搜档网
当前位置:搜档网 › 悖论及其科学意义

悖论及其科学意义

悖论及其科学意义
悖论及其科学意义

悖论及其科学意义

西班牙的小镇塞维利亚有一个理发师,他有一条很特别的规定:只给那些不给自己刮胡子的人刮胡子。

这个拗口的规定看起来似乎没什么不妥,但有一天,一个好事的人跑去问这个理发师一个问题,着实让他很为难,也暴露了这个特别规定的矛盾。那个人的问题是:

“理发师先生,您给不给自己刮胡子呢?”

让理发师为难的是:如果他给自己刮胡子,他就是自己刮胡子的人,按照他的规定,他不能给自己刮胡子;如果他不给自己刮胡子,他就是不自己刮胡子的人,按照他的规定,他就应该给自己刮胡子。不管怎样的推论,理发师的做法都是自相矛盾的。这真是令人哭笑不得的结果。

这就是悖论。

悖,中文的含义是混乱、违反等。

悖论,在英语里是paradox,来自希腊语“para+ dokein”。意思是“多想一想”。悖论是指一种导致矛盾的命题。

悖论都有这样的特征:它看上去是合理的,但结果却得出了矛盾——由它的真,可以推出它为假;由它的假,则可以推出它为真。

悖论与谬论不同,谬论是用目前的理论就能够证明、判断其为错误的理论、观点,总体来说,谬论是完全错误的;而悖论则看起来是是非难辨的。但这种“是非难辨”并非是永远不能分辨的,随着人们认识能力的不断提高,随着科学的不断发展,悖论是可以逐步得到消除的,矛盾是可以解决的。

广义上说,凡似是而非或似非而是的论点,都可以叫做悖论,如欲速则不达、大智若愚等都是典型的悖论;还有一些对常识的挑战也可称为悖论。

狭义上说,悖论是从某些公认正确的背景知识中逻辑地推导出来的两个相互矛盾(或相互反对)命题的等价式。通俗地说,如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出

它是真的。这就是悖论。狭义的悖论又可称为严格意义上的悖论或真正的悖论。

“我说的这句话是假的”,这就是典型的悖论,因为从这句话所包含的大前提来看,这是一句假话,其内容必定就是“假”的;既然是假的,则其意必然与其所指相反,所以,这句话应该是“真”的。但如果假设这句话是真的,其本身又恰恰证明它是假的。所以,你无从分辨这句话的真假。

悖论一般可以分为语义悖论和逻辑悖论两种。如果从一命题为真可推出其为假,又从该命题为假可推出其为真,则这个命题就构成语义悖论。前面所说的“我说的这句话是假的”就是如此。

逻辑悖论总是相对于一个公理系统而言,如果在一个公理系统中既可以证明A又可以证明非A,则我们就说在这个公理系统中含有一个悖论。集合论中著名的罗素悖论就是一个逻辑悖论。实际上,自然科学中出现的悖论一般都是逻辑悖论。

自然科学中的悖论一般还被称为佯谬。在英文中,佯谬与悖论是同一词paradox。它们都是由于前提、判断和结论的运用而产生的,具有相同的逻辑本性。如由爱因斯坦等提出的EPR悖论,也可称为EPR佯谬。

悖论有很多种称谓。古希腊的亚里士多德称之为难题;中世纪的经院哲学家们称之为不可解命题;近现代的科学家一般称之为悖论或佯谬,哲学家则称之为二律背反(“悖论”在英文中还有一个词antinomy)。

1979年,美国数学家霍夫斯塔德(D.R.Hofstad—ter)认为悖论是一个“怪

圈”(strange loop,又译为奇异的循环),是由于“自我相关”而导致的。这种怪圈不仅存在于数学和思维中,也存在于绘画和音乐中。埃

舍尔(M.C.Escher)的画(如“瀑布”、“上升与下降”、“龙”、“绘画的双手”和“画廊”等)用非常直观的形式艺术地表现了这种怪圈。

在科学理论中也普遍存在着怪圈或悖论。典型的科学怪圈是罗素

(B.Russell,1872-1970)1902年提出的罗素悖论。1919年罗素还给出了其通俗说法,即前面所说的理发师悖论。

为什么会产生悖论呢?

这是与人类的认识水平密切相关的。从哲学的高度看,悖论产生的根源在于客观世界所固有的矛盾。人的认识水平总是有限的,在认识世界时有很大的局限性和割离性。因此当人们把这些割离开来的认识结合到一起时,就有可能产生悖论。所以,德国的哲学家康德就讲过,当人们的认识从感性、知性进入理性阶段时,必然陷入悖论。同时,人类对世界的认识是一个由多层次、多因素组成的极其复杂的系统,人们不可能在彻底认识了某一层次的全部规律后,再依次一个一个由浅人深、由低到高地去认识其他层次,也不可能在各个层次上齐头并进地研究,而只能在某一个时期以认识一个层次为主,同时也涉及邻近的其他层次或领域。由于人类认识能力的局限性,某一科学理论只能是人们对自然界中某一层次、某一领域的客观规律的部分反映。所以,就不可避免地出现各种矛盾或谬误。另外,任何科学理论都是相对真理,都是对客观世界的近似描述。人类对世界的认识是随着时间的变化而变化的。如托勒密的地心说,在哥白尼之前是科学,在伽利略和牛顿时代就变为非科学了。科学理论的这种非绝对真理性为悖论的存在提供了合理的理由,也是悖论产生的一个重要原因。

悖论对人的认识的发展有很大的推动作用。如果在一个科学理论中发现了悖论,那么,就说明这个理论出了问题,其真理性即遭到质疑,该理论就被证伪(即证明它是假的)了。这样,悖论的出现,就为科学研究提供了一种新的方法——即发现悖论、解决悖论并最终导致新科学的发现。

古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知欲并重新进行精密的思考。解决悖论需要创造性的思考,悖论的解决又往往可以给人带来全新的观念和认识,为新知识的产生奠定了重要的主观基础。

这方面的最典型的例子当数伽利略提出的自由落体悖论。根据亚里士多德的自然位置学说,物体下落的速度与其重量成正比。但伽利略通过缜密推理,从亚里士多德的这一“共识”出发推出了一个落体悖论,从而在逻辑上证伪了亚里士多德的这一学说(详细情况,见本书后面的论述),为近代物理学的发展奠定了重要的基础。

在科学发展史上,曾经出现过这样的情况:由于悖论的出现,使科学出现了严重的危机,最后也推动了科学的发展。数学史上的三次危机都是由悖论引发的。正

是毕达哥拉斯悖论的发现,诱发了数学史上第一次数学基础的危机,导致了无理数的引入,从而使数的概念发生了深刻的变革。正是无穷小量悖论(又称贝克莱悖论)的发现,曾引起了数学界长达两个世纪的论战,形成了数学发展中的第二次危机,从而引导了极限理论的产生,并由此建立了完整的实数理论。

正是罗素悖论的发现,造成了新的数学基础的崩溃,引发了第三次数学危机。为此,数学家们展开了长期而激烈的争论,形成了一系列的学派,大大促进了集合论的研究,导致了数理逻辑等新学科的诞生,并使数学在更加严密的基础上得到了迅猛的发展。

但很多时候,悖论的出现并不能立即可以证伪了该理论,因为理论总有一定柔性或弹性,它可以提出辅助性假说以限制或消除悖论。所以,悖论、佯谬的发现和消除,还有助于原有理论的进一步完善和严密,使得人们对有关理论的实质、适用条件和范围等的认识和理解更深刻、明确,因而也促进丫理论的发展。

在牛顿和莱布尼兹创立微积分之后,贝克莱(G.Berkeley,1685—1753)发现了其中包含有所谓的无穷小悖论。人们并没有因此而抛弃微积分理论。但这个悖论的出现,也确实激发了人们的研究热情,柯西、魏尔斯特拉斯、戴德金的研究工作,导致了微积分理论的进一步发展。

双生子悖论曾对爱因斯坦的狭义相对论形成有力的挑战,但后来终被解决,却丰富和发展了爱因斯坦的相对论。

消除悖论的过程常常是完善、发展原有理论的过程、从这一点来看,悖论正是科学问题的生长点。

伴随悖论的解决,还可能会产生新理论。1905年,爱因斯坦创立了狭义相对论,并由此掀起了一场物理学革命。1935年,爱因斯坦、波多尔斯基(B.Podol-skv)和罗森(N.Rosen)又提出了EPR悖论,其意思是指出量子力学不完备或者量子力学不具备内在相容性。由此,导致爱因斯坦与玻尔等人的长达几十年的争论,至今仍没有一个最终的结论。有人预料,对EPR悖论的彻底解决将产生一场新的物理学革命。

科学发展史上的大量实例充分表明,悖论或佯谬的出现虽然可能暂时引起人们的思想混乱,对科学研究的正常开展形成一定的冲击。但悖论的出现,也揭露出

了原有理论体系中的逻辑矛盾,这对于进一步深入理解、认识和评价原有理论,进一步充实和完善原有的理论体系,具有重要意义。爱因斯坦说过:“提出一个问题往往比解决一个问题更重要,因为解决问题也许是数学上或实际上的技能而已,而提出新的问题、新的可能性,从新的角度去看旧的问题却需要创造性的想象力,而且标志着科学的真正进步。”所以,我们没有必要将悖论或佯谬视为洪水猛兽,而应该重视对悖论或佯谬的方法论意义的研究,自觉使用这种方法。不断发现和提出新的悖论或佯谬,以促进自然科学的进一步发展。

说谎者悖论

悖论古已有之。但一般认为,最早的悖论就是这个所谓的“说谎者悖论”,它早在古希腊时期就已出现。《新约全书。提多书》是这样记述它的:

克里特的一个先知说:“克里特人总是撒谎,乃是恶兽,又馋又懒。”

显然,这话是互相矛盾的。因为,假如这话是真的,那么说这话的人也是在撒谎,那这话就是假话。假设它是真话,但又明明是假话。这就是语义学悖论。

说这个话的这个克里特岛的“先知”,就是伊壁孟尼德(Epimenides,公元前6世纪)。

后来,古希腊的哲学家欧布里德(Eubulides,公元前4世纪)将他的话改进为:“我正在说谎。”这句话是真的还是假的呢?如果是句真话,由这句话的内容可知:说话者正在撒谎,既然是撒谎,那么说的正是假话;反之,如果这句话是假的,说假话就是说谎,这句话的内容正是“我正在说谎”,因此这句话又是真的。

这就是说谎者悖论。

古希腊人曾为此大伤脑筋,一句话怎么会既是真话又是假话呢!

后来,这个悖论又演变成好多种变种,例如,某人说:“我说的一切都是假的”。你能断定这句话的真假吗?

又如,有人说:“我正在说的这句话是错的。”

你又能判断出这句话的对错吗?

又如,罗素曾经说,他相信哲学家乔治。摩尔平生只有一次撒谎,那就是:当某人问他“你是否总是说真话时”,他回答说:“不是。”

仔细想一想,这也是说谎者悖论的翻版啊!

此外,还有所谓“说谎者循环”:

A说:“下面是句谎话。”

B说:“上面是句真话。”

“说谎者悖论”和“说谎者循环”是与自然语言的表达方式密切相关的悖论,涉及真假、定义、名称、意义等语义方面的概念。

这是一种典型的语义学悖论。

我们中国古代也出现过这样的悖论——在《庄子·齐物论》里,庄子说:“言尽悖”。后期墨家反驳道:如果“言尽悖”,庄于的这个“言”难道就不悖吗?

中国古代的哲学家老子有一句这样的名言:“知者不言,言者不知。”其实这也是一条悖论,被A居易一语道穿。A居易在《读老子》里说道:“言者不知知者默,此语吾闻于老君。若道老君是知者,缘何自着五千义?”

有“西方孔子”之称的雅典人苏格拉底(Socrates,公元前470-前399)是古希腊的大哲学家,曾经与普洛特哥拉斯、哥吉斯等著名诡辩家相对。他建立“定义”以对付诡辩派混淆的修辞,从而勘落了百家的杂说一但是他的道德观念不为希腊人所容,竟在七十岁的时候被当作诡辩杂说的代表,最后被处以死刑。他的学说得到了柏拉图和亚里士多德的继承。

苏格拉底有一句名言:“我只知道一件事,那就是什么都不知道。”

这也是一个悖论,我们无法从这句话中推论出苏格拉底是否对这件事本身也不知道。在印度因明学(逻辑学)中也有与此类似的例子。因明学有一条立论的基本原则,就是不能“自语相违”。例如,“一切语皆妄(虚假)”就是自语相违。有一个叫神泰的因明家评论道:

说“一切语皆妄”的人,你口中的这句话是否真实呢?

假如说是真的,那么,为什么说“一切语皆妄”呢?如果说你这句话是虚假(妄)的,那么,应该承认一切语皆实。

即使你补充一句,说“除我所语,其余一切语皆妄”,也于事无补。因为有个第二者听了你这句补救的话后,指出:“你这句补充的话是实话。”那么,第二者的话是实,还是妄?如果第二者的话是妄,那说明你补充的话是虚假的;如果第二者的话为实,那你又有何理由说“除我所语,其余一切语皆妄”呢?

假定你再补充一句:“除了我语及这个评论我的第二者的话真实以外,其余所语皆妄。”这时又会有第三人接着评论说:“这第二个人的话也是真实的。”那么,第三个人的话是实,还是妄?同理,如果设定为假,那么,第二个人及第一个人说的话就不对了;而如果第三个人的话是真的,又怎么能说除我及第二个人所语,其余皆妄呢?

同样,第四人、第五人……依次类推,以至无穷。你说“一切语皆妄”为真,而“一切语皆妄”也是“一切语”之一,因此又推出“一切语皆妄”为假。你看到推出矛盾,就作一补充,说除你所语之外,一切语皆妄,但这样就会出现无穷多个例外,因而,例外也就不成其为例外了。

悖论的意思是什么

悖论的意思是什么 导读:我根据大家的需要整理了一份关于《悖论的意思是什么》的内容,具体内容:悖论的意思:悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A 发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐...悖论的意思: 悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。 英文解释 [数] antinomy;paradox ; [paradox] 逻辑学和数学中的矛盾命题 定义 悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。

性质 悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。 根源 悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。 解悖 悖论与解悖只要运用对称逻辑,没有一个悖论无解。悖论是表面上同一命题或推理中隐函着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。 用对称逻辑思维层次法解"说谎者悖论" 这个悖论即"我在说谎"这句话中所蕴含的悖论。这个悖论表面上由"我在说谎"和"我说实话"这两个对立的"命题"组成,实际上这两个"命题"并不等价——前一个命题包含思维内容,后一个"命题"只是前一个命题的语言表达式,因此后一个"命题"不是

圣彼得堡悖论及其消解新解

圣彼得堡悖论新解与不确定性估值 内容提要:著名数学家Bernoulli为解决“圣彼得堡悖论”提出了货币的边际效用递减理论(下称“效用函数解决方案”),本文通过以下两个方面证明了Bernoulli的“效用函数解决方案”是不成立的:1、用Bernoulli和克莱默的“效用函数”构造了新的悖论;2、设计并实施了不存在边际效用递减效应的“新型圣彼得堡游戏”,该游戏同样产生了“圣彼得堡悖论”。本文进一步分析论证了人们面对不确定性前景的风险调整才是导致“圣彼得堡悖论”产生的真正原因,由此给出了不确定性决策的风险调整模型,用此模型解决了“圣彼得堡悖论”及其它相关悖论。本文对基于不确定性的经济学理论研究提出了一个全新的研究思路和方向。 关键词:不确定性估值,圣彼得堡悖论,效用,风险调整模型,经济实验 1.圣彼得堡悖论与Bernoulli的效用函数解决方案 “圣彼得堡悖论”来自于一种掷币游戏,即圣彼得堡游戏。设定掷币掷出正面为成功,游戏者如果第一次投掷成功,得奖金2元,游戏结束;第一次若不成功,继续投掷,第二次成功得奖金4元,游戏结束;这样,游戏者如果投掷不成功就反复继续投掷,直到成功,游戏结束。如果第n次投掷成功,得奖金2n元,游戏结束。 按照概率期望值的计算方法,此游戏的期望收益为所有可能结果的得奖期望值之和: 1111 ()2482 2482n n E=?+?+?++?+ ――――――――――――(1.1) 由于对于游戏中投币的次数没有理论上的限制,很显然,上式是无数个1的和,它等于无穷大,即该抽奖活动收益的数学期望值是无限的。那么对于这样一个收益的数学期望值是无穷大的“圣彼得堡游戏”当支付多大的费用呢?试验表明,大多数人只准备支付几元钱来参加这一游戏。于是,个人参与这种游戏所愿支付的有限价格与其收益的无穷数学期望之间的矛盾就构成了所谓的“圣彼得堡悖论”。 Bernoulli对于这个问题给出一种解决办法。他认为人们真正关心的是奖励的效用而非它的绝对数量;而且额外货币增加提供的额外效用,会随着奖励的价值量的增加而减少,即后来广为流传的“货币边际效用递减律”。伯努利将货币的效用测度函数用货币值的对数来表示,从而所有结果的效用期望值之和将为一个有限值,则理性决策应以4元为界。 他选择对数函数形式的效用函数:

简述连锁推理悖论的产生与发展

大学研究生学位课程论文论文题目:简述连锁推理悖论的产生与发展

简述连锁推理悖论的产生与发展 内容摘要:连锁推理悖论(Sorites Paradox)的提出最早可以追溯到古希腊哲学家欧布里德(Eubulides)所提出的“堆悖论”(Paradox of the Heap)和“秃头悖论”(Paradox of the Bald Man)。虽然这两个问题所涉及的内容不同,但是具有相同的性质,都属于“连锁推理悖论”(Sorites Paradox)的范畴。本文将从从逻辑学的角度简述连锁推理悖论的产生及其发展。 关键词:连锁推理悖论、模糊性 悖论(paradox)是逻辑学的一个分支,同时也是数学哲学中极难而又极重要的问题。悖论的意思是说如果一个命题是真的,我们能根据命题中的条件推得这个命题的否命题也为真;反之,如果以这个命题的否命题为前提,我们也能推得这个命题为真。如果一切数学定理都符合逻辑,这就需要数学具有可靠性,而悖论的发现则使得数学的可靠性得到了质疑。悖论也分为许多类型,按照不同的方法和角度,可以有不同的分类方式,一般将其分为集合论悖论和语义悖论。当然也有的哲学家不同意将悖论进行区分,比如罗素就认为,所有的悖论都是出于同一谬误,即违背“恶性循环原则”①。而连锁推理悖论更是一个时间跨度很大的问题,从古希腊一直到当代,以致产生了后来的模糊性问题,以下本文就对这一问题展开叙述。 一、连锁推理悖论的产生 古希腊麦加拉学派的欧布里德(Eublides)最早提出了“连锁推理悖论”(Sorites Paradox)。此说以多种形式流传下来,其中最常见的两种是“麦粒堆问题”(Paradox of the Heap)和“秃头问题”(Paradox of the Bald Man)。 所谓“麦粒堆问题”是指,究竟多少粒麦粒才能称为堆?一粒麦子当然不能成堆,加一粒也不行,再加一粒也还是不行,依次类推,加上无穷多粒的麦子也还是不能成堆。而“秃头问题”是说,一个人有十万根头发不能算是秃头,他掉了一根头发也不算是秃头,再掉一根头发也不算是秃头,依次类推,他掉了十万根头发后也还是不能算秃头。 这两个问题涉及的内容不同,但具有同一性质,都是前提正确,累积增加或减少的推理过程也貌似正确,但是结论不符合常识。这两者都属于“连锁推理悖论”的范畴。即都依赖于一种逐渐增加或减少事物的性态而最终改变命题真伪的推理方法,将原本为真的命题,通过渐进式递推,得出一个从逻辑上说应当为真,然而却十分荒谬的结论,由此向二值逻辑提出挑战。二值逻辑无法对此种悖论做出解释,因为它的排中律使它无法应对“一堆麦于”与“一粒麦子”、“秃头”与“非秃头”之间的过渡状态。“连锁推理悖论”的提出使人们看到了传统二值逻辑和人类认识能力的局限性,看到了语言的模糊性,在一定意义上推动和导致了模糊数学和模糊逻辑的诞生。 但是确切的说,欧布里德只是提出了这样的问题,而并没有把他上升到悖论的高度。一个悖论必须是一个有效地论证,它有着明显真的前提和明显假的结论,而对这些问题进行论证化的是后来的斯多葛学派。他们将连锁推理悖论归纳为这样一种形式: 1 is few ①苏珊·哈克,逻辑哲学.商务印书馆.2006.171

悖论及其科学意义

悖论及其科学意义 西班牙的小镇塞维利亚有一个理发师,他有一条很特别的规定: 只给那些不给自己刮胡子的人刮胡子。 这个拗口的规定看起来似乎没什么不妥,但有一天,一个好事的人跑去问这个理发师一个问题,着实让他很为难,也暴露了这个特别规定的矛盾。那个人的问题是: “理发师先生,您给不给自己刮胡子呢?” 让理发师为难的是: 如果他给自己刮胡子,他就是自己刮胡子的人,按照他的规定,他不能给自己刮胡子;如果他不给自己刮胡子,他就是不自己刮胡子的人,按照他的规定,他就应该给自己刮胡子。不管怎样的推论,理发师的做法都是自相矛盾的。这真是令人哭笑不得的结果。 这就是悖论。 悖,中文的含义是混乱、违反等。 悖论,在英语里是paradox,来自希腊语“para+ dokein”。意思是“多想一想”。悖论是指一种导致矛盾的命题。 悖论都有这样的特征: 它看上去是合理的,但结果却得出了矛盾——由它的真,可以推出它为假;由它的假,则可以推出它为真。 悖论与谬论不同,谬论是用目前的理论就能够证明、判断其为错误的理论、观点,总体来说,谬论是完全错误的;而悖论则看起来是是非难辨的。但这种“是非难辨”并非是永远不能分辨的,随着人们认识能力的不断提高,随着科学的不断发展,悖论是可以逐步得到消除的,矛盾是可以解决的。

广义上说,凡似是而非或似非而是的论点,都可以叫做悖论,如欲速则不达、大智若愚等都是典型的悖论;还有一些对常识的挑战也可称为悖论。 狭义上说,悖论是从某些公认正确的背景知识中逻辑地推导出来的两个相互矛盾(或相互反对)命题的等价式。通俗地说,如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。这就是悖论。狭义的悖论又可称为严格意义上的悖论或真正的悖论。 “我说的这句话是假的”,这就是典型的悖论,因为从这句话所包含的大前提来看,这是一句假话,其内容必定就是“假”的;既然是假的,则其意必然与其所指相反,所以,这句话应该是“真”的。但如果假设这句话是真的,其本身又恰恰证明它是假的。所以,你无从分辨这句话的真假。 悖论一般可以分为语义悖论和逻辑悖论两种。如果从一命题为真可推出其为假,又从该命题为假可推出其为真,则这个命题就构成语义悖论。前面所说的“我说的这句话是假的”就是如此。 逻辑悖论总是相对于一个公理系统而言,如果在一个公理系统中既可以证明A又可以证明非A,则我们就说在这个公理系统中含有一个悖论。集合论中著名的罗素悖论就是一个逻辑悖论。实际上,自然科学中出现的悖论一般都是逻辑悖论。 自然科学中的悖论一般还被称为佯谬。在英文中,佯谬与悖论是同一词paradox。它们都是由于前提、判断和结论的运用而产生的,具有相同的逻辑本性。如由爱因斯坦等提出的EPR悖论,也可称为EPR佯谬。 悖论有很多种称谓。古希腊的亚里士多德称之为难题;中世纪的经院哲学家们称之为不可解命题;近现代的科学家一般称之为悖论或佯谬,哲学家则称之为二律背反(“悖论”在英文中还有一个词antinomy)。 1979年,美国数学家霍夫斯塔德(D.R.Hofstad—ter)认为悖论是一个“怪 圈”(strange loop,又译为奇异的循环),是由于“自我相关”而导致的。这种怪圈不仅存在于数学和思维中,也存在于绘画和音乐中。埃

悖论及其对数学发展的影响

悖论及其对数学发展的影响 【开场白:一个传说】一个讼师招收徒弟时约定,徒弟学成后第一场官司如果打赢,则交给师傅一两银子,如果打输,就可以不交银子。后来,弟子满师后却无所事事,迟迟不参与打官司。老讼师得不到银子,非常生气,告到县衙里,和这位弟子打官司。这位弟子却不慌不忙地说:“这场官司如果我打赢了当然不给您银子,如果打输了按照约定也不交给您银子,反正我横竖不交银子。”一句话把老讼师给气死了。 类似的: 1)我正在说谎?!! 2)鸡与鸡蛋何为先? 一、悖论的定义 “悖论”(英语:Paradox,俄语:Πарадокс)的字面意思是荒谬的理论,然而其内涵远没有这么简单,它是在一定理论系统前提下的看起来没有问题的矛盾。 关于悖论,目前并没有非常权威性1 的定义,以下的解释,在一定程度上是合理的。 通常认为,一个论断,如果不论是肯定还是否定它,都会导出一个与原始判断相反的结论,而要推翻它却又很难给出正当的根据时,这种论断称为悖论;或者,如果一个命题及其否定命题均可以用逻辑上等效的推理加以证明,而其推导又无法明确提出错误时,这种自相矛盾的命题叫做悖论。这种“定义”,比单纯从字面理解有所细化,也比较容易理解,但仍不够准确。 下述说法是A.A.富兰克尔给出的:如果某种理论的公理及其推理规则看上去是合理的,但在这个理论中却推出了两个互相矛盾的命题,或者证明了这样一个复合命题,它表现为两个矛盾命题的等价式,我们称这个理论包含了一个悖论。这里强调了悖论是依赖于一定的理论体系的,但是,只是说,某个理论体系包含了悖论,而没有言明什么是悖论。 悖论不同于通常的诡辩或谬论。诡辩、谬论可以通过已有的理论、逻辑论述其错误的原因,是与现有理论相悖的;而悖论虽感其不妥,但从它所在的理论体系中,不能阐明其错误的原因,是与现有理论相容的。悖论是(在当时)解释不了的矛盾。 悖论蕴涵真理,但常被人们描绘为倒置的真理; 悖论富有魅力,既让您乐在其中,又使您焦躁不安,欲罢不能; 数学历史中出现的悖论,为数学的发展提供了契机。 二、悖论的起源 起源之一:芝诺悖论(公元前五世纪) 芝诺(Zenon Eleates,约公元前490年——约公元前429年)出生于意大利南部的埃利亚(Elea)城,是古希腊埃利亚学派的主要代表人物之一。他是古希腊著名哲学家巴门尼德(Parmennides)的学生。他否定现实世界的运动,信奉巴门尼德关于世界上真实的东西只能是“唯一不动的存在”的信条。在他那个时代,人们对时间和空间的看法有两种截然不同的观点。一种观点认为,空间和时间无限可分,运动是连续而又平顺的;另一种观点则认为,时间和空间是由一小段一小段不可分的部分组成,运动是间断且跳跃的。芝诺悖论是针对上述二观点而提出的。他关于运动的四个悖论,被认为是悖论的起源之一。其中前两个悖论是针对那种连续的时空观而提出的,后两个悖论则是针对间断时空观提出的。 (1) 一物体要从A点到达B D点;而要到达D点,又必先抵达其1/8处之E点。如此下去,永无止境,因此,运动不可能存在。

悖论的产生和意义

对于悖论存在及其意义的探究 摘要:悖论的存在已有数千年历史,悖论到底如何定义的?是为什么会存在的?历史上人们又是怎么对待悖论的?悖论能够怎样被解决?悖论的存在又有什么意义?这一切问题都需要我们深入思考研究。 关键词:悖论;逻辑哲学;存在;本体论;形而上学 一、什么是悖论? 在人类思想史上,已经提出了各种各样的谜题与悖论,它们对人类理智构成了严重的挑战,许多大家、巨擘以及无名氏前仆后继地对其进行了艰辛的探索。从古希腊、中国先秦时期到现代数学、逻辑学等众多学科中,已经发现了各种各样的悖论或怪论,悖论已经成为数学、逻辑学、哲学、语言学、计算机科学、思维科学等多学科专家共同探讨的课题,谈论“悖论”几乎成为时髦。那么,到底什么是悖论呢?悖论,亦称为吊诡或诡局,是指一种导致矛盾的命题。通常从逻辑上无法判断正确或错误称为悖论,似非而是称为佯谬;有时候违背直觉的正确论断也称为悖论。悖论的英文paradox一词,来自希腊语paradoxos,意思是“未预料到的”,“奇怪的”。如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。 二、悖论与逻辑哲学 说谎者悖论被认为是世界上最早的悖论,由公元前六世纪的哲学家克利特人艾皮米尼地斯提出:“所有克利特人都说谎,他们中间的一个诗人这么说。”这个悖论最简单的表述形式是:“我在说谎”。如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。矛盾不可避免。这类悖论的一个标准形式是:如果事件A 发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环。悖论的存在显然是因为某些命题正在逻辑上存在不合理性从而引起了众多学者的探究。 虽然逻辑不能等同于逻辑哲学,但是逻辑哲学基本上是和逻辑同时产生的,任何逻辑学家都在无形中进行着对逻辑哲学的研究。尤其是对于数学这样的极其讲究严密的逻辑性的研究领域,逻辑哲学的研究根本无法避免。著名的“罗素悖论”的出现甚至引起了第三次数学危机。所谓的罗素悖论是罗素针对当时建立不久的集合论体系提出的一个基础上存在的矛盾:“定义两个集合:P={A∣A∈A} ,Q={A∣A?A} 。问题:Q∈P 还是 Q?P?”。显然,无论是指定哪个判断为真,最后都能够推断出与其相反的结论。为了使其更容易被理解,罗素悖论又被称为“理发师悖论”:“有一个理发师说:‘我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸’”。那么这个理发师要不要给自己刮脸呢?无论他怎么做,最后都一定会违背自己当初的话。 悖论的流行引发了世界上的思想风暴。越来越多的人认识到我们现有社会中存在的不完美,思维方式不能再局限于既定逻辑,而要尝试打破规则,因为悖论的存在充分说明了现有的规则有着无法忽视的漏洞,甚至会动摇社会根基。 三、悖论与本体论 西方哲学从古希腊开始一直以研究世界的本原为己任, 形成了西方哲学的本体论传统。本体论的最主要特征就是研究存在问题, 即关于什么样的实体存在, 以及作为实体在资格

布雷斯悖论

在一个交通网络上增加一条路段后,这一附加路段不但没有减少交通延滞,反而所有出行者的旅行时间都增加了,这种出力不讨好且与人们直观感受相背的现象就是所谓布雷斯悖论。最近一项新的研究认为,当交通流量很高的时候,新增一条路线并不会增加出行时间,因为人们都不会走那条新路线。 在交通繁忙的市区,建一条新路,分流拥挤的交通似乎是一个不错的想法,但根据布雷斯悖论,结果正好相反:对于出行的个体来说,往交通网络中增加一条新路线会增加他们所有人的出行时间(如果他们都想通过这条新路抄近道)。这个理论是由迪特里希. 布雷斯于1968年提出,虽然不是一个严格的“悖论“,但针对我们日常生活的情况来说,却是一个非常反常识的发现。 然而,在过去几年里面,科学家们重新分析了布雷斯悖论,发现了如果交通流量进一步增加的话,悖论中提到的现象不会再出现。科学家们推测,在更高的交通流量需求下,由于“群众的智慧”是无穷,新路不会再被使用。 现在,美国马萨诸塞州Amherst大学的教授安娜,则第一次证明了该假设。她推导出的公式标明,交通需求量增加到一定程度会造成新路线的不再使用而不会增加出行时间。换句话来说,就是布雷斯悖论仅仅适用于特定的交通需求量下。 尽管布雷斯悖论本身就是反常识的,那么在更高的交通流量需求下,此悖论的结果会消失掉则是更加反常识的。纳格尼解释到,在交通需求更高的时候,人们通常会想,交通会更加拥挤,于是乎大家应该走走其他更多的路线来分流。 纳格尼说,也许这个结果可以由“群众的智慧”来解释解释。研究普遍认为出行者的行为可以分成两类:第一类是用户自行优化,这类出行者会独立选择他们认为最优的路线;第二类是系统优化,存在一个中央控制器统一指挥交通。仅仅当“用户自行优化”时(换句话说就是“自私”),布雷斯悖论和其相反结论才会发生。但“自行优化“和”自私“结合到一起的时候,一个足够多的人群都在自行优化出行路线,那么所有出行者的的出行时间就被莫名其妙的全局优化了。 纳格尼说:“我觉得,因为交通流量的高需求,出行经过某条特定的路就会增加很多出行时间(因为交通网络的设计和其拓扑结构),久而久之,人们就会在出行时换条路线走走,所以就到达了这个“均衡临界点”,而本来是该布雷斯悖论起作用,结果却正好相反。出行者们也发现了这种“群众的智慧”,当交通流量需求更高的时候,某些十字路口甚至没啥车”。 纳格尼还解释到,和布雷斯悖论相反的结论也是正常的:当交通流量需求足够低的时候,布雷斯悖论就不再成立了。 纳格尼说:“也有其他人研究了交通需求量非常低时候的情况”纳格尼先前的研究也对关于该情况的分析做出了贡献,“布雷斯悖论问题中的新路是设定为吸引人去走,那么在低交通流量需求下,所有出行的人都会

色盲悖论

假设:有一个人,他有一种奇怪的色盲症。他看到的两种颜色和别人不一样,他把蓝色看成绿色,把绿色看成蓝色。 但是他自己并不知道他跟别人不一样,别人看到的天空是蓝色的,他看到的是绿色的,但是他和别人的叫法都一样,都是“蓝色”;小草是绿色的,他看到的却是蓝色的,但是他把蓝色叫做“绿色”。所以,他自己和别人都不知道他和别人的不同。 问:怎么让他知道自己和别人不一样? 注:有人说让他水彩画画,比如说画蓝天绿草,他画出来的肯定是绿天蓝草,而别人的是蓝天绿草。 这个回答是错误的,因为:画蓝天时,他脑中想的是绿色,而他拿起的笔也是他脑中的绿色,也就是别人眼中的蓝色,所以他画出来的仍然是大家眼中的蓝天绿草。———————————————————————————————————————— 下面是我见过的一些的解法,由浅到深一一罗列出来,逐个分析。注:为了方便区分,以下凡是用英语标出的颜色,是脱离概念的,是人眼中感觉到的颜色,例如他听到“蓝色”这个词,脑海中浮现的是Green,然后拿起了蓝笔。

1. 首先,这并不是某些人认为的“低水准问题”,以为拿个绿色的牌牌,告诉他“这是绿色”就OK了?人家本来就把绿色的牌牌叫做“绿色”,还用你告诉?像某安焱那种自以为是又到处鄙视别人的,大家无视。2. 有相当一部分人认为他画的就应该是“绿天蓝草”,认为题目的那个“注”是错的。所以我有必要把那个注解再解释一下: 题目说的很清楚,正常的“蓝色”在他眼中是“Green”,但由于这个倒霉蛋对颜色的认知是从别人得来,所以在他口中依然是“蓝色”。 也就是说,正常的“蓝色”,无论是颜色还是字符,他都称之为“蓝色”,只是在他眼中是Green。 结论来了,蓝色的天空、蓝色的画笔、“蓝”这个概念,在他眼里都是同一种颜色(Green)。 同样也有,绿色的草地、绿色的画笔、“绿”这个概念,在他眼里也是同一种颜色(Blue)。 所以让他画天,他心里想的是Green,当然就会拿蓝笔,口中说的也是“拿蓝笔”这句话。绿草也是一样,他画草的时候会拿绿笔。 3. 然后再排除部分人的那种相当不负责任的做法:“给他个绿色的东西,告诉他,这个其实叫做蓝色” 这根本不可行,他完全不知道自己与常人不同,也无法从眼中观察到。

悖论

概念 bèilùn (paradox,也称逆论,反论) 逻辑学和数学中的“矛盾命题”,是指一种导致矛盾的命题。 悖论的定义可以这样表述:由一个被承认是真的命题为前提,设为B,进行正确的逻辑推理后,得出一个与前提互为矛盾命题的结论非B;反之,以非B为前提,亦可推得B。那么命题B就是一个悖论。当然非B也是一个悖论。我们可以按照某些制定或约定的公理规则去判定或证明某一命题的真假,但是我们按照制定或约定的公理规则去判定或证明有些命题的真假时,有时却出现发生了无法解决的悖论问题,这种情况说明了什么问题? 自然在整体上是包含多样性的,而我们却置这些情况于不顾,而专门关注属于我们感兴趣的那一种特殊情况,当特殊情况与其它相反的情况或普遍性存在的一般情况相遇时必然产生某种相悖的结论。不是数学悖论对数学基础产生大的危机影响,而是对逻辑和认识产生重大影响。 无限集合本身就是一个模糊不清的概念规定,有限是可以称为集合,无限是不能称为集合的。集合是指表示在某一个范围内无限则是指范围为无限大的,否则就不应该称为无限而称有限。无限不应该成为一个任意性选择或适用的范围,一个数量当超过人类所能达到或认识的程度便进入无限的范围之中。到现在为止,人类还没有完全清楚地知道我们所能认识到的半径有多大,所以无法准确精确地规定无限与有限它们之间的界限究竟在那里。 集合本身的概念就是一个没有限制性的概念,总的集合可任意分成若干集合,都是集合,确切地说我们不知道究竟是在那种意义前提限制下的集合。 子集合中存在悖论,或与别的集合之间存在悖论,子母集合之间也还存在悖论,因为在每种具体的子集合中都有属于它自身的规定规则,只在自身范围有效。超越范围则失效,这是永远不可避免或取消的。除非取消类的集合层次之间的区别,那么又不符合对待具体事物的态度,无法满足实际应用要求。另外集合的本义与引申义常混合使用,有时与元素意义混同,集合在低层次相当于元素,当上升时为集合,当再次上升时又相当于元素,是累积式的。 罗素悖论在当它们还没有进行相互联系时是有效的,当它们进行相互联系时即它们已经成为一个类或一个整体,那么一个类或一个整体中是不允许或无法执行两种衡量标准或规定的,自我否定是和没说一个样,或等于没有规定一样。 哥德尔关于一阶逻辑完全性定理与不完全性定理的本身就是悖论,已经暴露出逻辑导致发生的问题。哥德尔不完全性定理是缺乏评判,以决定的主导方面为衡量标准,或衡量标准过多而引起的悖论。所谓的标准也是一种规定。失效以后还可以根据实际需要再次进行新的规则规定,反正原来的规则也是规定,为什么出现发生悖论以后不可以再次重新进行规定规则,以满足实际应用的目的的需要呢?明明是自己的规定,可是自己又制造新的规定来破坏原来的规定,如果这样来干活,那么将永远有活干了,永远有干不完的活。 类是人为区分出来的,但类是根据需要人为任意性制造的,若分类,故类有所不同。在整体上却不存在类同与不同,由于类不同,故数也有所不同,有些不同相悖是很正常必然的。然而人们又想进行类与数之间变换,那么又不得不重新再作新的规定。 证明也只是按照预先所设置和认为的规定去操作,必然会符合规定,我们只管按规定操作执行好了,证明又有什么作用或意义呢?类的悖论问题不是通过进行证明就所能解决得了的。 悖论是属于领域广阔、定义严格的数学分支的一个组成部分,这一分支以“趣味数学”知名于世。这就是说它带有强烈的游戏色彩。然而,切莫以为大数学家都看不起“趣味数学”问题。欧拉就是通过对bridge-crossing之谜的分析打下了拓扑学的基础。莱布尼茨也写到过他在独自玩插棍游戏(一种在小方格中插小木条的游戏)时分析问题的乐趣。希尔伯特证明

数学史上的三大危机

数学史上的三大危机 无理数危机、无穷小是零危机和悖论危机 无理数的发现-第一次数学危机 大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯的悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称"四艺",在其中追求宇宙的和谐规律性。他们认为:宇宙间一切事物都可总结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。这个悖论直接触犯了毕氏学派的根本信条,导致了当时理解上的"危机",从而产生了第一次数学危机。 到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。第一次数学危机对古希腊的数学观点有极大的冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却能够由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命! 无穷小是零吗?-第二次数学危机 18世纪,微分法和积分法在生产和实践上都有了广泛而成功的实验过,绝大部分数学家对这个理论的可靠性是毫不怀疑的。 1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,茅头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。这里牛顿做了违反矛盾律的手续──先设x有增量,又令增量为零,也即假设x没有增量。"他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,"dx为逝去量的灵魂"。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。导致了数学史上的第二次数学危机。 18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续性就实行微分,不考虑导数及积分的存有性以及函数可否展成幂级数等等。 直到19世纪20年代,一些数学家才比较注重于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到韦尔斯特拉斯、戴德金和康托的工作结束,中间经历了

浅析谎言悖论

浅析说谎者悖论 摘要:如今,解决悖论成了逻辑学界的一大热门课题。本文将追本溯源,对悖论及说谎者悖论作简要分析及说明,说谎者悖论是历史上最古老的悖论,又是最典型的语义悖论。历史上学者们提出很多解决方案,而这些解决方案的都是不成功的,本文将针对说谎者悖论的实质作简要探讨。 关键字:谎言悖论,悖论,说谎者悖论 一谎言悖论的现象 1引言 大多数人一天要遭遇将近两百个谎言。谎言的无处不在或已超出一般人的想象。人们说谎的动机至少有九种。概括为进攻性和防御性动机,如为自身谋求优势,保护隐私等。谎言的无处不在引起我的好奇,进而激起我想一探究竟的欲望。然而谎言本身是更倾向于实实在在的知识,我比较感兴趣的是谎言悖论这种奇奇怪怪的知识。 2对悖论的说明 悖论是英文paradox或antinomy的中译。它来自希腊文的“para”和“doxa”,意思是“难以置信”。从字面上理解,悖论指的是荒谬的理论或者自相矛盾的语句或命题。《中国百科全书·哲学卷》对“悖论”的定义是:“指由肯定它真,就推出它假,由肯定它假,就推出它真的一类命题”。这类命题也可以表述为:“一个命题A,A蕴涵非A,同时非A蕴涵A,A与自身的否定非等值。”《辞海》对“悖论”的定义是:“一命题B,如果承认B,又推得非B;反之。如果承认非B,又可推得B,则称命题B为——悖论。” 3对谎言悖论的界定 “谎言悖论”的表述形式,是要求断定语句“这句话是谎言”的“真”、“假”。而你只要试图完成这一任务,就会发现自己已经陷入了一个难以摆脱的矛盾怪圈:假如你断定该句为“真”,那便会推出该句是“假”;而倘若你断定该句为“假”,那便会据此推出该剧是“真”。

贝朗特悖论的解决

理学院 School of Science 课程设计报告 学生:凡 学生学号:200701121 所在班级:07数学1 所在专业:数学与应用数学 指导教师:樊嵘 实习场所:理工大学 实习时间:第六学期 课程设计成绩 总评 学习态度报告质量

使用SAS统计模拟方法解决Bertrand’s paradox Bertand’s paradox 是法国数学家Bertrand于1889提出的一个概率悖论:在圆任作一弦,其长度超过圆接正三角形边长的概率是多少?他在提出问题之后,给出了三种不同的解法,得到了三个不同的结果,是为悖论。 第一种解法如下: 由于弦交圆于两点。我们先固定弦的一个端点。以此端点作一个等边三角形(如图)。显然,只有穿过此三角形的弦才符合要求。而符合条件的弦的另一端正好占整个圆弧的1/3。并且,不论固定的那个 1/3。 第二种解法如下: 由于弦长只和圆心到它的距离有关。所以固定圆一条半径。当且仅当圆心到它的距离小于1/2才满足条件。并且,不论固定的是哪条半径,情况都是一样的。所以结果为1/2。 第三种解法如下; 弦被其中点唯一确定(除了圆心)。当且仅当其中点在半径为1/2的圆时才满足条件。此小圆面积为大圆的1/4。所以结果为1/4。 所以被称为悖论。

在以前对这问题的分析中,倾向于认为得到三种结果的原因是因为采用了不同的等可能性假定。 解法一假定端点在圆上均匀分布。 解法二假定半径在圆均匀分布以及弦的中点在半径上均匀分布。 解法三假定弦的中点在圆均匀分布。 先不论他们的假设是否合理,从这个问题的提法来看,问题考察 的是圆的随机弦问题。我们应该从弦的本质定义出发,即圆上任意两点的连线为弦。从这个思路,我们可以使用SAS 进行统计模拟,确定问题的答案。具体思路如下: 1.先进行1000次试验,每次试验进行1000次模拟,每次模拟从 圆上随机取两点,计算距离,记录d 1000个数据,数据集为cs ,其中的变量只有一个x 。对此数据进行分析,得到其方差与均值,可以求出概率。 2.为了得到弦长的分布,我们进行1000次模拟,每次模拟从圆上随机取两点,计算距离并记录。如此得到数据集为strx ,其中的变量有三个,分别记录两点的角度参数x ,y 与两点之间距离d 。 3.从圆进行推广,得到椭圆随机弦长的分布,思路同上。 4.从得到的结果进行理论分析。 数据的得到与数据集的建立: 使用matlab 编程可以得到模拟需要的数据,在SAS 中建立各数据集的程序如下: cs 数据集: strx 数据集:

对悖论的理解

对悖论的理解 一、什么是悖论 悖论,在物理学中也常称为佯谬。在英语中它们是同一个词paradox,指那些与常识相抵触、自相矛盾的反论,有的“似非而是”,又有的“似是而非”。严格说起来,佯谬只是悖论的一种,而且是其中最主要的一种,现在在自然科学工作者中几乎成了悖论的同义语。所谓佯谬,字面上的意思就是“假的谬误”,这是一些看起来是错的,实际上却是对的,即“似非而是”的那样一些论断。另外还有两种形式的悖论,我们把它总归为第二类。其一是在本来意义上的自相矛盾的反论。悖者,违背,违反之意也。如果对所考虑的某件事情,这样分析会得出一种结论,那样分析又会得出另一种结论,陷入左右为难,自相矛盾的境地,这就构成了悖论。其二则是那些真正错误的论断,可看起来似乎是对的,即“似是而非”,就是我们通常所说的诡辩。这与香港的黄展骥先生在“构成‘说谎者’悖论的两个矛盾———逻辑自身消解不了逻辑矛盾!”一文中把悖论定义为挑战常识的“大是若非”的卓论和“大非若是”的谬论的观点是一致的。 第一类,大是若非者,落实在“是”上,似非而是。数学史上导致三次里程碑式发现的悖论———希帕索斯(或毕达哥拉斯)无理数悖论(有些数不能表示成整数之比)、贝克莱无穷小悖论(无穷小量既等于零又不等于零)、罗素集合论悖论(可构造一个集合A,A∈A当且仅当A∈A)。前两次悖论的消解分别扩展了数的系统并引发了欧几里德几何公理系统和亚里斯多德逻辑体系的建立;将微积分建立在严格的极限理论基础上,发展了严密的数学分析学科;第三次悖论的余波至今未平,它推动了数理逻辑的发展,导致了哥德尔不完全性定理(在包含初等数论的形式公理系统中,至少存在着一个不可判定命题,该命题本身和它的否定命题在这个系统中都是无法证明的)。还有量子力学中的三大佯谬———EPR佯谬、薛定谔的猫、维格纳的朋友,以及导致狭义相对论发轫的光速佯谬(相向传播的两束光,它们的相对速度仍然是光速———或者与其等价的追光佯谬),导致广义相对论诞生的双生子佯谬,导致现代宇宙学诞生的奥尔伯斯夜黑佯谬等。当然,随着理论的发展,它们也都将不再成为悖论了。 第二类大非若是者,落实在“非”上,似是而实非。伊壁尼门德的说谎者悖论(“我说的这句话是谎话”)、罗素的理发师悖论(塞维利亚的男人可分两类,第一类是自己给自己刮脸的,第二类是自己不给自己刮脸的,凡自我刮脸的理发师就不给他刮脸,而不自己给自己刮脸的则理发师给他刮脸。那么理发师是否自己给自己刮脸呢?),芝诺悖论(善跑者追不上乌龟),公孙龙悖论(白马非马,因为马是形体的名称,而白是颜色的名称,形体不是颜色,所以白马不是马),芝诺的飞矢不动悖论等都可归入这类。说谎者悖论和理发师悖论在塔尔斯基指出应区分对象语言(“被谈论”的语言)和元语言(用来“谈论”对象的语言)后,从语义学上得到了澄清。实际上,“我这句话是假的”,这个语句是一个带有自我指涉的复合语

悖论大集合

悖论大集合 (1)米堆悖论。如果一粒米不算一堆米,两粒米不算一堆米,三粒米不算一堆米……那么照此逻辑,一万粒米也不算一堆米。与之相对的是(2)沙丘悖论。如果有一堆沙,拿走一颗沙这还是一堆沙,拿走两颗沙这还是一堆沙,那么,拿走n颗也算是一堆沙,所以一颗沙也叫一堆沙。和我们的认识抵触。 (2)赌徒的谬误。假设有一个赌徒,他在赌博中连续赢了9次,请问第10次他会输还是赢?这个问题一般有两种答案,第一,他会赢,因为很多人觉得前9次赢了,说明他运气来了,下一次要赢了。第二,他会输,因为风水轮流转,不可能一直好运,这样才能平衡。这和买彩票号码是一样的,有人认为要买前几次出现过的号码,觉得这是热门号码。而有人则认为应该买其他号码,因为既然前几次是那个号码,那么后来就肯定不是了。这种对不确定的事情以前面的结果进行推测就叫赌徒的谬误。其实,第10次赌徒到底是输还是赢还是一件未知的事情,所谓运气楼主也不知道到底存不存在这种东西。你们呢?觉得运气存在么? (3)怕老婆悖论。电台举行节目,要求所有男性出场。要求怕老婆的就站左边,不怕的站右边。中国男性以怕老婆为荣。于是纷纷走向左边。只有唯一一个男性在右边。主持人不解问他是不是不怕老婆,他说:“我老婆不让我去人多的地方。”这下主持人犯了难。到底他是怕老婆还是不怕呢? (4)万能溶液悖论。(很多经典的悖论有可能大家见过就当复习吧,蹭)一位科学家的弟子好高骛远,于是有一天他非常骄傲的对老师说,我要发明一种能溶解任何东西的万能溶液。他的老师只是轻轻的说:那你用什么容器装它呢? (5)鳄鱼悖论。一头鳄鱼抓住了一个小孩,它对小孩妈妈说:“你猜我吃不吃他?猜对了我就不吃他。猜错了我就吃了它。”小孩妈妈说:“我猜你要吃了我的孩子。”鳄鱼说:“哈哈,那我要吃了它。”小孩妈妈说:“我猜对了那你就不应该吃他。”鳄鱼这下糊涂了,如果还给她孩子,那他就猜错了我应该吃了它,但是我吃了他她就猜对了不应该吃他,最后鳄鱼还给了她孩子。 (6)部分等于整体悖论。请问偶数的个数和整数的个数相等么?可以知道当取任意整数n总会有一个对应的偶数2n。所以应该是相等的。但是生活经验告诉我们,整数包括偶数和奇数,所以不等。 (7)飞箭不动悖论。将飞箭运动过程分成无限个短过程,学过物理的人都知道这样是可以的。那么每一个过程都可以看成静止的,所以飞箭没有动。但是事实上飞箭动了。这是我国古代的悖论哟。支持。 (8)告示悖论。很多景点被人乱涂乱画。所以有工作人员就在墙上喷上请不要乱涂乱画字样。结果换来的是更多的乱涂乱画。有的人在那句话下面写你为什么乱涂乱画。有的人写我就乱涂了你打我呀。=_=。这种告示自己本身就违反了自己的原意。说不要乱涂乱画但是本身就在乱涂乱画。那应该怎么办呢?

悖论大全

老虎悖论是博弈论中一个著名的逻辑悖论。 故事 国王要处决一个囚犯,但给他一个生还的机会。囚犯被带到5扇紧闭的门前,其中一扇后面关着一只老虎。国王 对囚犯说:“你必须依次打开这些门。我可以肯定的是,在你没有打开关着老虎的那扇门之前,你是无法知道老虎是在那扇门后。”显然,如果囚犯有可能在打开有老虎的那扇门前知道,就证明国王在撒谎,那么就可以活命。开门之前,囚犯进行了如下分析:假如老虎在第五扇门,那当他把前四扇门打开后都没发现老虎,那他肯定猜到老 虎在第五扇门中,因国王说过不论何时他也料不到老虎在哪扇门后,那国王的说话就错了。因此,老虎肯定不在 第五扇门中。同样道理,老虎也不在第四道门中,否则囚犯打开三道门后,只剩两道门,老虎既不在第五扇门后,那就会给他料到在第四扇门后;依次类推,老虎不存在任何一道门后;囚犯这时就不再多想,冒冒失失依次推门,结果老虎从第二扇门中跳了出来,把囚犯咬死了。国王看见了说:“不是跟你说了老虎在哪扇门后总是出乎你的意料了吗?现在你就是万料不到了。” 悖论分析 如果囚犯的推理成立,那么就算国王把老虎放在第五扇门后,也是“料想不到”,学者们争论的重点在于:这个推理究竟错在第几步? 1.主张错在第一步 如果第一步是正确的,那么后面几步为什么是错的?所以第一步就错了。错在囚犯把国王的思路作为论据。 首先必须定义怎样算国王所谓的“知道”(或“意料”),如果投机猜测算的话,那国王不论怎样放都不能保证不被猜中,所以带投机成分的猜测不能算“知道”(国王为了自身利益也会这么定义),设“知道”定义为“在即有事实下的逻辑推

理”,那么囚犯不仅要正确预测老虎,还要对其预测给出严格的逻辑证明才行。本例中不考虑没有老虎的情况,即 囚犯已知必有1老虎。作为囚犯,他在每次打开一个门前都会进行逻辑推理,如果能推出老虎是在即将打开的门 里就赢了,如果不能推出,他就只能打开这个门,如果打开后没有老虎就继续推理下一个门是否有老虎,依此类推。 然后,把问题从5个门简化为只有2个门,囚犯会在打开第一个门之前,对第一个门里是否有老虎做逻辑推理: 由于囚犯要引用国王的思路,故须先考虑国王思路是否是会错。 A.如果相信国王是不会错的,那么你不可能推测出第一个门里有没有,因为如果推测出就说明国王会错,所以在 这个前提下不可能知道。囚犯无法推测出第一个门里有没有老虎,必然要打开第一个门。 B.如果相信国王是会错的: 囚犯首先认为国王放第二个门是错的,但国王既然是会错的,他为何不会按囚犯认为错误的思路放第二个门呢? 所以国王的思路就没法唯一的推测了。囚犯失去国王的思路做论据,无法推测出第一个门里有没有老虎,必然要 打开第一个门。 因此,国王应且只应放到第一个门中,则国王必胜。 推广到n个门的情况,只要国王不把老虎放到最后一个门,则国王必胜,囚犯必败。 2.主张错在第二步 故事中的囚犯最后决定相信“没有老虎”。但,国王并不知道囚犯是否会这样,所以的确不可能把老虎放在第五扇门。如果囚犯决定相信“一定有老虎”,那么在前四扇门都没有老虎之后,第五扇门后的老虎的确就变成“可预料的”了。 既然老虎在第五扇门的话,它一定是“可预料的”,那么当你已经开了三扇空门时,情况是怎么样?我们可以试着写成逻辑式子:前提一、老虎不可预料。前提二、老虎如果在第五扇门时,可预料。前提三、老虎不在第五扇门时,就一定在第四扇门。前提四、老虎如果在第四扇门时,可预料。结论:前提互相矛盾。 请注意:这时的逻辑推理中,既然前提互相矛盾,必定有一个以上不成立,那么可能性就是以下四个其中之一、 或是更多: A.老虎可预料。 B.老虎如果在第五扇门时,不可预料。 C.老虎不在第五扇门时,也不一定在第四扇门。 D.老虎如果在第四扇门时,不可预料。 二和四自身是矛盾命题,不考虑,三会导致老虎变成薛定谔的猫,也就是既存在亦非存在的状态(囚犯把老虎往 前门推是错误的,因为前提中包含“已经开了三扇空门”)。所以可能性只有一个:老虎可预料。但若老虎可预料,那么显示国王说谎,如果国王可能说谎,那么老虎也真的有可能消失。 这时的正确结论是:国王一定说谎,但他的谎言可能是“老虎可预料”,却也可能是“根本没老虎”,囚犯只是偏心于 一个可能性,结果帮国王圆谎罢了。 3.主张错在最后一步 如果“不可预料”并不是一种保证,而只意味“高机率”,“有老虎”才是保证,那么情况又整个改观。可以列成以下状况:

相关主题