搜档网
当前位置:搜档网 › dsp的低功耗模式

dsp的低功耗模式

dsp的低功耗模式
dsp的低功耗模式

240xA系列DSP有一个低功耗指令IDLE,当被执行时,该指令将停止CPU

中所有电路的时钟;尽管如此,从CPU中出来的时钟将继续输出。通过使用该指令,CPU的时钟将被关闭以节约能量。当遇到复位或者中断请求时CPU将推出IDLE 模式。

1.1时钟类型

所有以240xA为内核的设备均包含下面两种时钟类型:

n组成大部分CPU逻辑电路时钟的CPU时钟。

n组成外设时钟以及CPU中的中断逻辑电路的系统时钟(由CPU中出来的CLKOUT得来)。

当CPU进入IDLE模式时,系统时钟继续产生,CPU时钟停止产生。这种模式叫作IDLE1 模式。当CPU进入IDLE2 模式时,CPU时钟,系统时钟都将停止产生,这样允许进一步的节省能量。第三种节能模式,HALT模式,有可能将看门狗时钟以及振荡器时钟关闭。在HALT模式中,输入到锁相环的时钟被关闭。

低功耗模式不会改变通用I/O口的状态。在进入低功耗模式之前,I/O口将保持住同样的状态。并且,进入低功耗模式后,通用I/O口不会进入到高阻抗状态以及内部电压上拉或下拉不会改变。

当执行IDLE指令时,系统配置寄存器SCSR1 的12,13位LPM位将决定DSP 进入三种节能模式中的哪种模式。

以下图标为三种模式下各时钟的关闭情况以及退出该情况所需要的条件。

(见相册)

1.2退出低功耗模式

多种情况可以退出低功耗模式。以下部分描述了怎样退出低功耗模式。

1.2.1复位

复位(任何情况下的复位)可以使DSP退出任何一种低功耗模式。如果DSP处于HALT模式即暂停状态下,复位将启动振荡器;尽管如此,由于启动振荡器至产生时钟需要一定时间,CPU的复位将被延迟一段时间。

1.2.2外部中断

外部中断,XINTx,可以使DSP退出出HALT的任何一种中断。如果DSP处于IDLE2节能模式,连接到外部中断引脚的同步逻辑可以识别出在引脚上的中断,然后开始系统时钟和CPU时钟,然后允许时钟逻辑向PIE控制器产生中断请求。

1.2.3唤醒中断

有一些外设具备启动DSP时钟的能力,然后形成了对某确定事件的中断。比如在通讯线路中的一些激活电压。例如:CAN唤醒中断可以在没有时钟运行时进行错误的中断请求。

1.1.1退出低功耗模式——一些样例

外设中断被用来唤醒处于不同功耗模式的DSP。唤醒的动作(以及DSP 接下来的动作)由下列情况决定;

n该外设在外设中断级是否被使能

n该外设上级的IMR.n是否被使能

n在ST0中的INTM状态

以下为唤醒低功耗模式的两个样例;

1.使用XINT1来唤醒LPM0 模式

当使用XINT1来唤醒处于LPM0 状态的DSP时,根据XINT1中断配置的不同,可以发生两件事情。如果XINT1中断被使能(通

过设置XINT1CR中合适的位并且IMR中0位为1)并且INTM位为

0,一个有效的XINT1 信号将首先将DSP从LPMO所确定的功耗模

式中唤醒并且使DSP进入相应的中断向量表。尽管如此,如果INTM

为1,当XINT1中断发生时,DSP将被唤醒然后继续执行IDLE指

令的下一条指令。

2.使用PDPINTA来唤醒LPM2 (HALT)

情况1;

PDPINTA在外设级别被使能;相应的IMR位被置1;INTM为0,当唤醒HALT模式后,代码进入INT1 分支程序。

情况2:

PDPINTA在外设级别被使能;相应的IMR位被置1;INTM为1,当唤醒HALT模式后,DSP将被唤醒然后继续执行IDLE指令的下

一条指令。

情况3;

PDPINTA在外设级别被使能;相应的IMR位被置0;INTM为1,DSP将不会从HALT模式中唤醒过来。

注意:

1)当使用PDPINTA来唤醒系统时,输入到EVA的时钟

必须被使能。

2)当使用PDPINTA来唤醒LPM2 时,必须保持6到12

个时钟周期。

3)PDPINTA包括同步路径和异步路径。异步路径被用

来唤醒HALT模式。时钟也是被异步PDPINTA所唤醒。一旦时钟被唤醒了,就将形成中断。尽管如此,PDPINTA 必须维持足够长的低电平以致使第一个时钟边缘能捕捉到它。

1.4.3关闭Flash

在进入LPM2模式前,可以关闭Flash 模块。当执行从片内存储器的代码时可以执行这一操作。这种模式可以达到最低的电流损耗。以下为关闭Flash 模块的指令序列:

(见相册)

LPM2模式可以通过RS或者PDPINTx 信号退出。当RS自动打开Flash 模块时,如果PDPINTx 被用来打开Flash模块接下来的指令就将被执行。

(见相册)

dsp的低功耗模式

240xA系列DSP有一个低功耗指令IDLE,当被执行时,该指令将停止CPU 中所有电路的时钟;尽管如此,从CPU中出来的时钟将继续输出。通过使用该指令,CPU的时钟将被关闭以节约能量。当遇到复位或者中断请求时CPU将推出IDLE模式。 1.1时钟类型 所有以240xA为内核的设备均包含下面两种时钟类型: n组成大部分CPU逻辑电路时钟的CPU时钟。 n组成外设时钟以及CPU中的中断逻辑电路的系统时钟(由CPU 中出来的CLKOUT得来)。 当CPU进入IDLE模式时,系统时钟继续产生,CPU时钟停止产生。这种模式叫作IDLE1 模式。当CPU进入IDLE2 模式时,CPU时钟,系统时钟都将停止产生,这样允许进一步的节省能量。第三种节能模式,HALT模式,有可能将看门狗时钟以及振荡器时钟关闭。在HALT模式中,输入到锁相环的时钟被关闭。 低功耗模式不会改变通用I/O口的状态。在进入低功耗模式之前,I/O口将保持住同样的状态。并且,进入低功耗模式后,通用I/O口不会进入到高阻抗状态以及内部电压上拉或下拉不会改变。 当执行IDLE指令时,系统配置寄存器SCSR1 的12,13位LPM位将决定DSP进入三种节能模式中的哪种模式。 以下图标为三种模式下各时钟的关闭情况以及退出该情况所需要的条件。 (见相册) 1.2退出低功耗模式 多种情况可以退出低功耗模式。以下部分描述了怎样退出低功耗模式。 1.2.1复位 复位(任何情况下的复位)可以使DSP退出任何一种低功耗模式。如果DSP处于HALT模式即暂停状态下,复位将启动振荡器;尽管如此,由于启动振荡器至产生时钟需要一定时间,CPU的复位将被延迟一段时间。 1.2.2外部中断 外部中断,XINTx,可以使DSP退出出HALT的任何一种中断。如果DSP处于IDLE2节能模式,连接到外部中断引脚的同步逻辑可以识别出在引脚上的中断,然后开始系统时钟和CPU时钟,然后允许时钟逻辑向PIE控制器产生中断请求。 1.2.3唤醒中断 有一些外设具备启动DSP时钟的能力,然后形成了对某确定事件的中断。比如在通讯线路中的一些激活电压。例如:CAN唤醒中断可以在没有时钟运行时进行错误的中断请求。 1.1.1退出低功耗模式——一些样例 外设中断被用来唤醒处于不同功耗模式的DSP。唤醒的动作(以及DSP 接下来的动作)由下列情况决定; n该外设在外设中断级是否被使能 n该外设上级的IMR.n是否被使能 n在ST0中的INTM状态

DSP习题答案要点

一.填空题(本题总分12分,每空1分) 1.累加器A分为三个部分,分别为;;。 1.AG,AH,AL 2.TMS320VC5402型DSP的内部采用条位的多总线结构。 2.8,16 3.TMS320VC5402型DSP采用总线结构对程序存储器和数据存储器进行控制。3.哈佛 4.TMS329VC5402型DSP有个辅助工作寄存器。 4.8个 5.DSP处理器TMS320VC5402中DARAM的容量是字。 5.16K字 6.TI公司的DSP处理器TMS320VC5402PGE100有___________个定时器。 6.2 7.在链接器命令文件中,PAGE 1通常指________存储空间。 7.数据 8.C54x的中断系统的中断源分为____ ___中断和____ ____中断。 8.硬件、软件 1.TI公司DSP处理器的软件开发环境是__________________。 1.答:CCS(Code Composer Studio) 2.DSP处理器TMS320VC5402外部有___________根地址线。 2.答:20根 3.直接寻址中从页指针的位置可以偏移寻址个单元。 3.答:128 4.在链接器命令文件中,PAGE 0通常指________存储空间。 4.答:程序 5.C54x系列DSP处理器中,实现时钟频率倍频或分频的部件是_____________。 5.答:锁相环PLL 6.TMS320C54x系列DSP处理器上电复位后,程序从指定存储地址________单元开始工作。6.答:FF80h 7.TMS320C54x系列DSP处理器有_____个通用I/O引脚,分别是_________。 7.答:2个,BIO和XF 8.DSP处理器按数据格式分为两类,分别是_______ __;_____ ___。 8.答:定点DSP和浮点DSP 9.TMS329VC5402型DSP的ST1寄存器中,INTM位的功能是。 9.答:开放/关闭所有可屏蔽中断 10.MS320C54X DSP主机接口HPI是________位并行口。 10.答:8 1.在C54X系列中,按流水线工作方式,分支转移指令的分为哪两种类型:_______;_______。 1.答:无延迟分支转移,延迟分支转移 3.C54x的程序中,“.bss”段主要用于_______________。 3.答:为变量保留存储空间 4.从数据总线的宽度来说,TMS320VC5402PGE100是_______位的DSP处理器。 4.答:16位 7.TMS320VC5402型DSP处理器的内核供电电压________伏。 7.答:1.8v

DSP作业

DSP 作业 1.DSP 芯片有哪些主要特点? 答:DSP 的主要特点有: 1.哈佛结构 2.多总线结构 3.流水线结构 4.多处理单元 5特殊的DSP 指令 6.指令周期短 7.运算精度高 8.硬件配置强。 2.简述典型DSP 应用系统的构成。 答:输入信号首先进行带限滤波和抽样,然后进行数模变换将信号变换成数字比特流,根据奈奎斯特抽样定理,对低通模拟信号,为保持信号的不丢失,抽样频率至少必须是输入带限信号最高频率的2倍。 输入 输出 输出 3.简述DSP 应用系统的一般设计开发过程。如何选择DSP 芯片? 答:DSP 应用系统的一般开发过程有:系统需求说明;定义技术指标;选择DSP 芯片及外围芯片;软件设计说明、软件编程与测试;硬件设计说明、硬件电力与调试;系统集成;系统测试,样机、中试与产品。 DSP 芯片的选择:1.DSP 芯片的运算速度 2. DSP 芯片的价格 3. DSP 芯片的硬件资源(存储器、ADC 、PWM 等等) 4.DSP 芯片运算精度 5.芯片开发工具:软件 硬件 6..DSP 芯片功耗 7.其他:封装、应用场合、售后服务等。 4.常用的DSP 芯片有哪些? 答:C20x 、C24x 、C5x 、C54x 、C62xx 、C3x 、C4x 、C67xx 。 5.DSP 控制器的应用领域有哪些? 答:(1)信号处理:数字滤波、快速FFT 、相关运算、谱分析、自适应铝波、卷积、模式匹配、加窗、波形产生等。 (2)通信:调制解调器、数据压缩、回拨抵消、多路复用、传真、自适应均衡、数据加密、扩频通信、纠错编码、可视电话等。 (3)语言:语音邮件、语音存储、语音编码、语音合成、语音识别、语音增强、说话人辨认、说话人确认等。 (4)图形/图像:图像增强、动画、机器人视觉、二维/三维处理器、图像压缩与传输等。 (5)军事:导航、雷达处理、声纳处理、导弹制导等。 抗混叠滤波 A/D DSP 芯片 D/A 平滑滤

DSP是TMSTM系列DSP产品中的定点数字信号处理器

第1章绪论 TMS320C54x TM DSP是TMS320TM系列DSP产品中的定点数字信号处理器。C54x DSP 满足了实时嵌入式应用的一些要求,例如通信方面的应用。 C54x的中央处理单元(CPU)具有改进的哈佛结构,它的特点是最小化的功耗和高度的并行性。除此之外,C54x中多样化的寻址方式和指令集也大大提高了整个系统的性能。 1.1 TMS320系列DSP简介 TMS320TM系列DSP包括定点DSP、浮点DSP和多处理器DSP(也称DSPs),其结构是专门为实时的信号处理设计的。TMS320系列DSP有以下一些特性使得该系列的产品有着广阔的应用领域: ?非常灵活的指令集。 ?固有的操作灵活性。 ?高速运行的性能。 ?创新的并行结构。 ?成本效率高。 ?对C语言的友好的结构。 1.1.1 TMS320系列DSP的历史、发展和优势 1982年,德州仪器公司(TI)推出了TMS320系列中第一代定点DSP产品——TMS320C10。在这一年年末,《电子产品》杂志赠予TMS320C10“年度产品”的称号。TMS320C10成为后续的TMS320系列DSP的模型。 今天,TMS320 DSP系列包括三大DSP平台:TMS320C2000TM、TMS320C5000TM和TMS320C6000TM。在C5000TM DSP平台中又包含三代产品:TMS320C5x TM、TMS320C54x TM 和TMS320C55x TM系列。 C5000 DSP平台中的器件都采用了相同的CPU结构,但结合了不同的片内存储器和外设结构。这些不同的结构满足了世界范围内电子市场的很多领域的需要。当把存储器、外设和CPU结合起来集成到单个芯片上时,整个系统的费用就大大地降低了,电路板的体积也减小了。图1-1所示为TMS320系列器件的演化过程。

《数字信号处理与DSP实现技术》课后习题与参考答案

21世纪高等院校电子信息类规划教材 安徽省高等学校“十二五”省级规划教材 数字信号处理与DSP实现技术 课后习题与参考答案 主编:陈帅 副主编:沈晓波

淮南师范学院 2015.11 第1章绪论思考题 1.什么是数字信号? 2.什么是数字信号处理? 3.数字信号处理系统的实现方法有哪些? 4.数字信号处理有哪些应用? 5.数字信号处理包含哪些内容? 6.数字信号处理的特点是什么? 第1章绪论参考答案 1.时间和幅度都离散的信号称为数字信号,即信号的时间取离散的值,幅度也取离散的值。 2.数字信号处理是指在数字领域进行数字信号的加工(变换、运算等),即输入是数字信号,采用数字信号处理方法进行处理,输出仍然是数字信号。 3.数字信号处理系统的实现方法有①通用软件方法实现系统;②专用加速处理机方法;③软硬件结合的嵌入式处理方法;④硬件方法。 4.数字信号处理在通信、计算机网络、雷达、自动控制、地球物理、声学、天文、生物医学、消费电子产品等各个领域均有应用,是信息产业的核心技术之一。比如信源编码、信道编码、多路复用、数据压缩,数字语音、汽车多媒体、MP3/MP4/MP5、数字扫面仪、数字电视机顶盒、医院监视系统、生物指纹系统等。 5.数字信号处理主要包含以下几个方面的内容 ①离散线性时不变系统理论。包括时域、频域、各种变换域。 ②频谱分析。FFT谱分析方法及统计分析方法,也包括有限字长效应谱分析。 ③数字滤波器设计及滤波过程的实现(包括有限字长效应)。 ④时频-信号分析(短时傅氏变换),小波变换,时-频能量分布。 ⑤多维信号处理(压缩与编码及其在多煤体中的应用)。 ⑥非线性信号处理。 ⑦随机信号处理。 ⑧模式识别人工神经网络。 ⑨信号处理单片机(DSP)及各种专用芯片(ASIC),信号处理系统实现。 6.数字信号处理主要具有4个方面优点:①数字信号精度高;②数字信号处理灵活性强;③数字信号处理可实现模拟信号难以实现的特性;④数字信号处理可以实现多维信号处理。

浅析DSP应用系统中降低功耗的设计办法

浅析DSP应用系统中降低功耗的设计办法 摘要:本文就TMS320系列定点DSP器件为例,介绍一些行之有效的降低功耗的设计方法。 关键词:DSP器件DSP运行外围电路 一、合理选择DSP器件 应根据系统要求来选择合适的DSP器件。在典型的DSP应用系统中,通常其核心是由一片或多片DSP构成数据处理模块,由于系统运算量大且速度要求高,因此DSP内部的部件开关状态转换十分频繁,这使得DSP器件的功耗在应用系统的功耗中占有相当的比例,所以设计人员在进行电路低功耗设计时要熟悉DSP及其相关产品的情况。DSP器件的功耗与该系统的电源电压有关,同一系列的产品,其供电电压也可能不同,如TMS320C2XX系列中供电电压就有5V 和3.3V两种,在系统功耗是系统设计首要目标的情况下,应尽可能地选择低电压供电的DSP器件。选择3.3V低电压供电的DSP除了能减小DSP本身的功耗以降低系统的总功耗外,还可以使外部逻辑电路功耗降低,这对实现系统低功耗有着重要的作用。DSP生产厂家也比较注重系统功耗的问题,德州仪器公司(TI)为实现低功耗应用系统而设计了一批新型的DSP器件,以其中的TMS32OC55X 为例,C55X可以在0.9V和0.05mw/MIPS环境下运行,传输速率可达800MIPS,其功耗相当于T1上一代芯片C54X功耗的15%左右,非常适合应用于电池供电系统。此外,Tl公司还充分考虑DSP电源供电设计的问题,为支持DSP设计的TPS767D3XX将两个1—A线性稳压器和两个上电复位开关封装在一起,它不仅降低组件数量和电路板大小,使系统的成本降低,对于系统降低功耗也有重要的作用。 TPS767D3xx在全部1—A输出范围内提供极快的瞬态响应、低压差和几乎恒定的低静态电流(典型值为85μA),压差在IA时的典型值为350mV。可以说,选择何种器件基本上就决定了系统功耗的大小。 二、让DSP以适当的速度运行 TMS320系列的DSP一般采用CMOS工艺,CMOS电路的静态功耗极小,而其动态功耗的大小与该电路改变逻辑状态的频率和速度密切相关。TMS320系列应用系统的功耗与工作频率即系统时钟(CLKOUTI)成正比。在不需要DSP的全部运算能力时,可以适当地降低TMS320的系统时钟频率令DSP适速运行以降低系统功耗。当时钟频率增加时,电流也相应地增加,执行同样程序代码的时间会相应缩短。例如,以1.2mA/MHz运行一段500个时钟周期代码,当CLKOUT1为1OMHz时,DSP执行该段代码用时50μs,所需电流为12mA;当CLKOUT1增加到20MHz时,所需电流增加到24mA,执行时间缩短为25μs。TMS320系列执行一段用户程序所耗能量与器件执行快慢无关,因为该能量仅仅取决于DSP 器件内部逻辑状态转换的数目。如此看来,似乎DSP的功耗并未降低,那为什么不让DSP全速运行呢?原来,DSP以全速运行完代码后使用IDLE指令,进入

DSP数字信号处理

数字信号处理是将信号以数字方式表示并处理的理论和技术。数字信号处理与模拟信号处理是信号处理的子集。 简介 简单地说,数字信号处理就是用数值计算的方式对信号进行加工的理论和技术,它的英文原名叫digital signal processing,简称DSP。另外DSP也是digital signal processor的简称,即数字信号处理器,它是集成专用计算机的一种芯片,只有一枚硬币那么大。有时人们也将DSP看作是一门应用技术,称为DSP 技术与应用。 《数字信号处理》这门课介绍的是:将事物的运动变化转变为一串数字,并用计算的方法从中提取有用的信息,以满足我们实际应用的需求。 本定义来自《数字信号处理》杨毅明著,由机械工业出版社2012年发行。 特征和分类 信号(signal)是信息的物理体现形式,或是传递信息的函数,而信息则是信号的具体内容。 模拟信号(analog signal):指时间连续、幅度连续的信号。 数字信号(digital signal):时间和幅度上都是离散(量化)的信号。 数字信号可用一序列的数表示,而每个数又可表示为二制码的形式,适合计算机处理。 一维(1-D)信号: 一个自变量的函数。 二维(2-D)信号: 两个自变量的函数。 多维(M-D)信号: 多个自变量的函数。 系统:处理信号的物理设备。或者说,凡是能将信号加以变换以达到人们要求的各种设备。模拟系统与数字系统。 信号处理的内容:滤波、变换、检测、谱分析、估计、压缩、识别等一系列的加工处理。 多数科学和工程中遇到的是模拟信号。以前都是研究模拟信号处理的理论和实现。 模拟信号处理缺点:难以做到高精度,受环境影响较大,可靠性差,且不灵活等。数字系统的优点:体积小、功耗低、精度高、可靠性高、灵活性大、易于大规模集成、可进行二维与多维处理 随着大规模集成电路以及数字计算机的飞速发展,加之从60年代末以来数字信号处理理论和技术的成熟和完善,用数字方法来处理信号,即数字信号处理,已逐渐取代模拟信号处理。 随着信息时代、数字世界的到来,数字信号处理已成为一门极其重要的学科和技术领域。 数字信号处理器 DSP芯片,也称数字信号处理器,是一种特别适合于进行数字信号处理运算的微处理器,其主要应用是实时快速地实现各种数字信号处理算法。根据数字信号处理的要求,DSP芯片一般具有如下主要特点: (1)在一个指令周期内可完成一次乘法和一次加法;

DSP是TMS320TM系列DSP产品中的定点数字信号处理器

DSP是TMS320TM系列DSP产品中的定点数字信 号处理器 TMS320C54x TM DSP是TMS320TM系列DSP产品中的定点数字信号处理器。C54x DSP 满足了实时嵌入式应用的一些要求,例如通信方面的应用。 C54x的中央处理单元(CPU)具有改进的哈佛结构,它的特点是最小化的功耗和高度的并行性。除此之外,C54x中多样化的寻址方式和指令集也大大提高了整个系统的性能。 1.1 TMS320系列DSP简介 TMS320TM系列DSP包括定点DSP、浮点DSP和多处理器DSP(也称DSPs),其结构是专门为实时的信号处理设计的。TMS320系列DSP有以下一些特性使得该系列的产品有着宽敞的应用领域: ?专门灵活的指令集。 ?固有的操作灵活性。 ?高速运行的性能。 ?创新的并行结构。 ?成本效率高。 ?对C语言的友好的结构。 1.1.1 TMS320系列DSP的历史、进展和优势 今天,TMS320 DSP系列包括三大DSP平台:TMS320C2000TM、TMS320C5000TM和TMS320C6000TM。在C5000TM DSP平台中又包含三代产品:TMS320C5x TM、TMS320C54x TM 和TMS320C55x TM系列。 C5000 DSP平台中的器件都采纳了相同的CPU结构,但结合了不同的片内储备器和外设结构。这些不同的结构满足了世界范畴内电子市场的专门多领域的需要。当把储备器、外设和CPU结合起来集成到单个芯片上时,整个系统的费用就大大地降低了,电路板的体积也减小了。图1-1所示为TMS320系列器件的演化过程。

控制最优化平台高效益平台 高性能平台 图1-1 TMS320系列DSP的演化过程 1.1.2 TMS320系列DSP的典型应用 表1-1列出了TMS320系列DSP的一些典型的应用。TMS320 系列DSP与标准的微处理器/微运算机器件相比,能够为传统信号处理咨询题提供更合适的处理方式,例如处理语音合成和滤波咨询题。TMS320系列DSP也支持多个操作需要同时进行处理的复杂应用场合。 表1-1 TMS320 系列DSP的典型应用

数字信号处理

数 字 信 号 处 理 发 展 和 应 用 学院:通信学院 专业:电子信息工程 班级:电信1103 姓名:XXX 学号:XXX

数字信号处理发展和应用 【摘要】数字信号处理(DSP)是广泛应用于许多领域的新兴学科,因其具有可程控、可预见性、精度高、稳定性好、可靠性和可重复性好、易于实现自适应算法、大规模集成等优点,广泛应用于实时信号处理系统中。本文概述了DSP 技术的发展历史,各个领域的应用状况,以及在未来的发展趋势。 【关键词】数字信号处理;数据处理;信息技术;发展趋势 一、数字信号处理(DSP)的发展历史 数字信号处理技术的发展经历了三个阶 段。 70 年代DSP 是基于数字滤波和快速傅立叶变换的经典数字信号处理,其系统由分立的小规模集成电路组成,或在通用计算机上编程来实现DSP 处理功能,当时受到计算机速度和存储量的限制,一般只能脱机处理,主要在医疗电子、生物电子、应用地球物理等低频信号处理方面获得应用。 80 年代DSP 有了快速发展,理论和技术进入到以快速傅立叶变换(FFT) 为主体的现代信号处理阶段,出现了有可编程能力的通用数字信号处理芯片,例如美国德州仪器公司(TI 公司) 的TMS32010 芯片,在全世界推广应用,在雷达、语音通信、地震等领域获得应用,但芯片价格较贵,还不能进入消费领域应用。 90 年代DSP 技术的飞速发展十分惊人,理论和技术发展到以非线性谱估计为代表的更先进的信号处理阶段,能够用高速的DSP 处理技术提取更深层的信息,硬件采用更高速的DSP 芯片,能实时地完成巨大的计算量,以TI 公司推出的TMS320C6X芯片为例,片内有两个高速乘法器、6 个加法器,能以200MHZ频率完成8 段32 位指令操作,每秒可以完成16 亿次操作,并且利用成熟的微电子工艺批量生产,使单个芯片成本得以降低。并推出了C2X、C3X、C5X、C6X 不同应用范围的系列,使新一代的DSP 芯片在移动通信、数字电视和消费电子领域得到广泛应用,数字化的产品性能价格比得到很大提高,占有巨大的市场。 二、数字信号处理(DSP)的主要应用领域 1·DSP在电力系统自动化中日益渗透 1.1数字信号处理(DSP)技术在电力系统模拟量采集和测量中的应用 计算机进入电力系统调度后,引入了EMS/DMS/SCADA的概念,而电力系统数据采集和测量是SCADA的基础部分。传统的模拟量的采集和获得,通过变送器将一次PT和CT的电气量变为直流量,再进行A/D转换送给计算机。应用了交流采样技术以后,经过二次PT、CT的变换后,直接对每周波的多点采样值采用DSP处理算法进行计算,得到电压和电流的有效值和相角,免去了变送器环节。这不仅使得分散布置的分布式RTU很快地发展起来,而且还为变电站自动化提供了功能综合优化的手段。 1.2数字信号处理(DSP)在继电保护中的应用 到目前为止,应用于我国电力系统的微机保护产品采用的CPU大多为单片机,由于受硬件资源及计算功能的限制,其采样能力及采样速度很难令人满意。因此,对非正常运行条件下的系统参数测量,在速度和精度上无法满足要求,一些复杂原理和算法的实现,基于常规CPU的保护产品也都难以胜任。基于DSP 的数据采集和处理系统由于其强大的数学运算能力和特殊设计,都使得它在继

STM8L051低功耗模式实现说明文档

STM8L051低功耗模式测试文档 STM8L051的五种低功耗模式wait ,low power run mode,low power wait mode,Ative-Halt mode,Halt mode。 1、WAIT mode 在等待模式,CPU的时钟是停止的,被选择的外设继续运行。W AIT mode 分为两种方式:WFE,WFI。WFE是等待事件发生,才从等待模式中唤醒。WFI是等待中断发生,才从等待模式中唤醒。 2、low power run mode 在低功耗运行模式下,CPU和被选择的外设在工作,程序执行在LSI或者LSE下,从RAM 中执行程序,Flash和EEPROM都要停止运行。电压被配置成Ultra Low Power模式。进入此模式可以通过软件配置,退出此模式可以软件配置或者是复位。 3、low power wait mode 这种模式进入是在low power run mode下,执行wfe。在此模式下CPU时钟会被停止,其他的外设运行情况和low power run mode类似。在此模式下可以被内部或外部事件、中断和复位唤醒。当被事件唤醒后,系统恢复到low power run mode。 4、Active-Halt mode 在此模式下,除了RTC外,CPU和其他外设的时钟被停止。系统唤醒是通过RTC中断、外部中断或是复位。 5、Halt mode 在此模式下,CPU和外设的时钟都被停止。系统唤醒是通过外部中断或复位。关闭内部的参考电压可以进一步降低功耗。通过配置ULP位和FWU位,也可以6us的快速唤醒,不用等待内部的参考电压启动。 一、各个低功耗模式的代码实现 1、WAIT mode 等待模式分为两种:WFI和WFE。 1.1 WFI mode 当执行“wfi”语句时,系统就进入WFI模式,当中断发生时,CPU被从WFI模式唤醒,执行中断服务程序和继续向下执行程序。 通过置位CFG_GCR的AL位,使主程序服务完中断服务程序后,重新返回到WFI 模式。 程序如下: void Mcuwfi() { PWR_UltraLowPowerCmd(ENABLE); //开启电源的低功耗模式 CLK_HSEConfig(CLK_HSE_OFF); //关闭HSE时钟(16MHz) #ifdef USE_LSE CLK_SYSCLKSourceConfig(CLK_SYSCLKSource_LSE);

TI推出业界最低功耗的6核DSP(精)

TI推出业界最低功耗的6核DSP TI推出业界最低功耗的6核DSP 类别:电子综合 日前,德州仪器 (TI) 宣布推出业界最低功耗 6 核 DSP,该款TMS320C6472 器件旨在满足要求极低功耗的处理密集型应用的需求。此外,为了更便捷、更经济地估 C6472 器件的性能,TI 还同步推出了一款多核处理器估板 (EVM)——TMDXEVM6472。 TI C6472 针对性能功耗比要求极高的应用进行了全面优化,从而在电源性能方面实现了突破性进展。在业界总工作频率为 3GHz 的所有多核DSP 中,C6472 DSP 具有最高的处理性能与最低的功耗,可实现 3.7W 性能与0.15mW/MIPS 低功耗。TI 该款低功耗 C6472 可用于支持能够驱动多通道、要求最高性能密度以及设计人员需要实现复杂功能的应用领域。此外,采用 C6472 的众多应用都无需任何外部存储器,从而不仅能够进一步改进功率曲线,同时还能大幅降低器件成本。这些器件理想适用于广泛的应用领域,如高端工业应用、测试测量、通信、医疗影像、高端成像及视频,以及刀片服务器等。为了加快在多核器件上优化运行代码的编写进程,TI 针对 C6472 提供了广泛而全面的技术支持,如估板、功能稳健的软件库以及第三方产业环境等。C6472 DSP 的主要特性与优势:·6 颗高速 C64X+ DSP 内核,运行频率为 500MHz、625MHz、700MHz,并能够与其他 C64X+ DSP 内核实现全面后向兼容;·高达 4.2 GHz/33600 MMAC,4.8MB 片上 L1/L2 RAM;·拥有业界最低功耗,0.15 mW/MIPS 时性能达 3GHz;·优化的 DSP 架构能够最大限度地提高片上子系统的性能。此类架构的优势之一在于,除了每个内核都具备专用的 L1 和 L2 存储器外,C6472 还具备每数据存储器 768KB 的共享L2 程序以及共享存储控制器,能够实现高效而灵活的DSP 内核间通 信;·包含丰富的器件外设,如千兆以太网、串行高速 IO (SRIO)、DDR2、电信串行接口端口 (TSIP)、主机端口接口 (HPI)、Utopia、内置集成电路 (I2C) 总线以及通用输入/输出 (GPIO)。针对 C6472 的开发商网络:·Adaptive Digital Technologies (Adaptive Digital):制造商充分利用 Adaptive Digital公司经现场验证的DSP 算法和 G.PAK 框架,能够支持广泛的应用领域,如高密度 VoIP、AT&T 认证型G.168 回声消除技术、会议终端以及编码转换等;·ENEA:Enea 工具能够支持对已部署系统的综合而全面的远程管理/监控,并能在设计实验中实现系统级的可视化;·RadiSys:RadiSys Promentum ATCA-9100-TI 是一款 ATCA 媒体处理刀片,每个刀片上集成了两个专门构建的整合型适配卡,最多可容纳 20 个6 核 TI C6472。通过采用 TI 最新推出的多核 DSP 芯片,该产品能够实现业界最高的媒体处理密度,非常适用于诸如 IPTV、移动视频/TV 等应用;·Sundance Multiprocessor Technologies Ltd:Sundance 的 EVP6472 与业界极佳的FPGA 紧密耦合,可支持两个 TI C6472 多核 DSP,并获得了 3L 的 Diamond RTOS 以及 TI CCS 工具的支持,能够实现应用的快速

数字信号处理(DSP)技术在土木工程中的应用

DSP技术在土木工程领域的应用实例 任何携带信息的物理量都可称为信号,实际工程中常用的信号有模拟信号和数字信号等,模拟信号是指具有连续振幅的连续时间信号;数字信号是指用有限个数字表示的离散振幅值的离散时间信号。 20世纪50年代,随着大型数字计算机的出现,数字信号处理开始兴起,并在随后的十几年里有了长足的发展与突破。由于携带信息的信号的普遍存在,使得DSP(即数字信号处理)技术能够广泛地应用于多种工程领域。 DSP技术在土木工程领域的应用也十分广泛,如:地震工程、结构健康监测系统、结构振动测试等。 一、DSP技术在地震工程中的应用 地震是常见的给人民的生命财产造成巨大损失的自然灾害之一,地震波由地震、火山喷发或地下爆炸产生的岩石运动引起,通过地震仪,这些地震波被转换成地震信号,通过记录、存储下来的地震信号,可以对地震的特性以及地震对结构的动力影响进行分析。 DSP技术在上述过程的应用主要有:信号降噪、数据压缩、地震信号频谱分析等。 信号降噪是过滤、消除噪声以提高信号信噪比的过程,主要方法有加运算去除加性噪声以及将信号转换到频域上,利用地震信号和噪声之间频率的不同设计滤波器来实现(傅里叶变换、小波变换及S变换等)。 地震信号数据压缩一方面可以减少存储空间,另一方面可以提高数据处理速度。由于地震数据本身特点对其进行一定范围压缩时不会影响对地下地质结构信息的识别。由于受地层吸收及球面扩散的影响,造成深层振幅较浅层振幅小,高频成分主要集中在浅层。另外,地震信号本身含有各种噪声,需要进行消除,并且地震相邻道之间具有很强的相关性。利用二维小波分解除去小波变换信号间的相关性,可以高效的对地震数据进行压缩,此时的地震数据的压缩比可高达倍,而且失真较小。 由时间域转换至频率域从而得到频谱或能量密度谱,用来考察地震信号的频率构成,了解地震的卓越周期(指地震动信号振幅谱中幅值最大的频率分量所对应的周期)等信息,进而可以考察其对结构的动力特性的影响。 文献[2]通过对一道模拟的非平稳地震信号降噪,研究了FT,CWT,ST三种方法的适用范围。 二、DSP技术在结构健康监测系统的应用 健康监测系统可以较全面地把握桥梁结构建造与服役全过程的受力与损伤演化规律,是保障大型桥梁的建造和服役安全的有效手段之一。各国均在新建的和已服役的重要工程结构上增设健康监测系统。 桥梁健康监测系统一般包括智能传感器子系统,数据采集与处理及传输子系统,损伤识别与模型修正和安全评定子系统,数据管理子系统。

DSP数字信号处理器特性

DSP数字信号处理器特性 周晓昱(龙口中隆计控公司) 现在,数字信号处理技术已经被广泛应用到各种工业仪器仪表上。近十年来,国内越来越多的生产厂家,也将该技术应用到科氏力质量流量计的信号处理上。使国产质量流量计的稳定性、准确度都得到了很大的提高。与国际先进水平的差距越来越小。 科里奥利质量流量计的工作原理是:用激振使测量管在固有频率下振动。当管道内的介质处于静止时,测量管上所受到的科里奥利力(简称科氏力),是大小相同,方向相同的。而当测量管中的介质流动时,测量管两侧所受的科氏力,大小相同而方向相反。在这两个力的作用下,测量管就会产生微量的扭转弹性变形。测量管两侧的振动相位差就发生了改变。相位差的大小与介质流过的质量成一定规律。因此,可以通过测量相位差的变化,确定介质的流量大小。 当有外来振动源产生一个或多个“噪声”频率时,会在测量管上产生一个附加力来干扰科氏力,从而造成测量的误差。要准确地计量质量流量,必须排除这些干扰。例如,流量计附近有产生机械振动的设备,周围动力电(如电焊机等)的耦合等。都会产生不确定频率或固定频率的干扰。如何清除这些干扰?采用模拟电路进行信号处理时,一般是采取各种滤波的办法。但效果并不理想。 数字信号处理器(简称DSP)是一个实时处理信号的微处理器。使用DSP技术与使用时间常量去阻抑和稳定信号相比,其优点是能够以一个被提高了的采样率去过滤实时信号。减少了流量计对流量的阶跃变化的响应时间。使用多参数数字处理器(MVD)变送器的响应时间比使用模拟信号处理的传统变送器快2~4倍,更快的响应时间会提高短批量控制的效率和精确度。

特别是对于气体流量的测量,DSP技术就更具优势。因为高速气体通过流量计容易引起较严重的噪声。DSP技术因能够用数字技术更好地滤波,同时进一步减小了质量流量计对噪声的敏感度。因此,可以将混杂在流量信号中的噪声减至最小。实践证明,采用MVD变送器测量气体介质,比以前采用模拟信号变送器,在重复性和精确度上都有了显著提高。 DSP技术为科氏力质量流量计提供了一个更好地处理掉来自于外界干扰信号的手段。它使得这些干扰信号无所遁形。从而极大地提高了质量流量计的测量精度,以及运行的稳定性。 运用DSP技术,再加之对密度信号的监测与分析。还有希望解决一直困扰着科氏力质量流量计运行过程中,因介质产生气化,测量管内壁沉淀或挂壁造成的计量误差问题。使科氏力质量流量计再上一个台阶。

基于DSP的低功耗高速数据采集系统设计

基于DSP的低功耗高速数据采集系统设计 随着电子技术的发展及新器件的不断涌现,电子系统在手持设备、便携 医疗仪器以及野外测试仪器等领域得到了广泛的应用。在这些领域的应用中, 由于客观条件的限制,通常采用电池或蓄电池为仪器设备提供电源。在这种情 况下,如要实现系统长时间工作,必然对仪器设备系统功耗的要求较高,因此 低功耗系统的设计在这些应用领域中得到广泛重视。 1 TMS320VC5509 简介 TMS320VC5509(以下简称VC5509)是德州仪器(TI)公司针对低功耗应用领域推出的一款低功耗高性能DSP,采用1.6V 的核心电压以及3.3V 的外围接口电压,最低可支持0.9V 的核心电压以0.05mW/MIP 的低功耗运行。 VC5509 支持丰富的外设接口,最高支持144MHz 的时钟频率,片内具有双乘累加器,每周期可执行一条指令或两条并行指令,具有高达288MIPS 的处理能力。VC5509 内部存储器采用统一编址,带有128K 字RAM,其中包括32K 字双存取RAM(DARAM)以及96K 字单存取RAM(SARAM),另外还有 64KB 片内只读ROM,并可以实现高达4MB 的外部存储空间扩展,是一款具 有较高性价比的低功耗DSP 芯片。VC5509 的结构框图如图1 所示。 2 系统设计与实现 本系统要求实现四通道同步采样,每通道采样频率为50kHz,系统供电为 +5V,全速运行时整体功耗低于250mW。针对这些技术指标,本系统以低功耗DSP 芯片TMS320VC5509 为核心,采用串行EEPROM 作为程序存储器,选用四片微功耗12 位ADC 实现四个通道模拟信号的同步采集。系统中设计铁电存储器(FRAM)作为掉电保护数据存储器,并设计一个异步串口实现与外部系 统的通讯。系统原理框图如图2 所示。在保证实现系统功能的前提下,本系统

如何选择DSP芯片(精)

1 速度: DSP 速度一般用MIPS 或FLOPS 表示,即百万次/秒钟。根据您对处理速度的要求选择适合的器件。一般选择处理速度不要过高,速度高的DSP ,系统实现也较困难。 2 精度: DSP 芯片分为定点、浮点处理器,对于运算精度要求很高的处理,可选择浮点处理器。定点处理器也可完成浮点运算,但精度和速度会有影响。 3 寻址空间:不同系列DSP 程序、数据、I/O空间大小不一,与普通MCU 不同,DSP 在一个指令周期内能完成多个操作,所以DSP 的指令效率很高,程序空间一般不会有问题,关键是数据空间是否满足。数据空间的大小可以通过DMA 的帮助,借助程序空间扩大。 4 成本:一般定点DSP 的成本会比浮点DSP 的要低,速度也较快。要获得低成本的DSP 系统,尽量用定点算法,用定点DSP 。 5 实现方便:浮点DSP 的结构实现DSP 系统较容易,不用考虑寻址空间的问题,指令对C 语言支持的效率也较高。 6 内部部件:根据应 DSP 应用选型举例 面向数字控制、运动控制的DSP 系统开发的DSP 芯片选型 面向数字控制、运动控制主要有磁盘驱动控制、引擎控制、激光打印机控制、喷绘机控制、马达控制、电力系统控制、机器人控制、高精度伺服系统控制、数控机床等。当然这些主要是针对数字运动控制系统设计的应用,在这些系统的控制中,不仅要求有专门用于数字控制系统的外设电路,而且要求芯片具有数字信号处理器的一般特征。 例如在控制直流无刷电动机的DSP 控制系统中,直流无刷电机运行过程要进行两种控制,一种是转速控制,也即控制提供给定子线圈的电流;另一种是换相控制,在转子到达指定位置改变定子导通相,实现定子磁场改变,这种控制实际上实

DSP 相关知识及TMS320F2812性能介绍

第一章 DSP 相关知识及TMS320F2812性能介绍 数字信号处理(DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。在通常的实时信号处理中,它具有可程控、可预见性、精度高、稳定性好、可靠性和可重复性好、易于实现自适应算法、大规模集成等优点,这都是模拟系统所不及的。 1.1 DSP系统构成 数字信号处理器是利用计算机或专用处理设备,在模拟信号变换成数字信号以后,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等高速实时处理的专用处理器,其处理速度比最快的CPU还快10~50倍。一个典型的DSP系统,输入信号首先进行带限滤波和抽样,然后进行A/D变换将信号变换成数字比特流。DSP芯片的输入是A/D变换后得到的以抽样形式表示的数字信号,DSP芯片对输入的数字信号进行某种形式的处理,如进行一系列的乘累加操作(MAC)。最后,经过处理后的数字样值再经D/A变换转换为模拟样值,之后再进行内插和平滑滤波就可得到连续的模拟波形。必须指出的是,上面给出的DSP 系统模型是一个典型模型,但并不是所有的DSP系统都必须具有模型中的所有部件。 1.2 DSP系统的特点 数字信号处理系统是以数字信号处理为基础,因此具有数字处理的全部优点: (1)接口和编程方便。DSP系统与其他以现代数字技术为基础的系统或设备都是相互兼容的,与这样的系统接口以实现某种功能要比模拟系统与这些系统接口容易得多;另外,DSP系统中的可编程DSP芯片可使设计人员在开发过程中灵活方便地对软件进行修改和升级。 (2)稳定性和可重复性好。DSP系统以数字处理为基础,受环境温度、湿度、噪声、电磁场的干扰和影响较小,可靠性高;数字系统的性能基本不受元器件参数性能变化的影响,因此数字系统便于测试、调试和大规模生产。 (3)精度高。16位数字系统可以达到10-5的精度。 (4)特殊应用。有些应用只有数字系统才能实现,例如信息无失真压缩、V 型滤波器、线性相位滤波器等等。 (5)集成方便。DSP系统中的数字部件有高度的规范性,便于大规模集成。当然,数字信号处理在高频信号处理上也存在一定的缺点。DSP系统中的高速时钟可能带来高频干扰和电磁泄漏等问题,而且DSP系统消耗的功率也较大。此外,DSP技术更新的速度快,数学知识要求多,开发和调试工具还不尽完善。

低功耗解决方案

低功耗解决方案 篇一:低功耗高能效的电源MCU方案 低功耗高能效的电源MCU方案 当电池需要在几年甚至几十年中为某个产品供电时,不断改进MCU集成产品和轻微修改基本处理器结构都不能满足人们急剧增加的节能需要。针对很多能源敏感产品,如:计量器、楼宇自动化产品、安全产品和便携式医疗设备,如果节能需求和处理功率之间发生了冲突,就必须要大规模发展MCU设计。 EnergyMicro采用了一种‘bluesky’的方法来设计它的低功率EFM32Gecko微处理器,也开发了支持这个产品的软件和硬件工具(图1)。EnergyMicro现已生产了一种装置,仅够消耗现有8位、16位和32位MCU所耗能量的四分之一,使现有电池的寿命大大延长了。换句话说,有了这样的节能MCU,产品设计人员能够大大削减电池的成本、缩小它的尺寸了。而对某些产品,如能源计量器和安全设备,有了频率、成本和碳足迹的维护标注,电池的更换次数就更少了。 要在MCU上获得如此低功率的资格不是件容易的事,需要进行多年的开发,实现真正的创新。到EnergyMicro的网站上去查一查最高峰值,您就会发现有关技术的描述都取了很大的标题,让32位EFM32成为世界上最节能的微控制器

的10大原因,实际上肯定还有更多的原因。 我们先把“超低能量”的specmanship(技术指标差距)放在一边吧。当电池充电量有限时,MCU如何能超时使用能源就变得很重要。在产品的休眠期内减少其能耗和时间与在活跃期时要做的工作一样重要。EFM32MCU以ARMCortex-M3处理核为基础,在设计上大大减少了活跃模式的电源消耗。在基准测试中,32MHz的EFM32实际需要3V的供电,以180μA/MHz的能量运行正确的Flash代码。 这很好,但MCU需要多长时间来处理任务也会对节能产生重要影响。因此,使用32位Cortex-M3比8位和16位器件的处理效率高,执行任务的时钟周期也短得多,这样就会大大缩短产品活跃期。通过保持尽可能短的活跃周期,32位MCU更多的时候都处于深度睡眠模式。人们都忘记了过去32位处理器是不能传送sub-?A待机模式的,采用了正确的低功耗设计技术,现在可以做到这点了。EFM32可以提供所有基线功能,如:实时计数器、RAM和CPU保持、掉电检测和深度睡眠模式中的开机重设,全部只使用μA的能量。 通常,在我们提到的目标应用中,MCU的工作周期可以非常短,MCU在深睡眠状态可停留高达99%的时间。因此,这里的消耗对整体节能真的很重要。 如果MCU从深度睡眠中唤醒产品并重新进入活跃模式所花的时间很长,其优势就会丧失。为什么呢?因为当MCU从

DSP数字信号处理技术总复习(自己整理)

DSP处理器总复习 第三章:处理器结构 1.了解总线结构:PB CB DB EB PAB CAB DAB EAB ◆程序总线(PB) ◆三条数据总线(CB、DB、EB) CB、DB :数据读总线EB:数据写总线 ◆四条地址总线(PAB、CAB、DAB、EAB) 2.了解CPU的内核:算数逻辑单元ALU;累加器ACCA,ACCB;桶形移位寄存器;乘加单元;比较选择和存储单元(CSSU);指数编码器(EXP encoder)(P50) MAC *AR2+, *AR3+, A (只能用累加器A) 3.掌握存储器组织结构: ①注意引脚:PS,DS,IS,MSTRB,IOSTRB,MP/MC. 以及位:OVLY,DROM的使用。程序空间,数据空间,I/O空间。 PS非(程序存储的片选):低电平有效外部总线和PB及PAB连通,CPU访问存放在外部 存储器中的程序指令; DS非(数据存储的片选):低电平有效,外部总线和数据总线连通 IS非(I/O口的片选):当CPU执行PORTR或PORTW指令时,IS非有效。 PMST处理器模式状态寄存器的三个位(MP/MC、OVL Y、DROM) 会 影响存储器配置: ?MP/MC 决定是否将片上ROM存储器映射到程序空间 ?=0 微型计算机模式,片上ROM被映射到程序空间 ?=1 微处理器模式,片上ROM不被映射到程序空间 ?复位值:由MP/MC 引脚状态决定 ?OVLY (RAM overlay) ?=0 RAM不重叠,片上RAM只映射到数据空间 ?=1 RAM重叠,片上RAM同时映射到数据空间和程序空间 ?复位值:0 ?DROM (Data ROM) ?=0 片上ROM不被映射到数据空间 ?=1 片上ROM的一部分被映射到数据空间 ?复位值:0 ②CPU寄存器:重点掌握IMR,IFR,ST0,ST1,PMST, A,B,AR0~AR7,BK,BRC,SP 其中ST0,ST1,PMST中各位的含义。 中断寄存器(IMR、IFR):中断屏蔽寄存器,可用于屏蔽中断 中断标志寄存器(IFR) 状态寄存器ST0 TC:测试/控制标志DP:数据存储器页指针C:借位标志 状态寄存器ST1

相关主题