点的温度(标量),再在此基础上计算温度梯度和热流等其它物理量. 一般如果模型可划分网格,那么它就可以求解,但如果没有定义材料或载荷,则求解会终止。 4、结果分析:材料线性假设、小变形假设、静态载荷假设等等。

有限元分析步骤

有限元建模与分析 有限元分析(FEA)是一种预测结构的偏移与其它应力影响的过程,有限元建模(FEM)将这个结构分割成单元网格以形成实际结构的模型,每个单元具有简单形态(如正方形或三角形)。这样有限元程序就有了可写出在刚度矩阵结构中控制方程方面的信息。每个单元上的未知量就是在节点上的位移,这个点就是单元元的连接点。有限元程序将这些单个单元的刚度矩阵组合起来以形成整个模型的总刚度矩阵,并给予已知力和边界条件来求解该刚度矩阵以得出未知位移,从节点上位移的变化就可以计算出每个单元中的应力。 有限单元由假定的应变方程式导出,有些单元可假设其应变是常量,而另外一些可采用更高阶的函数。利用给定单元的这些方程和实际几何体,则可以写出外力和节点位移之间的平衡方程。对于单元的每个节点来说,每个自由度就有一个方程,这些方程被十分便利地写成矩阵的形式以用于计算机的演算中,这个系数的矩阵就变成了一个显示出力对位移的关系的刚度矩阵:{F}=[K]、{d} 尽管求知量处于离散的自由度,内部方程仍被写成表述为连续集的应变函数。这就意味着如果选择了正确单元的话,纵然这个有限元模型有一组离散的方程,只要用有限的节点和单元也可以收敛出正确的答案。 有限元模型是解决全部结构问题的完全理想的模型。这些问题包括节点的定位,单元,物理的和材料的特性,载荷和边界条件,根据分析类型的不同,如静态结构载荷,动态的或热力分析,这个模型就确定得不同。 一个有限元模型常常由不止一种单元类型来建立,有限元模型是以结构的偏移来建立成数学模型,而不只是在外观上象原结构。也许某个零件用梁单元最好,而另外的零件则可能用薄壳单元最理想。 对于给定的问题来讲,求解结果的准确性将取决于结构建模的好坏,负载和边界条件的确定,以及所用单元的精度。 一般来讲,如模型细分更小的单元,则求解将更准确。了解你在最终的求解结果上有充分收敛的唯一确信的方法是用更细网格的单元来建立更多的模型,以检查求解结果的收敛性。 新的有限元用户经常产生想象上的错误,即建立一个有限元模型的目的是建立一个看起来象这种结构的模型。有限元建模的目的是建立一个从数学意义是“相似”的模型,而不是一个外观相似的模型。一个有经验的使用者学会了怎样选择单元的正确类型,和在模型的不同区域中怎样来细分网格。 一个经常忽略的错误根源是在一个模型中的负载和边界条件上进行了错误的假设。同时也很轻易地相信一个有限元模型的每个十进位的结果。以及忘掉了在负载和边界条件上粗糙的假设。如果有一个关于怎样建立边界条件模型的问题的话,宁可用你的模型以不同的方法去测试其灵敏度,而不是仅遵循一种方法,得出一种答案,

过盈配合应力的接触非线性有限元分析

过盈配合应力的接触非线性有限元分析 摘要基于非线性有限元软件MARC,提出过盈配合应力的动态和静态两种有限元分析方法,并以铁道车辆某高速轮对组装的过盈装配为例进行了有限元仿真计算,比较了两种方法的计算结果,分析了过盈量、摩擦系数、形状误差对装配应力的影响,结果对于确定合理过盈量和改进加工工艺具有参考意义。 关键词过盈配合接触非线性接触应力 0 引言 在机械工程实际中普遍采用过盈配合来传递扭矩和轴向力,例如轴承配合、轴瓦配合、铁道车辆的轮轴、制动盘等。它是利用过盈量产生半径方向的接触面压力,并依靠由该面压力产生的摩擦力来传递扭矩和轴向力。由于过盈配合两个相配合的接触面上不能粘贴应变片,因此难以对其应力状态进行测定,对整个组装过程的应力状态更难以进行跟踪研究,而且这种配合方式往往承受着交变载荷的作用,配合面间可能发生相对滑动,这一滑动是随着应力变化而变化的,因而配合面边缘的接触状态和应力状态也随着应力的交变而变化,表现出复杂的状态,因此一般只能凭经验确定采用的过盈量。从力学角度看,这类问题属于接触非线性问题,传统的弹性接触解法已难以处理,可采用光弹性模拟实验进行研究,但只能反映应力分布趋势。近年来,随着非线性理论的不断完善和计算机技术的飞速发展,利用非线性有限元法来分析这类问题已日趋成熟。 铁道车辆随着向高速、重载不断发展,对轮轴的安全性要求也越来越高。研究表明,轮轴配合部位的应力状态对车轴的疲劳强度具有重要的影响,因此对轮对配合部位的宏观接触应力状态进行研究将有助于指导轮对制造标准的制定、高速重载轮对的设计和加工工艺的改进,以提高轮对的抗疲劳性能。 本文利用著名非线性有限元软件MARC,针对过盈配合的压力压装法和温差组装法对这类问题提出动态和静态两种仿真计算方法,并以铁道车辆某高速轮对的配合为例进行了计算,对比了两种计算方法的结果,分析了过盈量、摩擦系数、形状误差等因素对装配应力的影响。 1 过盈装配接触非线性问题的求解方法 1.1 接触非线性问题的求解方法 过盈问题是接触问题的一种,属于边界条件高度非线性的复杂问题,其特点是在接触问题中某些边界条件不是在计算开始就可以给出,而是计算的结果,两接触体间的接触面积和压力分布随外载荷的变化而变化,同时还包括正确模拟接触面间的摩擦行为和可能存在的接触传热。用有限元法解接触问题以往常采用的物理模型是节点对模型,即将两接触物体的接触面划分成相同的网格,组成一一对应的节点对,并假定两接触体的接触力通过节点对传递,这种模型需预先知道接触发生的确切部位,以便施加边界单元,对于结构复杂问题和考虑摩擦的动态接触问题,点对模型将给结构离散和方程求解带来极大困难,从而难以解决。近年来提出的点面接触模型是把两接触体分为主动体和被动体,在分析时研究主动体的节点与被动体接触表面上相接触的自由度关系及变形的一致关系,从而确定接触边界条件,然后从边界变形协调的变分原理出发,建立整个接触系统的控制方程。这种模型能有效处理复杂接触表面和动态接触问题。

相关主题