搜档网
当前位置:搜档网 › 三角函数的对称性(人教A版)

三角函数的对称性(人教A版)

三角函数的对称性(人教A版)
三角函数的对称性(人教A版)

三角函数的对称性(人教A版)

一、单选题(共10道,每道10分)

1.函数在上对称轴的条数为( )

A.1

B.2

C.3

D.0

2.方程(是参数,)表示的曲线的对称轴的方程为( )

A. B.

C. D.

3.已知,函数的一条对称轴为直线,一个对称中心为

,则有( )

A.最小值2

B.最大值2

C.最小值1

D.最大值1

4.函数()图象的一条对称轴在内,则满足此条件的一个值为( )

A. B.

C. D.

5.已知函数图象在区间上仅有两条对称轴,且,那么符合条件的值有( )个

A.1

B.2

C.3

D.4

6.设函数与函数的对称轴完全相同,则的值为( )

A. B.

C. D.

7.设点是函数的图象C上的一个对称中心,若点到图象C 的对称轴的距离的最小值为,则为( )

A.1

B.2

C. D.4

8.函数(,)为奇函数,该函数的部分图象如图所示,

分别为最高点与最低点,并且两点间的距离为,则该函数的一条对称轴为直线( )

A. B.

C. D.

9.设函数(,,)图象的相邻两条对称轴为直线,直线,则( )

A.的图象过点

B.在区间上是减函数

C.的图象的一个对称中心是

D.的最大值是

10.函数(,,,)的部分图象如图所示,如果,且,则等于( )

A.1

B.

C. D.

(人教版初中数学)锐角三角函数

锐角三角函数 一.〖基础训练〗 1、在△ABC 中,∠C =90°,则sinA= ,cosA= tanA= cotA= . 2、根据直角三角形的 元素(至少有一个边),求出 其它所有元素的过程,即解直角三角形 3.Rt △ABC 中,若sinA =45 ,AB =10,那么BC = ,tanB = 4.写出适合条件的锐角α Sin600= , tan300= ,cos α=32 ,α= , 5、在△ABC 中,∠C =90°,AC=6,BC=8,那么sinA= 6、sin300+tan450= . 7、若sin α=cos70°,则角α等于 A .70°; B .60°; C .45°; D .20°. 8、(讲解)若∠A 为锐角,且cosA ≤ 12 ,那么( ) A 、00≤A ≤600 B 、600≤A ≤900 C 、00≤A ≤300 D 、300≤A ≤90 0 二.〖中考在线〗(讲解) 1、(2004年中考题).在△ABC 中,∠C =90°,sinA =35 ,则cosA 的值是( ) (A ) 35 (B )45 (C )925 (D )1625 2、如图,(2003年第21题)在△ABC 中,AD 是BC 边上的高,tanB=cos ∠DAC. (1)求证:AC=BD (2)若sinC=1213 ,BC=12,求AD 的长. 三.〖考点训练〗 1.Rt △ABC 中,∠C =90°,AB =6,AC =2,则sinA =( ) (A ) 13 (B )23 (C )23 2 (D )23 2.已知∠A +∠B =90°,则下列各式中正确的是( ) A B C D

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

高中数学三角函数的图象与性质题型归纳总结

三角函数的图象与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ω x +φ)或y =A cos(ω x +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4π C .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1- D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f = B .(0)0f = C .'(0)1f = D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数 D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数 D .π最小正周期为2的偶函数

三角函数的单调性、奇偶性、单调性练习

三角函数的图像性质:奇偶性、单调性、周期性 例题1:判断下列函数的奇偶性 (1)()()sin f x x x π=+ (2)21sin cos ()1sin x x f x x +-=+ 例题2:求下列函数的单调区间 (1)()sin 33f x x π?? =- ??? (2)()cos(2)3f x x π=- [](0,)x π ∈ 例题3:求下列函数的值域 (1)32cos 6y x π? ?=-+ ?? ?,[](0,)x π∈ (2)x x y sin sin += (3)sin sin y x x =+ 例题4:已知函数3cos 216y x π? ?=++ ?? ?,请写出该函数的对称轴、对称中心;用五点作图法作 出该函数的图像. 同步练习: 1、写出下列函数的周期: (1)5sin 23y x π? ?=--+ ?? ?(2)tan(2)y x π=+(3)7cos2y x =+(4)2tan 33y x π??=- ???

2、(1)求函数2sin 25y x x =+-的定义域.(2)解不等式1sin 42x π? ?-≥ ?? ?. 3、比较下列各数的大小:sin1?、sin1、sin π? 4、已知()cos 4 n f n π =,*n N ∈,则(1)(2)(3)(2011)f f f f ++++=__________. 5、方程lg sin 3x x π? ?=+ ?? ?实数根的个数为___________. 6、如果4 x π ≤,求2()cos sin f x x x =+的最值,并求出取得最值时x 的值. 7、写出函数1 3tan 2 3y x π??=+ ???的对称中心,并用作出该函数在[]0,x π∈的图像. 8、对于函数()f x 定义域,22ππ?? - ??? 中的任意()1122,x x x x ≠,有如下结论: (1)()()f x f x π+=. (2) ()()f x f x -= (3)(0)1f =. (4) 1212 ()() 0f x f x x x ->- (5) 1212()()22x x f x f x f ++??> ??? 当()tan f x x =时,以上结论正确的序号为________________. 能力提高: 1、()2sin f x wx =(01w <<),在区间0,3π?? ???? 上最大值是2,求w . 2、若2()sin sin 1f x x a x =--+的最小值为-6,求实数a 的值. 3、设定义在R 上的奇函数()f x ,满足(2)()f x f x +=-.当02x ≤≤时,2()2f x x x =-. (1)当20x -≤≤时,求()f x 的表达式;(2)求(9)f 与(9)f -的值; (3)证明()f x 是奇函数. 三角函数的图象变换 例题1:由函数sin y x =的图象经过怎样的变换,得到函数π2sin 216y x ? ?=--+ ?? ?的图象.

三角函数图像的对称轴与对称中心

函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点旋转 180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函y=sinx 的图像既是轴对称又是中心对称, 它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形;y=sinx 的图象的对称轴是经过其图象的 “峰顶点” 或 “谷底点” , 且平行于y 轴的无数条直线; 它的图象关于x 轴的交点分别成中心对称图形。 三角函数图像的对称轴与对称中心 特级教师 王新敞 对于函数sin()y A x ωφ=+、cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系.而tan()y A x ωφ=+的对称中心与零点和渐近线与x 轴的交点相联系,有渐近线但无对称轴.由于函数sin()y A x ωφ=+、cos()y A x ωφ=+和 tan()y A x ωφ=+的简图容易画错, 一般只要通过函数sin y x =、cos y x =、tan y x =图像的对称轴与对称中心就可以快速准确的求出对应的复合函数的对称轴与对称中心. 1.正弦函数sin y x =图像的对称轴与对称中心: 对称轴为2x k π π=+、对称中心为(,0) k k Z π∈. 对于函数sin()y A x ωφ=+的图象的对称轴只需将x ωφ+取代上面的x 的位置,即2x k π ωφπ+=+ ()k Z ∈,由此解出1 ()2x k π πφω=+- ()k Z ∈,这就是函数 sin()y A x ωφ=+的图象的对称轴方程. 对于函数sin()y A x ωφ=+的图象的对称中心只需令x k ωφπ+= ()k Z ∈,由此解出1 ()x k πφω=- ()k Z ∈, 这就是函数sin()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1 ((),0) k k Z πφω-∈. 2.余弦函数cos y x =图像的对称轴与对称中心: 对称轴为x k π=、对称中心为(,0)2k π π+ k Z ∈. 对于函数cos()y A x ωφ=+的图象的对称轴只需将x ωφ+取代上面的x 的位置,即x k ωφπ+= ()k Z ∈,由此解出1()x k πφω= - ()k Z ∈,这就是函数cos() y A x ωφ=+的图象的对称轴方程. 对于函数cos()y A x ωφ=+的图象的对称中心只需令2x k πωφπ+=+ ()k Z ∈,由此解出1 ()2x k π πφω=+- ()k Z ∈,这就是函数cos()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1((),0) 2k k Z π πφω+-∈.

锐角三角函数的图文解析

锐角三角函数的图文解析 一、选择题 1.如图,菱形ABCD 中,AC 交BD 于点O ,DE ⊥BC 于点E ,连接OE ,∠DOE =120°,DE =1,则BD =( ) A .3 B .23 C .63 D .33 【答案】B 【解析】 【分析】 证明△OBE 是等边三角形,然后解直角三角形即可. 【详解】 ∵四边形ABCD 是菱形,∴OD =OB ,CD =BC . ∵DE ⊥BC ,∴∠DEB =90°,∴OE =OD =OB . ∵∠DOE =120°,∴∠BOE =60°,∴△OBE 是等边三角形,∴∠DBC =60°. ∵∠DEB =90°,∴BD = 23sin603 DE =?. 故选B . 【点睛】 本题考查了解直角三角形,菱形的性质,等边三角形的判定和性质,直角三角形斜边的中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( ) A .500sin55m o B .500cos55m o C .500tan55m o D .500cos55m o 【答案】B 【解析】 【分析】 根据已知利用∠D 的余弦函数表示即可. 【详解】

在Rt△BDE中,cosD=DE BD , ∴DE=BD?cosD=500cos55°. 故选B. 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键. 3.菱形ABCD的周长为20cm,DE⊥AB,垂足为E,sinA=3 5 ,则下列结论正确的个数有() ①DE=3cm; ②BE=1cm; ③菱形的面积为15cm2; ④BD=210cm. A.1个B.2个C.3个D.4个【答案】C 【解析】 【分析】 根据菱形的性质及已知对各个选项进行分析,从而得到答案 【详解】 ∵菱形ABCD的周长为20cm ∴AD=5cm ∵sinA=3 5 ∴DE=3cm(①正确) ∴AE=4cm ∵AB=5cm ∴BE=5﹣4=1cm(②正确) ∴菱形的面积=AB×DE=5×3=15cm2(③正确) ∵DE=3cm,BE=1cm ∴10(④不正确) 所以正确的有三个. 故选C. 【点睛】 本题考查了菱形的性质及锐角三角函数的定义,熟练掌握性质是解题的关键 4.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()

函数的定义域与值域单调性与奇偶性三角函数典型例题

函数的定义域与值域、单调性与奇偶性 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法( 注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y =f (x )表示的函数的定义域时,常有以下几种情况: ①若f (x )是整式,则函数的定义域是实数集R ; ②若f (x )是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x )是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数); (3)不等式法(利用基本不等式,尤其注意形如)0(>+=k x k x y 型的函数) (4)函数的单调性:特别关注)0(>+ =k x k x y 的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数) (7)导数法(高次函数) (8)反函数法 (9)数形结合法 4. 求函数的单调性 (1)定义法: (2)导数法: (3)利用复合函数的单调性: (4)关于函数单调性还有以下一些常见结论: ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______; ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性; ③互为反函数的两个函数在各自定义域上有______的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 (6)应用:比较大小,证明不等式,解不等式。 5. 函数的奇偶性 奇偶性:定义:注意区间是否关于原点对称,比较f (x ) 与f (-x )的关系。f (x ) -

人教版初中数学锐角三角函数的难题汇编及解析

人教版初中数学锐角三角函数的难题汇编及解析 一、选择题 1.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( ) A .60海里 B .45海里 C .3 D .3 【答案】D 【解析】 【分析】 根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP 的长,求出答案. 【详解】 解:由题意可得:∠B=30°,AP=30海里,∠APB=90°, 故AB=2AP=60(海里), 则此时轮船所在位置B 处与灯塔P 之间的距离为:22303AB AP -= 故选:D . 【点睛】 此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键. 2.在半径为1的O e 中,弦AB 、AC 32,则BAC ∠为( )度. A .75 B .15或30 C .75或15 D .15或45 【答案】C 【解析】 【分析】 根据题意画出草图,因为C 点位置待定,所以分情况讨论求解. 【详解】 利用垂径定理可知:32 2 AE = .

sin∠AOD= 3 2 ,∴∠AOD=60°; sin∠AOE= 2 2 ,∴∠AOE=45°; ∴∠BAC=75°. 当两弦共弧的时候就是15°. 故选:C. 【点睛】 此题考查垂径定理,特殊三角函数的值,解题关键在于画出图形. 3.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为() A.23B.3C.33D.3 【答案】A 【解析】 【分析】 【详解】 设AC=x,在Rt△ABC中,∠ABC=30°,即可得AB=2x,3, 所以BD=BA=2x,即可得33)x, 在Rt△ACD中,tan∠DAC= (32) 32 CD x AC + ==, 故选A. 4.直角三角形纸片的两直角边长分别为6,8,现将ABC V如图那样折叠,使点A与点B 重合,折痕为DE,则tan CBE ∠的值是()

三角函数的奇偶性测试题(人教A版)(含答案)

三角函数的奇偶性(人教A版) 一、单选题(共15道,每道6分) 1.下列函数中是偶函数的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:三角函数的奇偶性 2.下列函数中是奇函数的是( )

A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:三角函数的奇偶性 3.下列函数中是偶函数的是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:三角函数的奇偶性 4.函数,( ) A.是奇函数 B.是偶函数 C.既不是奇函数也不是偶函数 D.既是奇函数又是偶函数 答案:C 解题思路:

试题难度:三颗星知识点:余弦函数的奇偶性 5.函数( ) A.是奇函数 B.是偶函数 C.既不是奇函数也不是偶函数 D.既是奇函数又是偶函数 答案:B 解题思路: 试题难度:三颗星知识点:余弦函数的奇偶性 6.函数( ) A.是奇函数 B.是偶函数 C.既不是奇函数也不是偶函数 D.既是奇函数又是偶函数

答案:C 解题思路: 试题难度:三颗星知识点:正切函数的奇偶性 7.函数( ) A.是奇函数 B.是偶函数 C.既不是奇函数又不是偶函数 D.既是奇函数又是偶函数 答案:A 解题思路: 试题难度:三颗星知识点:三角函数的奇偶性 8.已知函数,,则( )

A.与都是奇函数 B.和都是偶函数 C.是奇函数,是偶函数 D.是偶函数,是奇函数 答案:A 解题思路: 试题难度:三颗星知识点:三角函数的奇偶性 9.已知函数,,则( ) A.与都是奇函数 B.和都是偶函数 C.是奇函数,是偶函数 D.是偶函数,是奇函数 答案:C 解题思路:

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

人教版初中数学锐角三角函数的知识点复习

人教版初中数学锐角三角函数的知识点复习 一、选择题 1.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( ) A .asinα+asinβ B .acosα+acosβ C .atanα+atanβ D .tan tan a a αβ + 【答案】C 【解析】 【分析】 在Rt △ABD 和Rt △ABC 中,由三角函数得出BC =atanα,BD =atanβ,得出CD =BC+BD =atanα+atanβ即可. 【详解】 在Rt △ABD 和Rt △ABC 中,AB =a ,tanα= BC AB ,tanβ=BD AB , ∴BC =atanα,BD =atanβ, ∴CD =BC+BD =atanα+atanβ, 故选C . 【点睛】 本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC 和BD 是解题的关键. 2.如图,△ABC 内接于半径为5的⊙O ,圆心O 到弦BC 的距离等于3,则∠A 的正切值等于( ) A .35 B .45 C .34 D .43 【答案】C 【解析】

试题分析:如答图,过点O作OD⊥BC,垂足为D,连接OB,OC,∵OB=5,OD=3,∴根据勾股定理得BD=4. ∵∠A=1 2 ∠BOC,∴∠A=∠BOD. ∴tanA=tan∠BOD= 4 3 BD OD . 故选D. 考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义. 3.同学们参加综合实践活动时,看到木工师傅用“三弧法”在板材边角处作直角,其作法是:如图: (1)作线段AB,分别以点A,B为圆心,AB长为半径作弧,两弧交于点C; (2)以点C为圆心,仍以AB长为半径作弧交AC的延长线于点D; (3)连接BD,BC. 根据以上作图过程及所作图形,下列结论中错误的是() A.∠ABD=90°B.CA=CB=CD C.sinA= 3 2 D.cosD= 1 2 【答案】D 【解析】 【分析】 由作法得CA=CB=CD=AB,根据圆周角定理得到∠ABD=90°,点C是△ABD的外心,根据三角函数的定义计算出∠D=30°,则∠A=60°,利用特殊角的三角函数值即可得到结论. 【详解】 由作法得CA=CB=CD=AB,故B正确; ∴点B在以AD为直径的圆上, ∴∠ABD=90°,故A正确; ∴点C是△ABD的外心,

三角函数对称性习题

k (k Z),则 x - ,所以函数y Acos( )的图象的对称轴方程 习题: 最大负值是 n 8、f (x ) =sin2x+acos2x 关于 x= 对称,求 a 的值 8 、正弦曲线和余弦曲线都是轴对称图形 y Asin( x )对称轴方程的求法是:令 sin( x ) 1,得 k i (k Z),则x (2k 2 2 ,所以函数 Asin( x )的图象的 (2k 1) 2 对称轴方程为x 2 y Acos( x )对称轴方程的求法是:令 cos( x ) 1,得 1、 函数 y 3si n(2x R 图象的对称轴方程为 2、 函数 5 y=s in (2x+q n) 图象的对称轴方程为 3、 函数 4、 函数 1 f (x) cos(3x 2 n y=cos(2x-—) 3)的图象的对称轴方程是 的图象的对称轴方程是 5、 n y=sin(2x+ )的一条对称轴为( 4 n n n A.x=- B.x= ■ C.x=- 4 8 8 D.x= 6、 n y=cos(2x-—)的一条对称轴为 n 5 n n x=§ B.x= 了C.x= 12 71 7、 y =sin(2x+ $ )的一条对称轴为 n x=- y ,贝打= ,y 的最小正值是

、正弦曲线和余弦曲线都是中心对称图形 y Asin( x )的对称中心求法是:令sin( x ) 0,得x k (k Z), nt k k 则x (k Z),所以函数y Asin( x )的图象关于点(,0) (k Z)成中心对称; y Acos( x )对称中心的求法是:令cos( x ) 0,得 (2k 1) 2 x k -(k Z) ,则x ---------------------------- 扌------ (k Z),所以函数y Acos( x )的 图象关于点(__ ,0) (k Z)成中心对称; 2 习题: 1、函数y 4sin(2x -)的图象的一个对称中心是_____________________________ 6 1 2、函数y 2cos(—x —)的图象的对称中心是____________________________ 2 8 n 3、y=sin(2x+ —)的一个对称中心为( ) n 5 n n n A.( — ,0) B.( 石,0) C.( 12 ,0) D.( ,0) n 4、y=2cos(2x- ■—)的一个对称中心为( ) 3 n n n A. (n ,0 ) B. (,0 ) C. ( — ,0 ) D.(乜,0) n 5、y=cos(2x+ $ )的对称中心为(■— ,0) 则$ = ___________ , y的最小正值是___________ , y的最大负值是__________ 。 三、正切曲线和余切曲线都是中心对称图形 k k 2 y Atan( x )对称中心的求法是:令x (k Z),则x ,所 k 2 以函数y Atan( x )的图象关于点(,0) (k Z)成中心对称;

三角函数的对称性

三角函数的对称性 一、对称性规律: 1、 对称轴: 若 x a =是 ()sin()f x A x ω=+Φ或()cos()f x A x ω=+Φ的对 称轴,则 ()f a A =± 2、 对称中心: 若 (,0) a 是 ()sin()f x A x ω=+Φ或()cos()f x A x ω=+Φ或 ()tan()f x A x ω=+Φ的对称中心,则()0f a = 解题思路:解选择题的思路即代入法。 二、基础检测 (会考说明)1、 )(62sin 3π +=x y 的一条对称轴可以是: ( ) A .Y 轴; B . 6π = x .; C .12π -=x . D .. 3π =x .。 (会考说明)2、)(43sin 3π -=x y 的一个对称中心可以是: ( ) A .),(012π -; B .),(0127π-.; C .. ),(012 7π; D .),(01211π. 3、已知函数(文)函数y = cos (2x -4π )的一对称方程是 ( ) A .x = 2π - B .x = 4π - C .x = 8π - D .x = π 4、函数πsin 23y x ? ?=+ ? ? ?的图象( ) A.关于点π03?? ???,对称 B.关于直线π4x =对称

C.关于点π04?? ???,对称 D.关于直线π3x =对称 5、22.(山东卷)已知函数)12cos()12sin(π -π-=x x y ,则下列判断正确 的是( ) (A )此函数的最小正周期为π2,其图象的一个对称中心是)0,12(π (B )此函数的最小正周期为 π ,其图象的一个对称中心是) 0,12(π (C )此函数的最小正周期为π2,其图象的一个对称中心是)0,6(π (D )此函数的最小正周期为 π ,其图象的一个对称中心是) 0,6(π 6、(4) 给定性质:①最小正周期为π,②图象关于直线3x π =对称, 则下列函数中同时具有性质①、②的是 ( ) (A) sin()26x y π=+ (B) sin(2)6y x π =- (C) sin y x = (D) sin(2)6y x π =+

人教版初中数学锐角三角函数的经典测试题附答案

人教版初中数学锐角三角函数的经典测试题附答案 一、选择题 1.如图,在矩形ABCD 中,4,AB DE AC =⊥,垂足为E ,设ADE α∠=,且 3 cos 5 α= ,则AC 的长为( ) A .3 B . 163 C . 203 D . 165 【答案】C 【解析】 【分析】 根据同角的余角相等求出∠ADE=∠ACD ,再根据两直线平行,内错角相等可得∠BAC=∠ACD ,然后求出AC . 【详解】 解:∵DE ⊥AC , ∴∠ADE+∠CAD=90°, ∵∠ACD+∠CAD=90°, ∴∠ACD=∠ADE=α, ∵矩形ABCD 的对边AB ∥CD , ∴∠BAC=∠ACD , ∵cos α=3 5,35 AB AC ∴ =, ∴AC= 520433?=. 故选:C . 【点睛】 本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC 是解题的关键. 2.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,己知菱形的一个内角为60°,A 、B 、C 都是格点,则tan ABC ∠=( )

A . 39 B . 36 C . 33 D . 32 【答案】A 【解析】 【分析】 直接利用菱形的对角线平分每组对角,结合锐角三角函数关系得出EF,的长,进而利用 EC tan ABC BE ∠= 得出答案. 【详解】 解:连接DC ,交AB 于点E . 由题意可得:∠AFC=30°, DC ⊥AF, 设EC=x,则EF= x =3x tan 30? , ∴BF AF 2EF 23x === EC 3 tan ABC BE 23x 3x 33= === +∠, 故选:A 【点睛】 此题主要考查了菱形的性质以及解直角三角形,正确得出EF 的长是解题关键. 3.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点 B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A , C ,E 成一直线,那么开挖 点E 离点D 的距离是( )

2020人教版中考数学《锐角三角函数》专题及答案详解

【2020】人教版中考数学《锐角三角函数》 专题及答案 一、选择题 1. 如图,在△ABC 中,CA = CB = 4,cos C=1 4,则sinB 的值为(▲) A . B . C . D . 【答案】D 2..如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB ,点A ,B ,C ,D ,O 在同一平面内),已知AB=a ,AD=b ,∠BCO=x ,则点A 到OC 的距离等于( ) A .asinx+bsinx B .acosx+bcosx C .asinx+bcosx D .acosx+bsinx 【答案】D 【解析】作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=x ,∴∠EAB=x ,∴∠FBA=x ,∵AB=a ,AD=b ,∴FO=FB+BO=a ?cosx+b ?sinx ,故选D . 3.如图,一个人从山脚下的A 点出发,沿山坡小路AB 走到山顶B 点.已知坡角为20°,山高BC =2千米. A. B. C. D. BC AB 2 sin 20sin 20BC .故按键顺序为 20° 2

4.已知∠α为锐角,且sinα=1 2,则∠α=() A.30° B.45° C.60° D.90° 【答案】A 【解析】∵∠α为锐角,且sinα=1 2,∴∠α=30°.故选A. 5.矩形OABC 在平面直角坐标系中的位置如图所示,已知B (32,2),点A 在x 轴上,点C 在y 轴上,P 是对角线OB 上一动点(不与原点重合),连接PC ,过点P 作PD ⊥PC 交x 轴于点D ,下列结论:①OA=BC= 32;②当点D 运动到OA 的中点处时,PC 2+PD 2=7;③在运动过程中,∠CDP 是一个定值;④当△ODP 为等腰三角形时,点D 的坐标为(33 2,0),其中正确结论的个数是() A. 1个 B. 2个 C.3个 D. 4个 【答案】D 【解析】已知B (32,2),所以OA=BC=32,故①正确;当点D 运动到OA 的中点处时, OD=3,而OC=2,所以OC 2=7,在直角三角形CPD 中,PC 2+PD 2 =7,故②正确;过点P 作PD ⊥ PC 交x 轴于点D ,所以在运动过程中,∠CDP 是一个定值,故③正确;当△ODP 为等腰三角形时, OC ⊥BD ,∠CDO=60°所以3 OD OC ,即OD=332,所以点D 的坐标为(332,0). 6. 如图,在△ABC 中,CA = CB = 4,cos C=1 4,则sinB 的值为(▲) A . B . C . D . 【答案】D 【解析】过点A 作AD ⊥BC 于点D ,∵cosC=1 4,AC=4,∴CD=1,∴BD=3, AD= B

人教版初中数学锐角三角函数的图文解析

人教版初中数学锐角三角函数的图文解析 一、选择题 1.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( ) A .(30) B .(3,0) C .(4035233 D .(30) 【答案】B 【解析】 【分析】 根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出. 【详解】 由题意知,111C A =,11160C A B ?∠=, 则11130C B A ?∠=,11222A B A B ==,1122333C B C B C B === 结合图形可知,三角形在x 轴上的位置每三次为一个循环, Q 20193673÷=, ∴2019673(123)20196733OC =+=+, ∴2019C (20196733,0)+, 故选B . 【点睛】 考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键. 2.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40?,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64?≈,cos400.77?≈,tan 400.84?≈)

三角函数对称性习题

一、正弦曲线和余弦曲线都是轴对称图形 )sin(?ω+=x A y 对称轴方程的求法是:令1)sin(±=+?ωx ,得 )(2Z k k x ∈+=+π π?ω,则ω ?π22)12(-+=k x ,所以函数)sin(?ω+=x A y 的图象的对称轴方程为ω ?π22)12(-+=k x ; )cos(?ω+=x A y 对称轴方程的求法是:令1)cos(±=+?ωx ,得 π?ωk x =+)(Z k ∈,则ω?π-= k x ,所以函数)cos(?ω+=x A y 的图象的对称轴方程为ω? π-=k x 。 习题: 1、函数)62sin(3π +=x y 图象的对称轴方程为 2、函数y=sin (2x+52 π)图象的对称轴方程为 3、函数)3 3cos(21)(π+=x x f 的图象的对称轴方程是 4、函数y=cos(2x- π4 ) 的图象的对称轴方程是 5、y=sin(2x+π4 )的一条对称轴为( ) =-π4 =π8 =-π8 =π3 6、y=cos(2x-π6 )的一条对称轴为( ) A .x=π3 =5π12 =π12 D.π4 7、y=sin(2x+φ)的一条对称轴为x=-π8 ,则φ=________,y 的最小正值是________,y 的最大负值是________。 8、f (x )=sin2x+acos2x 关于x=π8 对称,求a 的值

二、正弦曲线和余弦曲线都是中心对称图形 )sin(?ω+=x A y 的对称中心求法是:令0)sin(=+?ωx ,得π?ωk x =+)(Z k ∈,则ω? π-=k x )(Z k ∈,所以函数)sin(?ω+=x A y 的图象关于点)0,(ω? π-k )(Z k ∈成 中心对称; )cos(?ω+=x A y 对称中心的求法是:令0)cos(=+?ωx ,得 )(2Z k k x ∈+ =+ππ?ω,则ω?π22)12(-+=k x )(Z k ∈,所以函数)cos(?ω+=x A y 的图象关于点)0,22)12(( ω ?π-+k )(Z k ∈成中心对称; 习题: 1、函数)62sin(4π -=x y 的图象的一个对称中心是 2、函数)8 21 cos(2π-=x y 的图象的对称中心是 3、y=sin(2x+π6 )的一个对称中心为( ) A.( π3 ,0) B.(5π12 ,0) C.(π12 ,0) D.(π6 ,0) 4、y=2cos(2x-π3 )的一个对称中心为( ) A.(π,0)B.(π3 ,0)C. (π6 ,0)D. (π12 ,0) 5、y=cos(2x+φ)的对称中心为(π6 ,0) 则φ=________,y 的最小正值是________,y 的最大负值是________。 三、正切曲线和余切曲线都是中心对称图形 )tan(?ω+=x A y 对称中心的求法是:令)(2Z k k x ∈= +π?ω,则ω?π22-=k x ,所以函数)tan(?ω+=x A y 的图象关于点)0,22(ω ?π-k )(Z k ∈成中心对称;

人教版九年级锐角三角函数全章教案

第二十八章锐角三角函数 28.1 锐角三角函数(1) 教学目标: 1、知识与技能:通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。能根据正弦概念正确进行计算。 2、过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力. 3、情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯. 教学重点: 理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实. 教学难点: 引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实. 教学过程: 一、复习旧知、引入新课 【引入】操场里有一个旗杆,老师让小明去测 量旗杆高度。小明站在离旗杆底部10米远处,目 测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦 34 1米 10 米 ?

二、探索新知 【活动一】问题的引入 【问题一】为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管? 分析:问题转化为,在Rt△ABC 中,∠C=90o ,∠A=30o ,BC=35m,求AB 根据“在直角三角形中,30o 角所对的边等于斜边的一半”,即 可得AB=2BC=70m.即需要准备70m 长的水管 结论:在一个直角三角形中,如果一个锐角等于30o ,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于 2 1 【问题二】如图,任意画一个Rt △ABC ,使∠C=90o ,∠A=45o ,计算∠A 的对边与斜边的比 AB BC ,能得到什么结论?(学生思考) 结论:在一个直角三角形中,如果一个锐角等于45o ,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于 2 2。 【问题三】一般地,当∠A 取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值? 如图:Rt △ABC 与Rt △A 1B 1C 1中,∠C=∠C 1=90o , ∠A=∠A 1=α,那么与 有 什么关系 分析:由于∠C=∠C 1 =90o ,∠A=∠A 1=α,所以Rt△ABC∽Rt△A 1B 1C 1, ,即

相关主题