搜档网
当前位置:搜档网 › 9-3转子运动方程

9-3转子运动方程

第2章 流体运动的基本方程

第2章 流体运动的基本方程 流体运动极其复杂,但也有其内在规律。这些规律就是自然科学中通过大量实践和实验归纳出来的质量守恒定律、动量定理、能量守恒定律、热力学定律以及物体的物性。它们在流体力学中有其独特的表达形式,组成了制约流体运动的基本方程。本章将根据上述基本定律及流体的性质推导流体运动的基本方程,并给出不同的表达形式。 2.1 连续方程 2.1.1 微分形式的连续方程 质量守恒定律表明,同一流体的质量在运动过程中保持不变。下面从质量守恒定律出发推导连续性方程。 在流体中任取由一定流体质点组成的物质体,其体积为V ,质量为M ,则 ? = V dV M ρ 根据质量守恒定律,下式在任一时刻都成立 0== ? V dV dt d dt dM ρ (2-1) 应用物质体积分的随体导数公式(1-15b ),则 0dV )]v (div t [dV )v div Dt D ( dV dt d V V V ?? ? =+??=+= ρρρρ ρ 因假定流体为连续介质,流体密度和速度均为空间和时间的连续函数,被积函数连续,且体积V 是任意选取的,故被积函数必须恒等于零,于是有 0v div Dt D =+ ρρ (2-2a ) 或 0)v (div t =+?? ρρ (2-3a ) 上式亦可以写成如下形式 0x u Dt D i i =??+ρ ρ (2-2b ) 或 0x )u (t i i =??+ ??ρρ (2-3b )

式(2-2)和式(2-3)称为微分形式的连续性方程。 在直角坐标系中,微分形式的连续性方程为 0z )u (y )u (x )u (t z y x =??+ ??+ ??+ ??ρρρρ (2-4) 微分形式的连续性方程适用于可压缩流体非恒定流,它表达了任何可实现的流体运动所必须满足的连续性条件。其物理意义是,流体在单位时间流经单位体积空间时,流出与流入的质量差与其内部质量变化的代数和为零。 由式(2-2)可对不可压缩流体给出确切定义。不可压缩流体的条件应为 0=Dt D ρ (2-5) 即密度应随质点运动保持不变。 0=??t ρ只是指密度是恒定不变的,但流体质点密度还可以 在流动中随位置发生变化。只有满足式(2-5),质点密度才能保持不变。但不能排除各个质点可以具有各自不同的密度。如海水在河口淡水下面的入侵(图2-1),含细颗粒泥沙的浑水在水库的清水下面沿库底的的运动(图2-2),都是具有不同密度的不可压缩流动。在这种流动中,因密度不同形成不同的流层,常称为分层流动。 图2-1 河口的海水入侵[1] 图2-2 水库中的浑水异重流[1] 对不可压缩均质流体,则不但0=Dt D ρ,而是在全流场和全部时间内ρ=常数,因此, 连续性方程简化为

同步发电机转子运动方程

发电机组的转速是由作用在它转子上的转矩所决定的,作用在转子上的转矩主要包括原动机作用在转子上的机械转矩和发电机的电磁转矩两部分。原动机的机械转矩是由发电厂动力部分(例如火电厂的锅炉和汽轮机)的运行状态决定,发电机的电磁转矩是由发电机及其连接的电力系统中的运行状态决定,在这些运行状态中如发生任意干扰都会使作用在转子上的转矩不平衡,也就会使转速发生变化。因此要求系统在受到各种干扰后,发电机组经过一段过程的运动变化后仍能恢复同步运行,即δ角能达到一个稳态值。能满足这一点,系统就是稳定的,否则就是不稳定的,而必须采取相应的措施以保证系统的稳定性。 一般将电力系统稳定性问题分为两大类,即静态稳定性和暂态稳定性。所谓电力系统静态稳定性是指电力系统在某个运行状态下,突然受到任意小干扰后,能恢复到原来的(或是与原来的很接近)运行状态的能力。这里所致的小干扰,是在这种干扰作用下,系统的状态变量的变化很小,因此允许将描述系统的状态方程线性化。电力系统暂态稳定性是指电力系统在某个运行状态下,突然受到较大干扰后,能够过渡到一个新的稳态运行状态(或者回到原来运行状态)的能力。由于受到的是大干扰,系统的状态方程不能线性化。由于两种稳定性问题中受到的干扰的性质不同,因而分析的方法也不同。 电力系统的稳定性问题还可以根据需要按时间长短分为短期、中期和长期稳定,它们在分析时所用的系统元件的数学模型不同,例如长期稳定将计及锅炉的过程。 一:同步发电机转子运动方程 同步发电机组转子的机械角加速度与作用在转子轴上的不平衡转矩之间的关系: T E d J M M M dt Ω=?=- (1) 其中,Ω为转子机械角速度,/rad s ;J 为转子的转动惯量,2kg m g ;M ?为作用在 转子轴上的不平衡转矩(略去风阻,摩擦等损耗即为原动机机械转矩T M 和发电机电磁转矩E M 之差),N m g ;上式极为转子运动方程。 当转子以额定转速0Ω(即同步转速)旋转时,其动能为: 2012 K W J =Ω (2) 式中,K W 为转子在额定转速时的动能,J 。由式(2) 20 2K W J =Ω,代入(1): 202K W d M dt Ω?=?Ω (3) 如转矩采用标幺值,将上式两端同除以转矩基准值B M (即功率基准值除以同步转速,0/B B M S =Ω):

第二章 土壤水分运动基本方程2

第二章 土壤水分运动基本方程 如前所述,达西定律是由达西(Darcy ,Henry 1856)通过饱和砂柱渗透试验得出,后由Richards (1931)将其扩伸至非饱和水流中,并规定导水率为土壤负压h 的函数,即 ()H h k q ?= (2-2-1) 式中:H ?——为水势梯度; k (h )——为导水率,是土壤负压h 的函数; q ——为水流通量或流速。 Richards 方程垂向一维方程为 ) 1)(( ) (±??-=??-=z h k z H k q z θθ 注意:H=h ±z ,垂直坐标向上为“+”;向下时为“–”。 由于k (h )受滞后影响较大,上式仅适用于单纯的吸湿或脱湿过程。若将导水率作为容积含水率函数,即以k (θ)代替人k (h ),则可避免滞后作用的影响。 一般说来达西定律对饱和与非饱和水流均可适用,即水流通量与势能梯度成正比。但在饱和土壤中,压力为正值,其总水头包括了由该点在地下水面以下深度来确定的静水压力(正值)和相对于基准面高度来确定的位置水头,总水头为压力水头和位置水头之和,水由总水头高处向低处流动。在非饱和土壤中,基质势为负值,土水势在不考虑溶质势、温度势及气压势时,只包括重力势和基质势。因此,总水头常以负压水头和位置水头之和来表示。 一维Richards 方程的几种形式: 根据() ()θθ θD h k =??(K=C ×D )得: x h k q x ??-=)(θ x D q x ??-=θ θ)( y h k q y ??-=) (θ y D q y ??-=θθ)( )1)( (±??-=z h k q z θ )]()([θθθk z D q z ±??-=

运动学四个基本公式

匀变速直线运动速度与时间关系练习题 1、物体做匀加速直线运动,已知加速度为2m/s2,那么() A.在任意时间内,物体的末速度一定等于初速度的2倍 B.在任意时间内,物体的末速度一定比初速度大2m/s C.在任意一秒内,物体的末速度一定比初速度大2m/s D.第ns的初速度一定比第(n-1)s的末速度大2m/s 2、物体做匀加速直线运动,初速度v0=2m/s,加速度a=0.1m/s2,求(1)第3s末的速度? (2)5s末的速度? 3、质点作匀减速直线运动,加速度大小为3m/s2,若初速度大小为20m/s,求经4s质点的速度? 4、质点从静止开始作匀变速直线运动,若在3s内速度变为9m/s,求物体的加速度大小? 5、飞机以30m/s的速度降落在跑道上,经20s停止下来,若加速度保持不变,则加速度大小是? 6、质点作初速度为零的匀变速直线运动,加速度为3m/s2,则(1)质点第3s的初速度和末速度分别为多少? 7、汽车在平直的公路上以10m/s作匀速直线运动,发现前面有情况而刹车,获得的加速度大小为2m/s2,则: (1)汽车经3s的速度大小是多少? (2)经5s汽车的速度是多少? (3)经10s汽车的速度是多少? 8、质点从静止开始作匀加速直线运动,经5s速度达到10m/s,然后匀速度运动了20s,接着经2s匀减速运动到静止,则质点在加速阶段的加速度大小是多少?在第26s末的速度大小是多少?

9、质点在直线上作匀变速直线运动,若在A点时的速度是5m/s,经3s到达B点速度是14m/s,若再经4s到达C点,则在C点的速度是多少? 10、一物体做直线运动的速度方程为v t=2t+4. (1)说明方程中各字母或数字的物理意义. (2)请画出物体运动的v-t图象. 11、一质点从静止开始以1m/s2的加速度匀加速运动,经5s后作匀速运动,最后2s的时间使质点匀减速到零,则质点匀速运动的速度是多大?减速运动时的加速度是多大?从开始运动到静止的平均速度是多少?

大气湍流N-S方程

前面复习
什么是湍流? 湍流与层流有什么区别? 雷诺数Re的表达式和物理意义? 湍流有哪些理论? 流体运动的稳定性指的是什么? 处理流体运动的稳定性问题时,什么是 小扰动法和能量法?

流体力学和N-S方程
流体力学是力学的一个分支,它是研究 流体 ( 包括液体及气体 ) 这样一个连续介质 的宏观运动规律以及它与其他运动形态之 间的相互作用。通常所说的流体力学就是 指建立在连续介质假设基础上的流体力学。 连续介质假设认为真实流体所占有的空 间可近似地看做是由“流体质点”连续无 空隙地充满着的。所谓流体质点指的是微 观上充分大,宏观上充分小的分子团.

流体运动的描述
欧拉方法着眼于流场空间的固定点, 拉格朗日着眼于确定的流体质点。 两种方法可以互换。
K qi = qi (r , t )
qi = qi (ξ , t )

物理量的物质导数和当地导数
在欧拉方法的表达式中,专门引进了一 个运算符号d/dt,它表示某确定流体质点的 物理量随时间的变化率,称为该物理量的 物质导数;同时,将欧拉表述下物理量函 数对时间的偏导数,即空间固定点上物理 量的时间变化率,称为当地导数,记作э/эt。
dq ?q K = + (v ? ? ) q dt ?t

M 1m/s M 2m/s
M’ 2m/s (t=0) M’ 3m/s (t=1s)

应力张量
流体质点所受的力需要用二阶张量来描 述,σji。在通过某点并具有任意方向n的面 元上,应力矢量 T(n) 为二阶张量和该面元 的法向单位矢n唯一确定。
K Ti (n ) = σ ji n j

§2.3运动方程的解法

上一节 §2?3运动方程的解法 道出几点系统的运动方程,始进行系统分析的第一步,接着是要确定系统在特定激励下的响应和运行性能,为此就要杰出系统的运动方程。 从数学上看。机电系统的运动方程一般不外乎以下三类: (1)常系数线性微分方程 (2)变系数线性微分方程 (3)非线性微分方程 这三类方程,各有其适用的求解方法。下面分别予以介绍。 (一)线性系统的解法 解析法若系统的运动方程是常系数线性微分方程,则不论外加激励是什莫函数形式,总可以用解析法求出其响应,从而确定系统的运动特性。 常系数线性微分方程,既可以用古典法求解,也可以用拉式变换法求解。 用古典法求解时,先求出奇次方程的通解,然后求出给定驱动函数时的特解,最后初始条件确定解中的任意常数。 拉式变换的特点是:把时域变为复频域,线形微分方程变成代数方程,求出代数方程的解,并用逆变换求出时域解。方法简单。 拉式变换的基本定理 L[cf t ] = cF S 1 C 是常数 L f i t f2 t 丄F i s F2s

L 专-F-f0 常用拉式变换 1 Lit s L Sin t 丨= --- 2 s +co XL丄 s + a 例9-4用拉式变换求解下列微分方程 di i =100 dt 已知i 0 = 0。 解对方程两边进行拉式变换 Si S I S = 100 s 100 100 100 故I s = s(1+s) s s+1 取拉式反变换,即得Is为i t =100 1-e」 传递函数简单机电系统常有一个输入端口和一个输出端口, 如图9-4 设输入量的拉式变换为X s,输出量的拉式变换为Y s则输出 与输入的拉式变 之比成为系统的传函。用Gs表示。即Gs二工旦,式中初始 X(s) 条件为零。 时域传递函数令P =—,丄二dt,并以微分方程导出系统的dt p 输出与输入之比,则可以得到时域传递函数g P (用于模拟计算

微分方程及其解的定义

微分方程 什么是微分方程它是怎样产生的这是首先要回答的问题. 300多年前,由牛顿(Newton,1642-1727)和莱布尼兹(Leibniz,1646-1716)所创立的微积分学,是人类科学史上划时代的重大发现,而微积分的产生和发展,又与求解微分方程问题密切相关.这是因为,微积分产生的一个重要动因来自于人们探求物质世界运动规律的需求.一般地,运动规律很难全靠实验观测认识清楚,因为人们不太可能观察到运动的全过程.然而,运动物体(变量)与它的瞬时变化率(导数)之间,通常在运动过程中按照某种己知定律存在着联系,我们容易捕捉到这种联系,而这种联系,用数学语言表达出来,其结果往往形成一个微分方程.一旦求出这个方程的解,其运动规律将一目了然.下面的例子,将会使你看到微分方程是表达自然规律的一种最为自然的数学语言. 例1 物体下落问题 设质量为m的物体,在时间t=0时,在距地面高度为H处以初始速度v(0) = v0垂直地面下落,求此物体下落时距离与时间的关系. 解如图1-1建立坐标系,设为t时刻物体的位置坐标.于是物体下落的速度为 加速度为 质量为m的物体,在下落的任一时刻所受到的外力有重力mg和空气阻力,当速度不太大时,空气阻力可取为与速度成正比.于是根据牛顿第二定律 F = ma (力=质量×加速度) 可以列出方程 (·= ) 其中k >0为阻尼系数,g是重力加速度. 式就是一个微分方程,这里t是自变量,x是未知函数,是未知函数对t导数.现在,我们还不会求解方程,但是,如果考虑k=0的情形,即自由落体运动,此时方程可化为 将上式对t积分两次得 其中和是两个独立的任意常数,它是方程的解. 一般说来,微分方程就是联系自变量、未知函数以及未知函数的某些导数之间的关系式.如果其中的未知函数只与一个自变量有关,则称为常微分方程;如果未知函数是两个或两个以上自变量的函数,并且在方程中出现偏导数,则称为偏微分方程.本书所介绍的都是常微分方程,有时就简称微分方程或方程.

运动学基本公式

运动学基本公式 一、运动学一般公式 1、 平均速度公式: t x v ??= 2、 加速度定义式:t v a ??= 二、匀变速直线运动公式: 1、 速度和时间关系:at v v +=0 2、 位移和时间关系:202 1at t v x += 3、 速度-位移公式:ax v v t 2202=- 4、 平均速度公式:2 0t v v v += 5、 平均速度位移公式:t v v t v x t 20+= = 6、 中间时刻速度:2 02t t v v v v += = 7、 中间位置速度:2 2202t x v v v += 三、初速度为零的匀变速直线运动公式: (一)一般公式 8、 速度和时间关系:at v = 9、 位移和时间关系:22 1at x = 10、速度-位移公式: ax v t 22= 11、平均速度公式:2 t v v =

12、平均速度位移公式:t v t v x t 2 == 13、中间时刻速度:2 2t t v v v = = 14、中间位置速度:2 2t x v v = (二)自由落体公式: 15、速度和时间关系:gt v = 16、位移和时间关系:22 1gt h = 17、速度-位移公式:gh v t 22= 18、中间时刻速度:2 2t t v v v = = 19、中间位置速度: 2 2t h v v = 四、初速度为零的匀变速直线运动的四个重要比例式: 20、速度比:n v v v v n :.......:3:2:1:......:::321= 21、位移比:2321:.......:9:4:1:......:::n x x x x n = 22、在相同时间内通过的位移比: )12(:.......:5:3:1......::: III II I -=n x x x 23、经过相同位移所用的时间比: ) ()()(1:.......:2-3: 1-2:1:......:::321--=n n t t t t n

第三章 流体运动的基本方程

3.1写出下列各量的数学表达式: (1)单位时间内以n 为法向的面积元dA 上的流体体积流量; [解] 设流速为V ,单位时间令为“1”,则解为dA n ν? (2)t ?时间内经固定不动空间τ的表面S 净流入τ的质量; [解] 设流体密度为ρ,n 为其单位法向量,流速为ν,则解为t dA n ??- ?νρ (3)流体体积τ内的动量、动能的随体导数。 [解] 动量的随体导数:() ?τνρτd Dt D 动能的随体导数:??? ? ???τνρτd Dt D 22 3.2 求各种坐标系下的连续性方程(用微六面体): (1)柱坐标; [解] (2)球坐标; (3)一般曲线坐标。 [解] 将连续性方程推广到一般曲线坐标系下,建立微元体如下图: 在1u 轴向:单位时间内 3.3 下列各种流体运动中,哪个方向速度分量为零,然后写出连续性方程: (1)流体质点在每一平行平面上作径向运动; (2)流体质点在空间作径向运动; (3)流体质点在每一个都交于z 轴的平面上运动; (4)流体质点在同心的球面上运动; (5)流体质点在共轴的圆柱面上运动。若再加上无轴向运动,又如何? (6)流体质点在共轴且有共同顶点的锥面上运动。 3.5 在流体中取一任意形状的控制体,由此求连续性方程。 [解] 取一任意形状控制体(流场中),其体积为τ,表面积为S,密度为()t z y x ,,,ρ,左方流入流体质量dA n s νρ??-1,右方流出流体质量dA n s νρ? ?2, 净流量为dA n s νρ??-1-dA n s νρ? ?2=dA n s νρ??- 据质量守恒有:dA n d t p s νρττ???-=??,即0=?+????dA n d t p s νρττ 3.6 流体作有自由面的三维波动,底面为平面且流体等深,波动幅度小,求连续性方程。 [解] 取一控制体(如上图): x方向:左端流入 ()t dy h u ?+ξρ,右端流出()()()x t dy h u t dy h u ??+?+?+ξρξρ, 净流量()()t dxdy h u x ?+?? ξρ

运动方程式求解方程

Fig.2.1 OECD vertical vibration model diagram 2 38/I m =117/r I m =

3.2Model parameters of winding 2:1, SMR

3.3 elevator rope length of winding 2:1, SMR

Fig.2.2 Diagram of rope length 3.3 Equation of motion ----- Quality is car + frame, CWT, hitch, Rope and rubber are spring ----- 2111l l T T x m += Car + frame 5422l l T T x m += CWT 16363333333l T x k x c x k x c x m -++--= Car hitch 56464444444l T x k x c x k x c x m -++--= CWT hitch 426565555555l l T T x k x c x k x c x m ++++--= Traction machine(up rubber-up) 51444433336654355665435566)()(l l T T x k x c x k x c x k k k k x k x c c c c x c x m --+++++++-++++-= Traction machine(down rubber-up) ---------- Sheave rotate ---------- 217777l l T T x c x m +--= Car sheave 328888l l T T x c x m +--= Traction sheave

2 永磁同步电机的公式推导

2 永磁同步电机的公式推导 2.1 永磁同步电机的能量转换过程推导 永磁同步电机电压平衡方程: (2-1) 其中,t θ = Ω ,θ为转子机械角位移,Ω为转子机械角速度,电机稳定运行时为常数,即const Ω=。则有 d d i L u Ri L i t θ?=++Ω? (2-2) 其中,Ri 为电阻压降,d d i L t 表示感应电动势,L E i θΩ?=Ω?成为运动电动势。 转矩平衡方程: 22d d m mec J R mec T T T T d T J R dt t θθ Ω =++=++ (2-3) 其中,m T 为电机电磁转矩,mec T 为输出机械转矩,22J d T J dt θ =为惯性转矩, d d R T R t θ Ω=为阻力转矩;理想情况下,电机阻力力矩近似为常数,稳定运行时机 械加速度为零,所以输出的机械转矩mec m R T T T =-,由于电机阻力力矩近似为常数,电磁功率可近似看作输出机械功率。 磁能的表达式: '1112n n m m j jk k j k W W i L i ====∑∑ (2-4) 由磁能与电磁转矩之间的关系m m W T d θ=?,则: 111122n n jk m m j k t j k L W L T i i i i θθθ ==???===???∑∑ (2-5) 其中,t i 表示电流矩阵的转置。 则电磁功率为:

1122 m m t t L P T i i i E θΩ?=Ω= Ω=? (2-6) 由公式两边同时乘以t i ,则: d d 1d 12d 2t t t t t t t t i i u i Ri i L i E t i i Ri i E i L i E t ΩΩΩ=++?? =+++ ? ?? (2-7) 由式(2.7)可知,等式左边t i u 为电机输入功率;等式右边t i Ri 为电阻损耗 功率,1 2 t i E Ω是电磁功率,即电功率转换成机械功率输出的那一部分,表明从电 磁耦合场中获得的一半能量转换成了机械能输出;d 1 d 2 t t i i L i E t Ω+是输入功率除去 输出的和内阻损耗功率之后的功率,即为磁场功率。稳态运行时,一个周期内磁场功率应为零,即一个周期内磁场转化的功率与释放的功率相同。 2.2 坐标变换 (1)0abc dq -变换(Clark 变换) 设三相绕组和两相绕组每相的绕组匝数分别为N 1,N 2,将两组磁动势分别投影到α轴和β轴上: 121211 () 22) a b c b c N i N i i i N i N αβ=--=- (2-8) 前后保持功率不变, 可进一步推倒出此时 21N N = ,所以,三相静止坐标系到两相静止坐标系(3s/2s )的“等功率”变换矩阵为: 3/2111220s s C ?--?=? (2)0dq αβ-变换(Park 变换) 同样遵照磁效应等效原则,同一时刻、同一方向上的瞬时磁动势相等,再由

§2.4运动方程式的变换全解

§2.4 运动方变换 通过上节课对运动方程的求解我们看出,交流电机运动方程的系数都是时变函数,因此,求截这种微分方程是非常繁琐的。为了简化运动方程的求解,我们这一节研究采用变数变换的方法。即用新的变数电压和电流来替换运动方程中的实际变数。我们称这种变数变换为坐标变换。 电机理论中用到的变换基本上都是线性变换,而且坐标变换的种类也很多,究竟采用哪一种需要根据具体问题来选择。 一、 电流、电压和阻抗变换的一般公式 设有电路方程 3132121111i z i z i z u ++= 3232221212i z i z i z u ++= 3332321313i z i z i z u ++= 即 ??????????321u u u =???? ?? ????3332 312322 21131211 z z z z z z z z z ???? ? ?????321i i i 写成向量形式为 zi u = 其中 u 、i 是电压、电流矩阵,Z 是阻抗矩阵。 现在引入坐标变换,将u 和i 变为u '和i ',设变换矩阵是C ,即: u c u '= i c i '= 可见,若变换枕C 为一常值矩阵,电压方程组的形式保持不变,此时系统的功率为 u c c i u i H H h ''=

如果要求满足功率不变的约束,则必须有 C H C=E 或 C H =C -1 即C 是酉矩阵,而这种变换矩阵采 用酉矩阵的坐标变换称为酉变换。酉变换满足“功率不变”要求,且有: i c i c i H =='-1 u c u c u H =='-1 i z u ''=' zc c z H =' 在分析三相交流电机是常用的一些酉矩阵,如αβ0阵,dq0阵,对称分量阵等等会在下面介绍。 二、 对称分量变换 交流电机不对称运行最常用的方法是对称分量法。其基本思想就是利用对 称分量变换,将系统的阻抗矩阵变换为对角阵,从而简化问题的求解。 1、 公式及其含义 对于三相对称电路,若外加的电源电压不对称时可以证明,总可以把不对称 的电源电压U A 、U B 、U C 分解成正序、负序和零序三组对称电压,即

湍流模型理论(DOC)

湍流模型理论 §3.1 引言 自然界中的实际流动绝大部分是三维的湍流流动,如河流,血液流动等。湍流是流体粘性运动最复杂的形式,湍流流动的核心特征是其在物理上近乎于无穷多的尺度和数学上强烈的非线性,这使得人们无论是通过理论分析、实验研究还是计算机模拟来彻底认识湍流都非常困难。回顾计算流体力学的发展,特别是活跃的80年代,不仅提出和发展了一大批高精度、高分辨率的计算格式,从主控方程看相当成功地解决了Euler方程的数值模拟,可以说Euler方程数值模拟方法的精度已接近于它有效使用范围的极限;同时还发展了一大批有效的网格生成技术及相应的软件,具体实现了工程计算所需要的复杂外形的计算网格;且随着计算机的发展,无论从计算时间还是从计算费用考虑,Euler方程都已能适用于各种实践所需。在此基础上,80年代还进行了求解可压缩雷诺平均方程及其三维定态粘流流动的模拟。90年代又开始一个非定常粘流流场模拟的新局面,这里所说的粘流流场具有高雷诺数、非定常、不稳定、剧烈分离流动的特点,显然需要继续探求更高精度的计算方法和更实用可靠的网格生成技术。但更为重要的关键性的决策将是,研究湍流机理,建立相应的模式,并进行适当的模拟仍是解决湍流问题的重要途径。 要反映湍流流场的真实情况,目前数值模拟主要有三种方法:1.平均N-S 方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS)。但是由于叶轮机械内部结构的复杂性以及目前计算机运算速度较慢,大涡模拟和直接数值模拟还很少用于叶轮机械内部湍流场的计算,更多的是通过求解平均N-S方程来进行数值模拟。因为平均N-S方程的不封闭性,人们引入了湍流模型来封闭方程组,所以模拟结果的好坏很大程度上取决于湍流模型的准确度。自70年代以来,湍流模型的研究发展迅速,建立了一系列的零方程、一方程、两方程模型和二阶矩模型,已经能够十分成功的模拟边界层和剪切层流动。但是,对于复杂的工业流动,比如航空发动机中的压气机动静叶相互干扰问题,大曲率绕流,激波与边界层相互干扰,流动分离,高速旋转以及其他一些原因,常常会改变湍流的结构,使那些能够预测简单流动的湍流模型失效,所以完善现有湍流模型和寻找新的湍流模型在实际工作中显得尤为重要。 §3.2 湍流模型概述 §3.2.1 湍流模型的引入

单摆运动方程及其周期近似解

单摆运动周期和相轨迹特性的研究 摘要:本文首先分别用基本形式拉格朗日方程和保守系下的拉格朗日方程求解单摆运动方程,其次通过线性近似法求解在小摆角下的周期近似解,再通过构建“局部常化”的近似处理方法,得到大摆角运动周期的一个新结论。最后,用数值模拟(四阶龙格-库塔法)求解无阻尼无驱动单摆非线性方程,用origin作图软件绘制出 θ时,取不同初值时的相轨迹,并 < 90 分析了其相轨迹特性,验证对小角度单摆几乎只有摆动,对大角度单摆既有摆动又有转动。 关键词:单摆运动周期非线性局部常化椭圆积分数值模拟相轨迹 引言:非线性引起复杂性,复杂性产生的根源即“原来是禁锢在笼子里的非线性老虎被释放了”。对线性模型简单、容易分析,且线性微分方程可求其解析解,而非线性模型复杂、不容易分析,非线性方程不容易求其解析解,我们利用这两种性质可对某一具体问题进行不同方式的分析,得出一部分规律。 单摆模型是简单与复杂的综合体,对该模型可用:线性化法、近似解析法、数值法和向空间法进行求解,分析。本文求出单摆微分方程后,首先通过线性近似法求解在小摆角下的周期近似解,再通过构建“局部常化”的近似处理方法,得到大摆角运动周期的一个新结论,有用数值法和相空间法,验证了单摆运动在取不同初值时的运动形态,即为摆动或摆动加转动特性,对单摆特性研究有一定价值。除了对无阻尼无驱动单摆系统研究,

我们可将该分析方法用与其他几类单摆模型。 正文: 1 单摆运动方程的求解 单摆运动问题是一个古老而又十分有趣的问题。对于摆长为L ,最大摆角为0θ的单摆系统,由于只有重力做功,因此满足机械能守恒。分别用基本形式拉格朗日方程和保守系下的拉格朗日方程来求解如下: (1)基本形式拉格朗日方程为[]1: =12.d T T Q d t q q αααα? ?? ?? ?-=???????????? ????? (,,) (1) 自由度为1,取广义坐标为θ,有: 广义力为:αααq r g m q r F Q i i i i ??=??=→∑ ) (2 121mglsin θ F j lsin θi lcos θθr j lcos θi lsin θr 2 2 2i A A ?→→→ → →→==-=∴-=??∴+=θl m mv T 22 2 0122d T T Q dt q q T T ml ml d T ml dt αα αθ θθθ θθ ? ??? ??? ???? ?∴-= ???? ??=??=?=??∴=?

第9章-湍流基础

第9章湍流基础 透平叶栅中的流动是一种性质极为复杂的流动,由于在现代透平中流动的雷诺数很高,同时透平转子对流动的强烈影响,都使得流道中的实际流动呈现湍流状态]1[。如果仍然采用层流模型进行数值研究,结果与真实值间的差距就会加大。此外,湍流其本身也是一个很复杂的问题,一方面它是流体力学领域中尚未解决的问题之一;另一方面,在求解湍流模型的过程中还会产生很多数学上的问题]2[。如此一来,叶栅流道内的三维湍流的数值计算就吸引了众多的学者和工程技术人员。 9.1 湍流的基本概念 9.1.1 湍流的概念和基本结构 自然界中的流动问题和工程实践中所处理的各种流体运动问题更多的是湍流流动问题。如水在江河中的流动水通过各种水工建筑物、水处理建筑物的流动,管道中水的流动,污染物质在河流及海洋中的扩散,大气边界层流动等均多为湍流。湍流是不同于层流的又一种流动形态。英国的雷诺于1883年,通过其著名的圆管实验深入的揭示了这两种不同的粘性流动形态]3[。虽然一百多年来人们对湍流的研究不断深入,但是由于湍流运动的极端复杂性,它的基本机理至今仍未被人们所掌握,甚至至今仍然没有一个精确的定义。 雷诺(Osborne Reynolds,1842年—1912年)把湍流定义为一种蜿蜒曲折、起伏不定的流动(sinuous motion)。泰勒(G.I.Taylor 1886年—1975年)和冯·卡门对湍流的定义是“湍流是常在流体流过固体表面或者相同流体分层流动中出现的一种不规则的流动”。欣策(J.O.Hinze )在他的著作“Turbulence”一书中则认为湍流的更为确切的定义应该是“湍流是流体运动的一种不规则的情形。在湍流中各种流动的物理量随时间和空间坐标而呈现出随机的变化,因而具有明确的统计平均值”。同时,在这本书中还把泰勒和卡门对湍流所下定义中提到的两种流动状况给予专门名称:“壁面湍流”表示流过固体壁面的湍流,“自由湍流”表示流动中没有固体壁面限制的湍流流动。]4[ 湍流的运动极不规则,极不稳定,每一点的速度随时间和空间都是随机变化的,因此其结构十分复杂。现代湍流理论认为]5[:湍流是由各种不同尺度的涡构成的,大涡的作用是从平均流动中获得能量,是湍流的生成因素,但这种大涡是不稳定的,它不断地破碎成小涡。换句话说,从低频的大涡到高频的小涡是一个能量级联过程,这个过程一直进行到湍动能的耗散。如果没有连续的外部能量的提供,湍流将逐渐衰退消失,但是湍流应力和平均流动的速度梯度之间的相互作用通过频谱提供能量来防止湍流的衰退,这个过程称作“湍流的生成过程”,且能量相对粘性耗散的产生率是一个测量流动均衡状态的量。 湍流流动是一种大雷诺数、非线性、三维非定常流动。它具有随机性、扩散性、耗散性、有旋性、记忆特性和间歇现象等特点,运动极不规则。为了方便研究湍流的基本特性,将湍流分为均匀湍流、各向同性湍流和各向异性湍流。均匀湍流和各向同性湍流是湍流中最简单而且在理论上研究最多的。所谓均匀湍流是指湍流场中任何一点同一方向的速度分量的均方值处处都是相等的,任何两点的速度相关只与该两点的相对位置有关;各向同性湍流是指湍流的湍动速度分量及其对空间导数的平均值不受坐标系在空间的方位而改变。实际的湍流,一般都是非各向同性的。这是由于尺度大的湍动运动的速度受到平均运动流场的影响。但对于尺度很小的湍动运动,湍动的特性不直接依赖于平均运动流场的性质,具有各向同性的特征。因此研究这种局部各向同性的湍流具有重要的理论和实际意义。

第三章 流体流动的基本概念与基本方程

第三章 流体流动的基本概念与方程 质量守恒定律、牛顿第二定律、能量守恒定律等是物质运动的普遍原理,流体作为一类物质也应该遵循这些原理。这些原理刚体运动的方程式在物理学和理论力学中大家已经学习过,适用于流体运动的方程式将在本章讨论。本章首先介绍描述流体流动的一些基本概念,然后推导出流体流动的基本方程,即连续方程、动量方程、能量方程等。这些基本概念与方程在流体运动学中的研究中是十分重要的。 3.1 描述流体流动的方法 在流体力学的研究中,描述流体的运动一般有两种方法,即拉格朗日法与欧拉法。 3.1.1 拉格朗日法 拉格朗日法着眼于单个流体质点是怎样运动的,以及流体质点的特性是如何随时间变化的。为了区别流体质点,使用某特定质点在某瞬时的坐标(a, b, c)是比较方便的,坐标(a, b, c)描述的只是某一特定的质点。 在任何瞬时质点的位置可表示为 (3.1) 对于一给点的坐标(a, b, c),上述方程组代表的是一特定流体质点的轨迹。 此时,质点是速度可以通过将质点是位置矢量对时间求导数得到。在笛卡尔坐标系中,质点的速度可表示为 (3.2) 加速度为

(3.3) 3.1.2欧拉法 流体是由无数流体质点组成的连续介质,充满流动流体的空间称为流场。 表示流体速度的一种方法就是着眼于空间的某一点,观察流经该点的流体质点随时间的运动。这种研究流体质点运动的方法称为欧拉法。在更一般的意义上,欧拉法可以通过以下方面描述整个流场: (1)在空间某一点流动参数,如速度、压强等,随时间的变化; (2)这些参数相对于空间邻近点的变化。 此时,流动参数是空间点的坐标与时间的函数: (3.4) 或 (3.4a) (3.5) 流体质点随时间将从一点运动到另一点,这意味着流体质点的位置也是时间的函数。 利用多元函数的微分连锁律,可将流体质点在x方向的加速度表示为: (3.6a) 同样 (3.6b) (3.6c) 或写成矢量的形式

相关主题