搜档网
当前位置:搜档网 › 正态分布及其经典习题和答案

正态分布及其经典习题和答案

正态分布及其经典习题和答案
正态分布及其经典习题和答案

4

3

2

1

-1

-4-2

2

4

2

1

专题:正态分布

【知识网络】

1、取有限值的离散型随机变量均值、方差的概念;

2、能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;

3、通过实际问题,借助直观(如实际问题的直观图),认识正态分布、曲线的特点及曲线所表示的意义。 【典型例题】

例1:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 ( ) A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1

答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。

(2)正态曲线下、横轴上,从均数到∞+的面积为( )。

A .95%

B .50%

C .97.5%

D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。

(3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( )

A 32

B 16

C 8

D 20 答案:B 。解析:数学成绩是X —N(80,102),

8080

9080(8090)(01)0.3413,480.34131610

10P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________ 。

答案:8.5。解析:设两数之积为X ,

X 2 3 4 5 6 8 10 12 15 20 P

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

∴E(X)=8.5.

(5)如图,两个正态分布曲线图:

1为)(1

,1x σμ?,2为)(22x σμ?,

则1μ 2μ,1σ 2σ(填大于,小于) 答案:<,>。解析:由正态密度曲线图象的特征知。

例2:甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.

(Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率.

答案:解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下: 甲答对试题数ξ的数学期望 E ξ=5

9

61321210313010=?+?+?+?

. (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则

ξ 0

1

2

3

P

301 103

21 61

P (A )=310361426C C C C +=321202060=+,P (B )=151412056563

10

381228=+=+C C C C . 因为事件A 、B 相互独立, 方法一:

∴甲、乙两人考试均不合格的概率为 ()()()

45

1

15141321=

??? ??-??? ??

-=?=?B P A P B A P ∴甲、乙两人至少有一人考试合格的概率为 ()

45

44

45111=

-=?-=B A P P 答:甲、乙两人至少有一人考试合格的概率为45

44

. 方法二:

∴甲、乙两人至少有一个考试合格的概率为

()()

()45

44

15143215143115132=

?+?+?=

?+?+?=B A P B A P B A P P 答:甲、乙两人至少有一人考试合格的概率为4544

.

例3:甲、乙两名射手在一次射击中得分为两个相互独立的随机变量X 和Y ,其分布列如下: (1)求a,b 的值; (2)比较两名射手的水平. 答案:(1)a=0.3,b=0.4; (2)23.034.023.01,3.26.031.023.01=?+?+?==?+?+?=EY EX 6.0,855.0==DY DX

所以说甲射手平均水平比乙好,但甲不如乙稳定..

例4:一种赌博游戏:一个布袋内装有6个白球和6个红球,除颜色不同外,6个小球完全一样,每次从袋中取出6个球,输赢规则为:6个全红,赢得100元;5红1白,赢得50元;4红2白,赢得20元;3红3白,输掉100元;2红4白,赢得20元;1红5白,赢得50元;6全白,赢得100元.而且游戏是免费的.很多人认为这种游戏非常令人心动,现在,请利用我们学过的概率知识解释我们是否该“心动”.。 答案:设取出的红球数为X ,则X —H (6,6,12),666

612

()k k

C C P X k C -?==,其中k=0,1,2,…,6

设赢得的钱数为Y ,则Y 的分布列为

X 100

50

20

—100

P

1462 677 75154 100

231

∴1675100

()100502010029.4446277154231

E Y =?+?+?-?=-,故我们不该“心动”

X 1 2 3 P a 0.1 0.6 Y 1 2 3 P 0.3 b 0.3

【课内练习】

1.标准正态分布的均数与标准差分别为( )。 A .0与1 B .1与0 C .0与0 D .1与1 答案:A 。解析:由标准正态分布的定义知。

2.正态分布有两个参数μ与σ,( )相应的正态曲线的形状越扁平。 A .μ越大 B .μ越小 C .σ越大 D .σ越小

答案: C 。解析:由正态密度曲线图象的特征知。

3.已在n 个数据n x x x ,,,21 ,那么()

∑=-n

i i x x n 1

21是指

A .σ

B .μ

C .2σ

D .2

μ( ) 答案:C 。解析:由方差的统计定义知。

4.设),(~p n B ξ,()12=ξE ,()4=ξV ,则n 的值是 。 答案:4。解析:()12==np E ξ,()4)1(=-=p np V ξ

5.对某个数学题,甲解出的概率为2

3

,乙解出的概率为34,两人独立解题。记X 为解出该题的人数,则E

(X )= 。

答案:1712。解析:11121145(0),(1),3412343412

P X P X ==?===?+?=231

(2)342P X ==?=。

∴1

5117()012212212

E X =?+?

+?=。 6.设随机变量ξ服从正态分布)1,0(N ,则下列结论正确的是 。 (1))0)(|(|)|(|)|(|>=+<=-<=<-=>-=

答案:(1),(2),(4)。解析:(||)0P a ξ==。

7.抛掷一颗骰子,设所得点数为X ,则V (X )= 。

答案:3512。解析:1

(),1,2,,66P X k k ===,按定义计算得735(),()212E X V X ==。

8.有甲乙两个单位都想聘任你,你能获得的相应的职位的工资及可能性如下表所示:

根据工资待遇的差异情况,你愿意选择哪家单位并说明理由。 答案: 由于E (甲)=E (乙),V (甲)

9.交5元钱,可以参加一次摸奖。一袋中有同样大小的球10个,其中有8个标有1元钱,2个标有5元钱,

甲单位 1200 1400 1600 1800 概率

0.4 0.3 0.2 0.1 乙单位 1000 1400 1800 2200 概率

0.4

0.3

0.2

0.1

摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和(设为ξ),求抽奖人获利的数学期望。

答案:解:因为ξ为抽到的2球的钱数之和,则ξ可能取的值为2,6,10.

4528)2(21028===C C P ξ,4516)6(2101218===C C C P ξ,45

1

)10(2

102

2===C C P ξ 5

1845162451104516645282=

=?+?+?

=ξE 设η为抽奖者获利的可能值,则5-=ξη,抽奖者获利的数学期望为

57

55185)5(-=-=

-=-=ξξηE E E 故,抽奖人获利的期望为-7

5

10.甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92. (1)求该题被乙独立解出的概率;

(2)求解出该题的人数ξ的数学期望和方差.

答案:解:(1)记甲、乙分别解出此题的事件记为A 、B. 设甲独立解出此题的概率为P 1,乙为P 2. 则P (A )=P 1=0.6, P(B)=P 2

ξ

1

2 P 0.08 0.44 0.48

00.0810.4420.480.440.96 1.4E ξ=?+?+?=+=,

222()(0 1.4)0.08(1 1.4)0.44(2 1.4)0.480.15680.07040.17280.4V ξ=-?+-?+-?=++=,

或利用22()()() 2.36 1.960.4V E E ξξξ=-=-=。

1212122222()1()1(1)(1)0.920.60.60.920.40.320.8

(6

)(2)(0)()()0.40.20.08

(1)()()()()0.60.20.40.80.44(2)()()0.60.80.48

:

P A B P A B P P P P P P P P P P P P A P B P P A P B P A P B P P A P B ξξξξ+=-?=---=+-=∴+-=====?=?===+=?+?===?=?=则即分的概率分布为

【作业本】

A 组

1.袋中装有5只球,编号为1,2,3,4,5,从中任取3球,以X 表示取出球的最大号码,则E (X )等于 ( )

A 、4

B 、5

C 、4.5

D 、4.75

答案:C 。解析:X 的分布列为

X 3 4 5 P

0.1

0.3

0.6

故E (X )=3?0.1+4?0.3+5?0.6=4.5。

2.下列函数是正态分布密度函数的是 ( ) A .()σ

σπ22

21)(r x e

x f -=

B .2

222)(x e x f -

=

π

π

C .()4

12

221)(-=x e

x f π

D .2

221)(x e x f π

=

答案:B 。解析:选项B 是标准正态分布密度函数。

3.正态总体为1,0-==σμ概率密度函数)(x f 是 ( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .既是奇函数又是偶函数 答案:B 。解析:22

1()2x f x e

π

-=

-。

4.已知正态总体落在区间()+∞,2.0的概率是0.5,那么相应的正态曲线在=x 时达到最高点。 答案:0.2。解析:正态曲线关于直线x μ=对称,由题意知0.2μ=。

5.一次英语测验由40道选择题构成,每道有4个选项,其中有且仅有一个是正确的,每个选对得3分,选错或不选均不得分,满分120分,某学生选对一道题的概率为0.7,求该生在这次测验中的成绩的期望为 ;方差为 。

答案:84;75.6。解析:设X 为该生选对试题个数,η为成绩,则X ~B (50,0.7),η=3X ∴E(X)=40×0.7=28 V(X)=40×0.7×0.3=8.4

故E(η)=E(3X)=3E(X)=84 V(η)=V(3X)=9V(X)=75.6

6.某人进行一个试验,若试验成功则停止,若实验失败,再重新试验一次,若试验三次均失败,则放弃试验,若此人每次试验成功的概率为

3

2

,求此人试验次数X 的分布列及期望和方差。 解:X 的分布列为

X 1

2

3

P

23 29 19

故22113()1233999E X =?+?+?=,22211338

()149()399981

V X =?+?+?-=。

7.甲、乙两名射击运动员,甲射击一次命中10环的概率为0.5,乙射击一次命中10环的概率为s ,若他们独立的射击两次,设乙命中10环的次数为X ,则EX=3

4

,Y 为甲与乙命中10环的差的绝对值.求s 的值及Y 的分布列及期望.

答案:解:由已知可得),2(~s B X ,故3

2,342==

=s s EX 所以.

有Y 的取值可以是0,1,2.

甲、乙两人命中10环的次数都是0次的概率是36

1

)31()21(22=?,

甲、乙两人命中10环的次数都是1次的概率是92

)32313132)(21212121(=?+??+?,

甲、乙两人命中10环的次数都是2次的概率是9

1

)3232)(2121(=??

所以36

13

9192361)0(=

++==Y P ; 甲命中10环的次数是2且乙命中10环的次数是0次的概率是361

)31()21(22=?,

甲命中10环的次数是0且乙命中10环的次数是2次的概率是9

1

)3232)(2121(=??

所以36591361)2(=

+==Y P ,故2

1

)2()0(1)1(==-=-==Y P Y P Y P 所以Y 的分布列是

Y 1

2

3

P

3613 2

1 36

5 所以 Y 的期望是E (Y )=

9

7。 8.一软件开发商开发一种新的软件,投资50万元,开发成功的概率为0.9,若开发不成功,则只能收回10万元的资金,若开发成功,投放市场前,召开一次新闻发布会,召开一次新闻发布会不论是否成功都需要花费10万元,召开新闻发布会成功的概率为0.8,若发布成功则可以销售100万元,否则将起到负面作用只能销售60万元,而不召开新闻发布会则可能销售75万元. (1)求软件成功开发且成功在发布会上发布的概率. (2)求开发商盈利的最大期望值. 答案:解:(1)设A=“软件开发成功”,B=“新闻发布会召开成功” 软件成功开发且成功在发布会上发布的概

率是P(AB)=P(A)P(B)=0.72. (2)不召开新闻发布会盈利的期望值是5.189.0)5075()9.01(401=?-+-?-=E (万元); 召开新闻发布会盈利的期望值是

8.249.010)5060()8.01(9.072.0)50100()9.01(402=?--?-?+?-+-?-=E (万元)

故开发商应该召开新闻发布会,且盈利的最大期望是24.8万元..

B 组

1.某产品的废品率为0.05,从中取出10个产品,其中的次品数X 的方差是 ( ) A 、0.5 B 、0.475 C 、0.05 D 、2.5 答案:B 。解析:X —B (10,0.05),()100.050.950.475V X =??=。 2.若正态分布密度函数()2

12

1(),()2x f x e

x R π--

=

∈,下列判断正确的是 ( )

A .有最大值,也有最小值

B .有最大值,但没最小值

C .有最大值,但没最大值

D .无最大值和最小值 答案:B 。

3.在一次英语考试中,考试的成绩服从正态分布)36,100(,那么考试成绩在区间(]112,88内的概率是 ( )

A .0.6826

B .0.3174

C .0.9544

D .0.9974 答案:C 。解析:由已知X —N (100,36),

故88100112100

(88112)()(22)2(2)10.954466

P X P Z P Z P Z --<≤=<≤=-<≤=≤-=。

4.袋中有4个黑球,3个白球,2个红球,从中任取2个球,每取到一个黑球得0分,每取到一个白球得1分,若取到一个红球则得2分,用X 表示得分数,则E (X )=________;V(X)= _________.

答案:

149

;162165。解析:由题意知,X 可取值是0,1,2,3,4。易得其概率分布如下: X 0

1

2

3

4

P

16 13 1136 16 1

36 E(X)=0×16+1×13+2×1136+3×16+4×136=14

9

V(X)= 20×16+21×13+22×1136+23×16+2

4×136-2

914??

? ??=162165

注:要求次品数的数学期望与方差,应先列出次品数X 的分布列。

5.若随机变量X 的概率分布密度函数是())(,221)(8

2,2

R x e

x x ∈=

+-

π

?σμ,

则)12(-X E = 。 答案:-5。解析:2,2,(21)2()12(2)15E X E X σμ==--=-=?--=-。

6.一本书有500页,共有100个错字,随机分布在任意一页上,求一页上错字个数X 的均值、标准差。 解:∵X —B 1111

(100,

),()1000.2,()100(1)0.1996500500500500

E X V X ∴=?==??-= X 的标准差()0.04468V X σ==。

7.某公司咨询热线电话共有10路外线,经长期统计发现,在8点至10点这段时间内,外线同时使用情况如下表所示:

电话同时打入次数

0 1 2 3 4

5 6 7 8 9 10

X 概率

0.13

0.35

0.27

0.14

0.08

0.02

0.01

若这段时间内,公司只安排2位接线员(一个接线员只能接一部电话). (1)求至少一路电话号不能一次接通的概率;

(2)在一周五个工作日中,如果有三个工作日的这一时间至少一路电话不能一次接通,那么公司形象将受到损害,现在至少一路电话不能一次接通的概率表示公司的“损害度”,,求这种情况下公司形象的“损害度”; (3)求一周五个工作日的时间内,同时打入电话数X 的数学期望.

答案:解:(1)只安排2位接线员则至少一路电话号不能一次接通的概率是 1-0.13-0.35-0.27=0.25; (2)“损害度”512

45

)4

3()4

1

(2

3

3

5=

C ; (3)一个工作日内这一时间内同时打入电话数的期望是4.87,所以一周内5个工作日打入电话数的期望是24.35..

8.一批电池(一节)用于手电筒的寿命服从均值为35.6小时、标准差为4.4小时的正态分布,随机从这批电池中任意取一节,问这节电池可持续使用不少于40小时的概率是多少?

答案:解:电池的使用寿命X —N(35.6,4.42)

则35.64035.6

(40)()(1)1(1)0.15874.4 4.4

X P X P P Z P Z --≥=≥=≥=-≤=

即这节电池可持续使用不少于40小时的概率是0.1587。 本资料来源于《七彩教育网》https://www.sodocs.net/doc/fb2381948.html,

随机变量及其分布列经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量、 ①随机变量就是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化、 2.表示:随机变量常用字母X ,Y,ξ,η,…表示. 3、所有取值可以一一列出的随机变量,称为离散型随机变量 ( dis cre te ran dom var ia ble ) . 二、离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,xi ,…,x n, X 取每一个值x i (i=1,2,…, n)的概率P (X =xi)=pi ,则称表: 为离散型随机变量X P(X =x i )=p i , i =1,2,…,n, 也可以用图象来表示X 的分布列、 2.离散型随机变量的分布列的性质 ①pi ≥0,i=1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X 的分布列具有上表形式,则称服从两点分布,并称p =P (X =1)为成功概率. 2、超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M,N ∈N * . 三、二项分布 一般地,在n 次独立重复试验中,用 X 表示事件A 发生的次数,设每次试验中事件A发生的概率为p ,则P (X=k )=C 错误!p k (1-p)n - k ,k=0,1,2,…,n 、此时称随机变量X服从二项分布,记作X ~B (n ,p),并称p 为成功概率.易得二项分布的分布列如下;

正态分布及其经典习题和答案

正态分布讲义 【知识网络】 1、取有限值的离散型随机变量均值、方差的概念; 2、能计算简单离散型随机变量的均值、方差,并能解决一些实际问题; 3、通过实际问题,借助直观(如实际问题的直观图),认识正态分布、曲线的特点及曲线所表示的意义。 【典型例题】 例1:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 ( ) A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( ) A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102 ), 8080 9080(8090)(01)0.3413,480.3413161010P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ??? 。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________ 。 答案:8.5。解析:设两数之积为X , ∴E(X)=8.5. (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ? , 则1μ 2μ,1σ 2σ(填大于,小于) 答案:<,>。解析:由正态密度曲线图象的特征知。 例2:甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 答案:解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下: 甲答对试题数ξ的数学期望 E ξ=5 9 61321210313010=?+?+?+? . (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则

二项分布专题练习

二项分布专题练习 1.已知随机变量X 服从二项分布,X ~B 16,3?? ??? ,则P (X =2)=( ). A . 316 B . 4243 C . 13 243 D . 80 243 2.设某批电子手表正品率为 34,次品率为1 4 ,现对该批电子手表进行测试,设第X 次首次测到正品,则P (X =3)等于( ). A .223 13C 44??? ??? B .2 2331C 44 ??? ? ?? C .2 1344 ??? ??? D .2 3144 ??? ??? 3.甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为0.4,乙投中的概率为0.6,而且不受其他次投篮结果的影响,设投篮的轮数为X ,若甲先投,则P (X =k )等于( ). A .0.6k - 1×0.4 B .0.24k -1×0.76 C .0.4k -1×0.6 D .0.76k - 1×0.24 4.10个球中有一个红球,有放回地抽取,每次取出一球,直到第n 次才取得k (k ≤n )次红球的概率为( ). A .2191010n k -???? ? ? ???? B . 191010k n k -???? ? ? ???? C .1119C 1010k n k k n ---???? ? ????? D .1 1119C 1010k n k k n ----???? ? ??? ?? 5.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为 65 81 ,则事件A 在1次试验中发生的概率为( ). A . 13 B . 25 C . 56 D . 34 6.某一批花生种子,如果每一粒发芽的概率为4 5 ,那么播下4粒种子恰有2粒发芽的概率是__________. 7.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为__________.(用数字作答) 8.假定人在365天中的任意一天出生的概率是一样的,某班级中有50名同学,其中有两个以上的同学生于元旦的概率是多少?(结果保留四位小数)

高二数学 正态分布练习题

正态分布 ㈠ 知识点回顾: 1、正态分布概念:若连续型随机变量ξ的概率密度函数为 ),(,21)(2 22)(∞+-∞∈= --x e x f x σμσ π, 其中,σμ为常数,且0σ>,则称ξ服从正态分布,简记为ξ~()2,N μσ。 ()f x 的图象称为正态曲线。 2、正态分布的期望与方差 若ξ~()2,N μσ,则2,E D ξμξσ== 3、正态曲线的性质: ①曲线在x 轴的上方,与x 轴不相交. ②曲线关于直线x=μ对称. ③曲线在x=μ时位于最高点. ④当x<μ时,曲线上升;当x>μ时,曲线下降.并且当曲线向左、右两边无限延伸时,以 x 轴为渐进线,向它无限靠近. ⑤当μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,表示总体的分布越分散;σ 越小,曲线越“瘦高”,表示总体的分布越集中. 4、在标准正态分布表中相应于0x 的值()0x Φ是指总体取值小于0x 的概率即 ()()00x P x x Φ=< 00≥x 时,则)(0x Φ的值可在标准正态 分布表中查到 00

x y O (6)、()2,N μσ与()0,1N 的关系: ①若ξ~()2,N μσ,有()()000x P x F x μξσ-??<==Φ ??? ②若ξ~()2,N μσ,则()2112x x P x x x μμσσ--???? <<=Φ-Φ ? ????? (二)习题 一、选择题 1.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为 )(10 21 )(200 )80(2R x e x f x ∈?= --π,则下列命题不正确的是 ( B ) A .该市这次考试的数学平均成绩为80分; B .分数在120分以上的人数与分数在60分以下的人数相同; C .分数在110分以上的人数与分数在50分以下的人数相同; D .该市这次考试的数学成绩标准差为10. 2.设随机变量ξ服从标准正态分布()0,1N ,若()1P p ξ>=,则()10P ξ-<<=(D ) A. 2 p B. 1p - C. 12p - D. 12p - 3.设随机变量),(~2σμξN ,且 )()(c P c P >=≤ξξ,则c 等于( D ) μμσ...0.D C B A - 4. 已知正态分布曲线关于y 轴对称,则μ值为( ) A .1 B .-1 C .0 D.不确定 5.正态分布N (0,1)在区间(-2,-1)和(1,2)上的取值的概率分别为12,p p ,则12,p p 的大小关系为( ) A .12p p < B .12p p > C .12p p = D.不确定 6.设随机变量),(~2σμξN ,且1,3==ξξD E ,则)11(≤<-ξP =( B ) 1)2(2.)4()2(.)2()4(.1)1(2.-ΦΦ-ΦΦ-Φ-ΦD C B A 7.已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( A ) A .0.16 B .0.32 C .0.68 D ,0.84 8.设随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c = ( B ) A.1 B.2 C.3 D.4 9.已知随机变量ζ服从正态分布N (3,a 2),则P (3)ζ<=( D ) (A)15 (B)14 (C)13 (D)12 1 x 2 x )(0x Φ) (10x -Φ-

二项分布经典例题+测验题资料

二项分布经典例题+测 验题

二项分布 1.n 次独立重复实验 一般地,由n 次实验构成,且每次实验相互独立完成,每次实验的结果仅有两种对立的状态,即A 与A ,每次实验中()0P A p =>。我们将这样的实验称为n 次独立重复实验,也称为伯努利实验。 (1)独立重复实验满足的条件第一:每次实验是在同样条件下进行的;第二:各次实验中的事件是互相独立的;第三:每次实验都只有两种结果。 (2)n 次独立重复实验中事件A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k ==k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3次射击,甲每次击中目标的概率为2 1,乙每次击中目标的概率为3 2. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】

1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球, 且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列。 (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每 次投篮投中的概率为1 3,乙每次投篮投中的概率为1 2 ,且各次投篮 互不影响. (Ⅰ) 求甲获胜的概率。 (Ⅱ) 求投篮结束时甲的投篮次数 的分布列与期望 3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是 1 2 ,试求需要比赛场数的期望. 3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。

正态分布及其经典习题和答案DOC

4 3 2 1 -1 -4 -2 2 4 2 1 (1)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定 答案:B 。解析:由正态曲线的特点知。 (2)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( ) A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102), 8080 9080(8090)(01)0.3413,480.34131610 10P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ??? (3)如图,两个正态分布曲线图: 1为)(1,1x σμ?,2为)(22x σμ?, 则1μ 2μ,1σ 2σ) 答案:<,>。解析:由正态密度曲线图象的特征知。 例2:甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. 求甲、乙两人至少有一人考试合格的概率. 答案:设甲、乙两人考试合格的事件分别为A 、B ,则

P (A )=3 1036 14 2 6 C C C C +=3 21202060=+,P (B )=1514120565631038 1228=+=+C C C C . 因为事件A 、B 相互独立, 方法一: ∴甲、乙两人考试均不合格的概率为 ()()() 45 1 15141321=??? ??-??? ??-=?=?B P A P B A P ∴甲、乙两人至少有一人考试合格的概率为 () 45 4445111=-=?-=B A P P 答:甲、乙两人至少有一人考试合格的概率为45 44 . 方法二: ∴甲、乙两人至少有一个考试合格的概率为 ()() ()4544 15143215143115132= ?+?+?=?+?+?=B A P B A P B A P P 答:甲、乙两人至少有一人考试合格的概率为 4544 . 1.标准正态分布的均数与标准差分别为( )。 A .0与1 B .1与0 C .0与0 D .1与1 答案:A 。解析:由标准正态分布的定义知。 2.正态分布有两个参数μ与σ,( )相应的正态曲线的形状越扁平。 A .μ越大 B .μ越小 C .σ越大 D .σ越小 答案: C 。解析:由正态密度曲线图象的特征知。

(完整版)正态分布习题与详解(非常有用-必考点)

1. 若x ~N (0,1),求(l)P (- 2.322). 解:(1)P (-2.322)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228. 2利用标准正态分布表,求标准正态总体 (1)在N(1,4)下,求)3(F (2)在N (μ,σ2 )下,求F(μ-σ,μ+σ); 解:(1))3(F =)2 1 3( -Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σ μ σμ-+Φ=Φ(1)=0.8413 F(μ-σ)=)( σ μ σμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为 π 21,求总体落入区 间(-1.2,0.2)之间的概率 Φ(0.2)=0.5793, Φ(1.2)=0.8848] 解:正态分布的概率密度函数是),(,21)(2 22)(+∞-∞∈= -- x e x f x σμσ π,它是偶函数, 说明μ=0,)(x f 的最大值为)(μf =σ π21,所以σ=1,这个正态分布就是标准正态分 布 ( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1 P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 0.57930.884810.4642=+-= 4.某县农民年平均收入服从μ=500元,σ=200元的正态分布 1)求此县农民年平均收入在500:520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,) 内的概率不少于0.95,则a 至少有多大?[Φ(0.1)=0.5398, Φ(1.96)=0.975] 解:设ξ表示此县农民年平均收入,则)200,500(~2 N ξ 520500500500 (500520)( )()(0.1)(0)0.53980.50.0398200200 P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200 a a a P a a μξμ-<<+=Φ-Φ-=Φ-≥, ()0.975200 a ∴Φ≥ 查表知: 1.96392200a a ≥?≥ 奎屯王新敞新疆

二项分布经典例题+测验题

二项分布 1.n 次独立重复实验 一般地,由n 次实验构成,且每次实验相互独立完成,每次实验的结果仅有两种对立的状态,即A 与A ,每次实验中()0P A p =>。我们将这样的实验称为n 次独立重复实验,也称为伯努利实验。 (1)独立重复实验满足的条件第一:每次实验是在同样条件下进行的;第二:各次实验中的事件是互相独立的;第三:每次实验都只有两种结果。 (2)n 次独立重复实验中事件A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k == k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3次射击,甲每次击中目标的概率为2 1,乙每次击中目标的概率为3 2 . (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且

规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列。 (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投 篮投中的概率为1 3,乙每次投篮投中的概率为1 2 ,且各次投篮互不 影响. (Ⅰ) 求甲获胜的概率。 (Ⅱ) 求投篮结束时甲的投篮次数 的分布列与期望 3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜 4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是1 2 , 试求需要比赛场数的期望. 3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查. 下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。

正态分布习题与详解(非常有用-必考点)

1. 若x ~N (0,1),求(l)P 2). 解:(1)P 2)=1-P (x <2)=1-(2)==. 奎屯王新敞新疆 2利用标准正态分布表,求标准正态总体 (1)在N(1,4)下,求)3(F (2)在N (μ,σ2)下,求F(μ-σ,μ+σ); 解:(1))3(F =)2 1 3( -Φ=Φ(1)= (2)F(μ+σ)=)(σ μ σμ-+Φ=Φ(1)= F(μ-σ)=)( σ μ σμ--Φ=Φ(-1)=1-Φ(1)=1-= F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=-= 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π 21,求总体落入区 间(-,)之间的概率 [Φ()=, Φ()=] 解:正态分布的概率密度函数是),(,21)(2 22)(+∞-∞∈= -- x e x f x σμσ π,它是偶函数, 说明μ=0,)(x f 的最大值为)(μf =σ π21,所以σ=1,这个正态分布就是标准正态分 布 ( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1 P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 0.57930.884810.4642=+-= 4.某县农民年平均收入服从μ=500元,σ=200元的正态分布 (1)求此县农民年平均收入在500:520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,)内 的概率不少于,则a 至少有多大[Φ()=, Φ()=] 解:设ξ表示此县农民年平均收入,则)200,500(~2 N ξ 520500500500 (500520)( )()(0.1)(0)0.53980.50.0398200200 P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200 a a a P a a μξμ-<<+=Φ-Φ-=Φ-≥, ()0.975200 a ∴Φ≥ 查表知: 1.96392200a a ≥?≥

正态分布及其经典习题和答案

专题:正态分布 【知识网络】 1、取有限值的离散型随机变量均值、方差的概念; 2、能计算简单离散型随机变量的均值、方差,并能解决一些实际问题; 3、通过实际问题,借助直观(如实际问题的直观图),认识正态分布、曲线的特点及曲线所表示的意义。 【典型例题】 例1:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 ( ) A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( ) A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102), 8080 9080(8090)(01)0.3413,480.34131610 10P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________ 。 答案:8.5。解析:设两数之积为X , ∴E(X)=8.5. (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ?, 则1μ 2μ,1σ 2σ答案:<,>。解析:由正态密度曲线图象的特征知。 例2:甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 答案:解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下: 甲答对试题数ξ的数学期望 E ξ=5 9 61321210313010=?+?+?+? . (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则

正态分布习题

1.标准正态曲线下,中间95%的面积所对应的横轴范 围是。 A.-∞到+1.96 B.-1.96到+1.96 C.-∞到+2.58 D.-2.58到+2.58 E.-1.64到+1.64 2.正态分布的两个参数μ与σ,对应的正态曲线愈趋扁平。 A.μ愈大B.μ愈小C.σ愈大D.σ愈小E.μ愈小且σ愈小 3.正态分布的两个参数μ与σ,对应的正态曲线平行右移。 A.增大μB.减小μC.增大σD.减小σE.增大μ同时增大σ 4.观察某地100名12岁男孩身高,均数为138.00cm,标准差为 4.12cm,Z=(128.00-138.00)/4.12。φ(Z)是标准正态分布的分布函数,1-φ(Z)=1-φ(- 2.43)=0.9925,结论是。 A.理论上身高低于138.00cm的12岁男孩占99.25%。 B.理论上身高高于138.00cm的12岁男孩占99.25%。 C.理论上身高在128.00cm至138.00cm的12岁男孩占99.25%。

D.理论上身高低于128.00cm的12岁男孩占99.25%。 E.理论上身高高于128.00cm的12岁男孩占99.25%。5.正态曲线下、横轴上,从μ到μ+2.58σ的面积占曲线下总面积的。 A.99% B.95% C.47.5% D.49.5% E.90% 6.健康男子收缩压的正常值范围一般指。 A.所有健康成年男子收缩压的波动范围 B.绝大多数正常成年男子收缩压的波动范围 C.所有正常成年男子收缩压的波动范围 D.少部分正常成年男子收缩压的波动范围 E.所有正常人收缩压的波动范围 7.标准正态分布曲线下中间90%的面积所对应的横轴 尺度Z的范围是。 A.-1.645~1.645 B.-∞~1.645 C.-∞~1.282 D.-1.282~1.282 E.-1.96~1.96 8.在正态曲线,下列关于μ- 1.645σ的说法正确的是。 A.μ-1.645σ到曲线对称轴的面积为90% B.μ-1.645σ到曲线对称轴的面积为10%

二项分布经典例题练习题

二项分 布 1.n 次独立重复试验 一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0P A p =>。我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。 (1)独立重复试验满足的条件第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。 (2)n 次独立重复试验中事件A 恰好发生k 次的概率()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k ==k k n k n C p q -,其中0 1.1,0,1,2,,,p p q k n <<+==L 则称X 服从参数为,n p 的二项分布,记作(,)X B n p :。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 2.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到 红灯的事件是相互独立的,并且概率都是31 . (1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列;

(3)求这名学生在途中至少遇到一次红灯的概率. 3.甲乙两人各进行3次射击,甲每次击中目标的概率为 21,乙每次击中目标的概率为3 2. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且规定:取出一个白球的 2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和. (Ⅰ)求X 的分布列; (Ⅱ)求X 的数学期望E (X ). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜 或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为1 3 ,乙每次投篮投中的概 率为1 2 ,且各次投篮互不影响. (Ⅰ)求甲获胜的概率; (Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望

正态分布习题

1.标准正态曲线下,中间95%的面积所对应的横轴范围是。 A.-∞到+1.96 B.-1.96到+1.96 C.-∞到+2.58 D.-2.58到+2.58 E.-1.64到+1.64 2.正态分布的两个参数μ与σ,对应的正态曲线愈趋扁平。 A.μ愈大B.μ愈小C.σ愈大D.σ愈小E.μ愈小且σ愈小 3.正态分布的两个参数μ与σ,对应的正态曲线平行右移。 A.增大μB.减小μC.增大σD.减小σE.增大μ同时增大σ 4.观察某地100名12岁男孩身高,均数为138.00cm,标准差为4.12cm,Z=(128.00-138.00)/4.12。φ(Z)是标准正态分布的分布函数,1-φ(Z)=1-φ(-2.43)=0.9925,结论是。 A.理论上身高低于138.00cm的12岁男孩占99.25%。 B.理论上身高高于138.00cm的12岁男孩占99.25%。 C.理论上身高在128.00cm至138.00cm的12岁男孩占99.25%。

D.理论上身高低于128.00cm的12岁男孩占99.25%。 E.理论上身高高于128.00cm的12岁男孩占99.25%。5.正态曲线下、横轴上,从μ到μ+2.58σ的面积占曲线下总面积的。 A.99% B.95% C.47.5% D.49.5% E.90% 6.健康男子收缩压的正常值范围一般指。 A.所有健康成年男子收缩压的波动范围 B.绝大多数正常成年男子收缩压的波动范围 C.所有正常成年男子收缩压的波动范围 D.少部分正常成年男子收缩压的波动范围 E.所有正常人收缩压的波动范围 7.标准正态分布曲线下中间90%的面积所对应的横轴尺度Z的范围是。 A.-1.645~1.645 B.-∞~1.645 C.-∞~1.282 D.-1.282~1.282 E.-1.96~1.96 8.在正态曲线,下列关于μ-1.645σ的说法正确的是。 A.μ-1.645σ到曲线对称轴的面积为90% B.μ-1.645σ到曲线对称轴的面积为10%

正态分布讲解(含标准表)

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线 b 单位 O 频率/组距 a 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 2 2 () 2 , 1 (),(,) 2 x x e x μ σ μσ ? πσ - - =∈-∞+∞ 式中的实数μ、)0 (> σ σ是参数,分别表示总体的平均数与标准差,, ()x μσ ? 的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2 σ μN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

正态分布附其经典习题及答案

25.3正态分布 【知识网络】 1、取有限值的离散型随机变量均值、方差的概念; 2、能计算简单离散型随机变量的均值、方差,并能解决一些实际问题; 3、通过实际问题,借助直观(如实际问题的直观图),认识正态分布、曲线的特点及曲线所表示的意义。 【典型例题】 例1:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 ( ) A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是() A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102 ), 8080 9080(8090)(01)0.3413,480.3413161010P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________。 ∴ (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ?, 则1μ2μ,1σ2σ(填大于,小于) 答案:<,>。解析:由正态密度曲线图象的特征知。 例2 :甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 答案:解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下: 甲答对试题数ξ的数学期望 E ξ=5 9 61321210313010=?+?+?+? . (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则

正态分布练习题(含部分答案)

正 态分布练习题1 正态分布1.1正态函数及曲线特点 1.(对称性):已知随机变量ξN (2,32)。若P (ξ>C +1)=P (ξ

二项分布经典例题复习总结练练习习题.doc

二项分布 1.n次独立重复试验 一般地,由 n 次试验构成,且每次试验相互独立完成,每次试验 的结果仅有两种对立的状态,即 A 与 A ,每次试验中P( A) p0 。我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。 (1)独立重复试验满足的条件第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都 只有两种结果。 ( 2 )n次独立重复试验中事件A恰好发生k次的概率P( X k) C n k p k (1p) n k。 2.二项分布 若随机变量X的分布列为P( X k ) C n k p k q n k,其中0 p 1.p q 1,k 0,1,2,L ,n, 则称 X 服从参数为 n, p 的二项分布,记作 X : B(n, p) 。 1.一盒零件中有9 个正品和 3 个次品,每次取一个零件,如果取出 的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3. 甲乙两人各进行 3 次射击,甲每次击中目标的概率为1 ,乙每次击 中目标的概率为2 . 2 3

(1)记甲击中目标的此时为,求的分布列及数学期望; (2)求乙至多击中目标 2 次的概率; (3)求甲恰好比乙多击中目标 2 次的概率 . 【巩固练习】 1.(2012 年高考(浙江理))已知箱中装有 4 个白球和 5 个黑球 , 且 规定 : 取出一个白球的 2 分, 取出一个黑球的 1 分 . 现从该箱中任取( 无放回 , 且每球取到的机会均等 )3 个球 , 记随机变量X为取出 3 球所得分数之和 . ( Ⅰ) 求X的分布列 ; ( Ⅱ) 求X的数学期望E( X). 2.(2012 年高考(重庆理))( 本小题满分 13 分 ,( Ⅰ) 小问 5 分,( Ⅱ) 小问 8 分.) 甲、乙两人轮流投篮 , 每人每次投一球 ,. 约定甲先投且先投中者获胜, 一直到有人获胜或每人都已投球 3 次时投篮结束 . 设甲每次投 篮投中的概率为影响 . 1 3 ,乙每次投篮投中的概率为 1 2 ,且各次投篮互不 ( Ⅰ) 求甲获胜的概率 ;

二项分布经典例题+练习题之令狐文艳创作

二项分布 令狐文艳 1.n 次独立重复试验 一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中 ()0P A p =>。我们将这样的试验称为n 次独立重复试验,也称为 伯努利试验。 (1)独立重复试验满足的条件第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。 (2)n 次独立重复试验中事件 A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量 X 的分布列为 ()P X k == k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作 (,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3 次射击,甲每次击中目标的概率为2 1 ,乙 每次击中目标的概率为32 .

(1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望;(2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个 黑球,且规定:取出一个白球的2分,取出一个黑球的1分. 现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列; (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束. 设甲每次投篮投中的概率为1 3,乙每次投篮投中的概率为 1 2, 且各次投篮互不影响. (Ⅰ) 求甲获胜的概率; (Ⅱ) 求投篮结束时甲的投篮次数ξ的分布列与期望 3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场则比赛宣告结束,假定,A B在每场比赛中获胜的 概率都是1 2,试求需要比赛场数的期望. 3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名

二项分布经典例题练习题

二项分布 1. n次独立重复试验 —般地,由n次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A与A,每次试验中P(A) p 0。我们将这样的试验称为n次独立重复试验,也称为伯努利试验。 (1)独立重复试验满足的条件第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。 (2)n次独立重复试验中事件A恰好发生k次的概率P(X k) CnP k(1 卩)小。 2. 二项分布 若随机变量X的分布列为P(X k) C:p k q nk,其中0 p 1p q 1k 0,1,2L,n,则称X 服从参数为n, p的二项分布,记作X : B(n, p)。 1. 一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X的概率分布。

2. 一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是-. 3 (1) 设为这名学生在途中遇到红灯的次数,求的分布列; (2) 设为这名学生在首次停车前经过的路口数,求的分布列; (3) 求这名学生在途中至少遇到一次红灯的概率. 3. 甲乙两人各进行3次射击,甲每次击中目标的概率为丄,乙每次击 2 中目标的概率为-. 3 (1)记甲击中目标的此时为,求的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1. (2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且规定:取出 一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (I )求X的分布列; (II)求X的数学期望E(X). 2. (2012年高考(重庆理))(本小题满分13分,(I )小问5分,(II) 小问8分.)

相关主题