搜档网
当前位置:搜档网 › 芝诺悖论的意义

芝诺悖论的意义

芝诺悖论的意义
芝诺悖论的意义

芝诺悖论的意义

芝诺悖论的意义

芝诺(Zeno of Elea)(大约公元前490年——公元前425年)主要研究数学与哲学。

芝诺生活在古代希腊的埃利亚城邦。他是埃利亚学派的著名哲学家巴门尼德的学生和朋友。芝诺因其悖论而著名,并因此在数学和哲学两方面享有不朽的声誉。

数学史家F·卡约里(Cajori)说,“芝诺悖论的历史,大体上也就是连续性、无限大和无限小这些概念的历史。”但遗憾的是,芝诺的著作没有能流传下来,我们是通过批评他的亚里士多德及其注释者辛普里西奥斯才得以了解芝诺悖论的要旨的。

直到19世纪中叶,人们对于亚里士多德关于芝诺悖论的引述及批评几乎是深信不疑的,普遍认为芝诺悖论只不过是一些有趣的谬见。英国数学家B·罗素(Russell)感慨地说道:“在这个变化无常的世界上,没有什么比死后的声誉更变化无常了。死后得不到应有的评价的最显眼的牺牲品莫过于埃利亚的芝诺了。他虽然发明了4个无限微妙、无限深邃的悖论,后世的大批哲学家们却宣称他只不过是一个聪明的骗子,而他的悖论只不过是一些诡辩。

柏拉图在他的《巴门尼德》篇中,记叙了芝诺和巴门尼德在公元前5世纪的中期去雅典的一次访问。其中说:“巴门尼德年事已高,约65岁,满头白发,但仪表堂堂。那时芝诺约40岁,身材魁梧而美观。”并在书中记述了芝诺的观点。据说芝诺在为巴门尼德的“存在论”辩护。但是不象他的老师那样企图从正面去证明存在是“一”不是“多”,是“静”不是“动”,他常常用归谬法从反面去证明:“如果事物是多数的,将要比是‘一’的假设得出更可笑的结果。”他用同样的方法,巧妙地构想出一些关于运动的论点。他的这些议论,就是所谓“芝诺悖论”。芝诺有一本著作《论自然》。在柏拉图的《巴门尼德》篇中,当芝诺谈到自己的著作时说:“由于青年时的好胜著成此篇,著成后,人即将它窃去,以致我不能决断,是否应当让它问世。”

公元5世纪的评论家普罗克洛斯(Proclus)在给这段话写的评注中说,芝诺从“多”和运动的假设出发,一共推出了四十个各不相同的悖论。芝诺的著作久已失传,亚里士多德的《物理学》和辛普里西奥斯为《物理学》作的注释是了解芝诺悖论的主要依据,此外还有少量零星残篇可提供佐证。现存的芝诺悖论至少有八个,其中最著名的是关于运动的四个悖论。

下面就是这四个悖论。引号内的是亚里士多德的《物理学》中的原话。

◆二分说。“运动不存在”。理由是:位移事物在达到目的地之前必须先抵达一半处。“J·伯内特(Burnet)解释说:即不可

能在有限的时间内通过无限多个点。在你走完全程之前必须先走过给定距离的一半,为此又必须走过一半的一半,等等,直至无穷。

◆阿基里斯(Achilles,荷马史诗《伊里亚特》中的善跑猛将)追龟说。“这个论点的意思是说:一个跑得最快的人永远追不上一个跑得最慢的人。因为追赶者首先必须跑到被追者的起跑点,因此走得慢的人永远领先。”伯内特解释说,当阿基里斯到达乌龟的起跑点时,乌龟已经走在前面一小段路了,阿基里斯又必须赶过这一小段路,而乌龟又向前走了。这样,阿基里斯可无限接近它,但不能追到它。

◆飞箭静止说。“如果任何事物,当它是在一个和自己大小相同的空间里时(没有越出它),它是静止着。如果位移的事物总是在‘现在’里占有这样一个空间,那么飞着的箭是不动的。”

◆运动场悖论。“第四个是关于运动场上运动物体的论点:跑道上有两排物体,大小相同且数目相同,一排从终点排到中间点,另一排从中间点排到起点。它们以相同的速度沿相反方向作运动。芝诺认为从这里可以说明:一半时间和整个时间相等”。

【关于芝诺悖论的分析与研究】

现在把这3个悖论联系起来分析。诚如亚里士多德所说,阿基里斯追龟说其实可以归结为二分说。按照二分说,阿基里斯在到达乌龟的起跑点之前,必须先走过这段距离的1/2,为此,又必须先走过1/4,1/8,等等,即必须在有限的时间内通过无限多个点,因此按芝诺的理由,阿基里斯根本就动弹不了。

芝诺悖论揭示的是事物内部的稠密性和连续性之间的区别,是无限可分和有限长度之间的矛盾,亚里士多德没有能觉察到这一点,当然实际上没有能驳倒芝诺。P·汤纳利(Tannery)在1885年指出,芝诺悖论所反对的是那种认为空间是点的总和、时间是瞬刻的总和的概念。换句话说,芝诺并不否认运动,但是他想证明在空间作为点的总和的概念下运动是不可能的。

芝诺的类似观点还表现在他的两个针对“多”的悖论中。其中一个见于失传的芝诺原著的如下一段残篇:

如果有许多事物,那就必须与实际存在的事物相符,既不多也不少。可是如果有象这样多的事物,事物(在数目上)就是有限的了。如果有许多事物,存在物(在数目上)就是无穷的。因为在各个事物之间永远有一些别的事物,而在这些事物之间又有别的事物。这样一来,存在物就是无穷的了。

芝诺认为存在若是“多”就会导致无穷的论证,也表达在另一个悖论里。它被辛普里西奥斯至少是部分地逐字逐句记述下来。这些记述不象阿基里斯追龟说和飞箭静止说那样

经后人或多或少地修改过,虽然表达得没有那么清楚,但是却更接近于芝诺的原话。辛普里西奥斯在他的引言里说,芝诺首先论证既无“大小”又无厚度的东西是不能存在的。“因为如果这样,它加在某物之上不能使其变大,从某物减去也不能使其变小。但是,如果不能因增加它而使一物增大,也不能因减少它而使一物减小,这就明显地看出,所增加或所减少的是零。”

因此,把任意数目的这些“无”元素加在任何东西上都不会使它增大,反之从任何东西里减去它们也不会使它变小;当然,把这些“无”元素通通加起来,即使其数目有无限多个,其总和还是“无”。上述悖论和关于运动的前三个悖论的共同点,在于假定了空间、时间和物体的无限可分性,实际上还讨论了无穷小和连续性。芝诺在这里其实还援引了如下两个假设:

i)无限多个相等的任意小的正量的总和必然是无穷大;

ii)无限多个没有大小的量的总和仍然是没有大小的量。

其中假设ii)是芝诺反对把线段(时间、空间)看成是一个无限点集(无限多个没有大小的量的总和)的主要依据。因此解决芝诺悖论的一个关键就是证明假设ii)不成立。A·格兰巴姆(Grünbaum)于1952年详尽地讨论了这个问题。他把只含有一个点的子区间定义为退化子区间,从而得出下列结论:

1)有限区间(a,b)是退化子区间的连续统的并集;

2)每个退化子区间的长度是零;

3)区间(a,b)的长度是b—a;

4)一个区间的长度不是它的基数的函数。

因此,芝诺的假设ii)不能成立。事实上,将一个线段(或别的量)按二分法进行无限分割,不可能有最后元素。因为既是无限分割,它就是一个没有最后一项的永远不能完成的过程。在取极限的意义上,按结论1),有限区间(a,b)成为不可数的无限个退化子区间的并集,这时虽然每个退化子区间(或每个点)的长度为0,但整个并集的长度不是0,而是b—a(按结论3))。这样,作为对芝诺和亚里士多德的回答,时间和距离都是作为无长度元素(点)的无穷集合的线性连续统。换言之,线段是点的无穷集合,而时间是无广延的瞬刻的无穷集合,它们都是线性连续统。这样,飞箭静止说这一悖论,原来指在任一给定的瞬刻是不动的但在由无限多瞬刻组成的连续体上却是动的,现在转换成一个新的“悖论”:由无广延的点组成的无穷集却有广延。

这是古代文献中第一个涉及相对运动的问题,在现存的芝诺悖论中,它是唯一的和连续统问题无关的问题。不过也有学者(例如P。汤纳利等人)认为它和连续统问题是有着某种联系的。

【对芝

诺的评价、研究及起对后世的影响】

19世纪下半叶学者们开始重新研究芝诺,他们推测芝诺的理论在古代没有得到完整的、正确的报道,而是被诡辩家们用作倡导怀疑主义和否定知识的工具,从而背离了芝诺的真正宗旨。而亚里士多德正是按照被诡辩家们歪曲过的形象来引述芝诺悖论的。然而迄今为止,学者们还找不出可靠的证据足以推翻亚里士多德和辛普里西奥斯关于芝诺悖论的记述。由于目前对希腊哲学史了解得还不够,对于芝诺提出这些悖论的目的何在尚不清楚。比较一致的意见是:芝诺关于运动的悖论并不是简单地否认运动,芝诺责难“多”也不是简单地把两只羊说成一只羊。在这些悖论后面有着更深层的内涵。亚里士多德的着作保存了芝诺悖论的大意,功不可没,但是他对于芝诺悖论的分析和批评并非十分成功,是值得重新研究的。

关于芝诺悖论对于古代希腊数学发展的重要性,在科学史学者中的意见是很不一致的。P·汤纳利首先提出,芝诺和巴门尼德哲学的关系并不如古代传说中所肯定的那样密切。相比之下,因毕达哥拉斯学派发现不可公度量而出现的一些问题,对于芝诺具有更加深刻的影响。基于同样的假设,H.赫斯(Hasse)和H·斯科尔斯(Scholz)想把芝诺说成是对古代数学的发展方向起决定影响的人物。他们试图证明,毕达哥拉斯学派曾假定存在无限小的基本线段(初等线段),想以此来克服因发现不可公度量而引起的困难。芝诺所反对的正是这种处理无穷小的不准确的做法,从而迫使下一代的毕达哥拉斯学派的数学家去探求更好、更准确的基础。另有一些学者持有完全不同的意见。B·L·范德瓦尔登指出,我们已知的关于公元前五世纪下半叶的数学理论——不可公度量的发现无疑是那个时代作出的——并不支持芝诺曾经对那个时代的数学发展作过任何重大贡献的说法。

虽然芝诺时代已经过去二千四百多年了,但是围绕芝诺的争论还没有休止。不论怎样,人们无须担心芝诺的名字会从数学史上一笔勾销。正如美国数学史家E.T.贝尔(Bell)所说,芝诺毕竟曾“以非数学的语言,记录下了最早同连续性和无限性格斗的人们所遭遇到的困难。”

芝诺的功绩在于他在柏拉图学园中多次发起关于动和静的关系、无限和有限的关系、连续和离散的关系的讨论。引起人们对他提出的这些悖论的关注与研究。虽然人们无法判断他对古典希腊数学的发展有无直接的重要影响,但有一个事实是柏拉图在《巴门尼德》中讨论的一个主要话题就是关于芝诺的悖论,因此芝诺明显是书中的主角之一。

当时欧多克索斯(Eudoxus)正在柏拉图

学园中攻读和研究数学与哲学。他后来创立了新的比例论,从而克服了因发现不可公度量而出现的数学危机;并完善了穷竭法,巧妙地处理了无穷小

问题。在希腊数学发展的关键时刻,应当说芝诺也做出过有意义的贡献。

浅谈芝诺悖论——阿基里斯与乌龟

浅谈芝诺悖论——阿基里斯与乌龟 公元前5世纪,芝诺用他的无穷、连续以及部分和的知识,引发出以下著名的悖论:他提出让阿基里斯和乌龟之间举行一场赛跑,并让乌龟在阿基 里斯前头1000米开始.假定阿基里斯能够跑得比乌龟快10 倍.当比赛开始的时候,阿基里斯跑了1000米,此时乌龟仍 然前于他100米.当阿基里斯跑了下一个100米时,乌龟依 然前于他10米.芝诺辩解说,阿基里斯能够继续逼近乌龟, 但他决不可能追上它。 此问题可用数学知识表示为;如图设阿基里斯处在A 点,乌龟处在B 点,A ,B 点相距X ,阿基里斯以速度V 前进,则乌龟以速度1∕10V 前进,若阿基里斯前进了X ,则乌龟前进了1/10X ,若阿基里斯前进了1/10X ,则乌龟前进了1/10?2X ,就这样无限的进行下去, 乌龟前进的路程可表示为S=1/10X+1/10?2X+1/10?3X+1/10?4X+…1/10?nX ,而阿基里斯前进的路程为S ’=X+1/10X+1/10?2X+1/10?3X+1/10?4X+…1/10?(n-1)X, 所以二者之差S ’—S= X —1/10?nX ,乌龟与阿基里斯相距1/10?nX ,当n 为无穷大时,S ’—S ≈X , 1/10?nX ≈0,但是1/10?nX 总是一个大于0的数,因此阿基里斯是追不上乌龟的. 然而如果我们深思这个问题我们会发现,当n 为无穷大时,1/10?nX 会越来越小,通过这段路程的时间会趋于0. 对于宏观上分析,显然我们可以得出当1/10?nX ≈0时,阿基里斯与乌龟所占的空间要比1/10?nX 大得多,我们说阿基里斯没有追上乌龟这是不科学的。对于微观上分析,我们将阿基里斯与乌龟分别看成两个质点,设为A ,B ,而质点是没有体积的,这样讨论就不会产生宏观上的不科学的观点。若A,B 是质点,我们显然可以得到A 是永远追不上B 的。但在牛顿的经典物理学中,我们可以知道若A 比B 的速度快,经过有限时间后,A 是一定会追上B 的,因此这个问题是不可以用牛顿的经典物理学来分析的,经典物理学有两个假设: 其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。也就是在经典物理学中时间和空间都是连续的,因此我们可以以时间不是连续的观点来讨论这A X B

圣彼得堡悖论及其消解新解

圣彼得堡悖论新解与不确定性估值 内容提要:著名数学家Bernoulli为解决“圣彼得堡悖论”提出了货币的边际效用递减理论(下称“效用函数解决方案”),本文通过以下两个方面证明了Bernoulli的“效用函数解决方案”是不成立的:1、用Bernoulli和克莱默的“效用函数”构造了新的悖论;2、设计并实施了不存在边际效用递减效应的“新型圣彼得堡游戏”,该游戏同样产生了“圣彼得堡悖论”。本文进一步分析论证了人们面对不确定性前景的风险调整才是导致“圣彼得堡悖论”产生的真正原因,由此给出了不确定性决策的风险调整模型,用此模型解决了“圣彼得堡悖论”及其它相关悖论。本文对基于不确定性的经济学理论研究提出了一个全新的研究思路和方向。 关键词:不确定性估值,圣彼得堡悖论,效用,风险调整模型,经济实验 1.圣彼得堡悖论与Bernoulli的效用函数解决方案 “圣彼得堡悖论”来自于一种掷币游戏,即圣彼得堡游戏。设定掷币掷出正面为成功,游戏者如果第一次投掷成功,得奖金2元,游戏结束;第一次若不成功,继续投掷,第二次成功得奖金4元,游戏结束;这样,游戏者如果投掷不成功就反复继续投掷,直到成功,游戏结束。如果第n次投掷成功,得奖金2n元,游戏结束。 按照概率期望值的计算方法,此游戏的期望收益为所有可能结果的得奖期望值之和: 1111 ()2482 2482n n E=?+?+?++?+ ――――――――――――(1.1) 由于对于游戏中投币的次数没有理论上的限制,很显然,上式是无数个1的和,它等于无穷大,即该抽奖活动收益的数学期望值是无限的。那么对于这样一个收益的数学期望值是无穷大的“圣彼得堡游戏”当支付多大的费用呢?试验表明,大多数人只准备支付几元钱来参加这一游戏。于是,个人参与这种游戏所愿支付的有限价格与其收益的无穷数学期望之间的矛盾就构成了所谓的“圣彼得堡悖论”。 Bernoulli对于这个问题给出一种解决办法。他认为人们真正关心的是奖励的效用而非它的绝对数量;而且额外货币增加提供的额外效用,会随着奖励的价值量的增加而减少,即后来广为流传的“货币边际效用递减律”。伯努利将货币的效用测度函数用货币值的对数来表示,从而所有结果的效用期望值之和将为一个有限值,则理性决策应以4元为界。 他选择对数函数形式的效用函数:

简述连锁推理悖论的产生与发展

大学研究生学位课程论文论文题目:简述连锁推理悖论的产生与发展

简述连锁推理悖论的产生与发展 内容摘要:连锁推理悖论(Sorites Paradox)的提出最早可以追溯到古希腊哲学家欧布里德(Eubulides)所提出的“堆悖论”(Paradox of the Heap)和“秃头悖论”(Paradox of the Bald Man)。虽然这两个问题所涉及的内容不同,但是具有相同的性质,都属于“连锁推理悖论”(Sorites Paradox)的范畴。本文将从从逻辑学的角度简述连锁推理悖论的产生及其发展。 关键词:连锁推理悖论、模糊性 悖论(paradox)是逻辑学的一个分支,同时也是数学哲学中极难而又极重要的问题。悖论的意思是说如果一个命题是真的,我们能根据命题中的条件推得这个命题的否命题也为真;反之,如果以这个命题的否命题为前提,我们也能推得这个命题为真。如果一切数学定理都符合逻辑,这就需要数学具有可靠性,而悖论的发现则使得数学的可靠性得到了质疑。悖论也分为许多类型,按照不同的方法和角度,可以有不同的分类方式,一般将其分为集合论悖论和语义悖论。当然也有的哲学家不同意将悖论进行区分,比如罗素就认为,所有的悖论都是出于同一谬误,即违背“恶性循环原则”①。而连锁推理悖论更是一个时间跨度很大的问题,从古希腊一直到当代,以致产生了后来的模糊性问题,以下本文就对这一问题展开叙述。 一、连锁推理悖论的产生 古希腊麦加拉学派的欧布里德(Eublides)最早提出了“连锁推理悖论”(Sorites Paradox)。此说以多种形式流传下来,其中最常见的两种是“麦粒堆问题”(Paradox of the Heap)和“秃头问题”(Paradox of the Bald Man)。 所谓“麦粒堆问题”是指,究竟多少粒麦粒才能称为堆?一粒麦子当然不能成堆,加一粒也不行,再加一粒也还是不行,依次类推,加上无穷多粒的麦子也还是不能成堆。而“秃头问题”是说,一个人有十万根头发不能算是秃头,他掉了一根头发也不算是秃头,再掉一根头发也不算是秃头,依次类推,他掉了十万根头发后也还是不能算秃头。 这两个问题涉及的内容不同,但具有同一性质,都是前提正确,累积增加或减少的推理过程也貌似正确,但是结论不符合常识。这两者都属于“连锁推理悖论”的范畴。即都依赖于一种逐渐增加或减少事物的性态而最终改变命题真伪的推理方法,将原本为真的命题,通过渐进式递推,得出一个从逻辑上说应当为真,然而却十分荒谬的结论,由此向二值逻辑提出挑战。二值逻辑无法对此种悖论做出解释,因为它的排中律使它无法应对“一堆麦于”与“一粒麦子”、“秃头”与“非秃头”之间的过渡状态。“连锁推理悖论”的提出使人们看到了传统二值逻辑和人类认识能力的局限性,看到了语言的模糊性,在一定意义上推动和导致了模糊数学和模糊逻辑的诞生。 但是确切的说,欧布里德只是提出了这样的问题,而并没有把他上升到悖论的高度。一个悖论必须是一个有效地论证,它有着明显真的前提和明显假的结论,而对这些问题进行论证化的是后来的斯多葛学派。他们将连锁推理悖论归纳为这样一种形式: 1 is few ①苏珊·哈克,逻辑哲学.商务印书馆.2006.171

悖论的意思是什么

悖论的意思是什么 导读:我根据大家的需要整理了一份关于《悖论的意思是什么》的内容,具体内容:悖论的意思:悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A 发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐...悖论的意思: 悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。 英文解释 [数] antinomy;paradox ; [paradox] 逻辑学和数学中的矛盾命题 定义 悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。

性质 悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。 根源 悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。 解悖 悖论与解悖只要运用对称逻辑,没有一个悖论无解。悖论是表面上同一命题或推理中隐函着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。 用对称逻辑思维层次法解"说谎者悖论" 这个悖论即"我在说谎"这句话中所蕴含的悖论。这个悖论表面上由"我在说谎"和"我说实话"这两个对立的"命题"组成,实际上这两个"命题"并不等价——前一个命题包含思维内容,后一个"命题"只是前一个命题的语言表达式,因此后一个"命题"不是

悖论及其科学意义

悖论及其科学意义 西班牙的小镇塞维利亚有一个理发师,他有一条很特别的规定: 只给那些不给自己刮胡子的人刮胡子。 这个拗口的规定看起来似乎没什么不妥,但有一天,一个好事的人跑去问这个理发师一个问题,着实让他很为难,也暴露了这个特别规定的矛盾。那个人的问题是: “理发师先生,您给不给自己刮胡子呢?” 让理发师为难的是: 如果他给自己刮胡子,他就是自己刮胡子的人,按照他的规定,他不能给自己刮胡子;如果他不给自己刮胡子,他就是不自己刮胡子的人,按照他的规定,他就应该给自己刮胡子。不管怎样的推论,理发师的做法都是自相矛盾的。这真是令人哭笑不得的结果。 这就是悖论。 悖,中文的含义是混乱、违反等。 悖论,在英语里是paradox,来自希腊语“para+ dokein”。意思是“多想一想”。悖论是指一种导致矛盾的命题。 悖论都有这样的特征: 它看上去是合理的,但结果却得出了矛盾——由它的真,可以推出它为假;由它的假,则可以推出它为真。 悖论与谬论不同,谬论是用目前的理论就能够证明、判断其为错误的理论、观点,总体来说,谬论是完全错误的;而悖论则看起来是是非难辨的。但这种“是非难辨”并非是永远不能分辨的,随着人们认识能力的不断提高,随着科学的不断发展,悖论是可以逐步得到消除的,矛盾是可以解决的。

广义上说,凡似是而非或似非而是的论点,都可以叫做悖论,如欲速则不达、大智若愚等都是典型的悖论;还有一些对常识的挑战也可称为悖论。 狭义上说,悖论是从某些公认正确的背景知识中逻辑地推导出来的两个相互矛盾(或相互反对)命题的等价式。通俗地说,如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。这就是悖论。狭义的悖论又可称为严格意义上的悖论或真正的悖论。 “我说的这句话是假的”,这就是典型的悖论,因为从这句话所包含的大前提来看,这是一句假话,其内容必定就是“假”的;既然是假的,则其意必然与其所指相反,所以,这句话应该是“真”的。但如果假设这句话是真的,其本身又恰恰证明它是假的。所以,你无从分辨这句话的真假。 悖论一般可以分为语义悖论和逻辑悖论两种。如果从一命题为真可推出其为假,又从该命题为假可推出其为真,则这个命题就构成语义悖论。前面所说的“我说的这句话是假的”就是如此。 逻辑悖论总是相对于一个公理系统而言,如果在一个公理系统中既可以证明A又可以证明非A,则我们就说在这个公理系统中含有一个悖论。集合论中著名的罗素悖论就是一个逻辑悖论。实际上,自然科学中出现的悖论一般都是逻辑悖论。 自然科学中的悖论一般还被称为佯谬。在英文中,佯谬与悖论是同一词paradox。它们都是由于前提、判断和结论的运用而产生的,具有相同的逻辑本性。如由爱因斯坦等提出的EPR悖论,也可称为EPR佯谬。 悖论有很多种称谓。古希腊的亚里士多德称之为难题;中世纪的经院哲学家们称之为不可解命题;近现代的科学家一般称之为悖论或佯谬,哲学家则称之为二律背反(“悖论”在英文中还有一个词antinomy)。 1979年,美国数学家霍夫斯塔德(D.R.Hofstad—ter)认为悖论是一个“怪 圈”(strange loop,又译为奇异的循环),是由于“自我相关”而导致的。这种怪圈不仅存在于数学和思维中,也存在于绘画和音乐中。埃

芝诺悖论

芝诺(埃利亚)(Zeno of Elea)生活在古代希腊的埃利亚城邦。他是埃利亚学派的著名哲学家巴门尼德(Parmenides)的学生和朋友。关于他的生平,缺少可靠的文字记载。柏拉图在他的对话《巴门尼德》篇中,记叙了芝诺和巴门尼德于公元前5世纪中叶去雅典的一次访问。其中说:“巴门尼德年事已高,约65岁;头发很白,但仪表堂堂。那时芝诺约40岁,身材魁梧而美观,人家说他已变成巴门尼德所钟爱的了。”按照以后的希腊著作家们的意见,这次访问乃是柏拉图的虚构。然而柏拉图在书中记述的芝诺的观点,却被普遍认为是相当准确的。据信芝诺为巴门尼德的“存在论”辩护。但是不象他的老师那样企图从正面去证明存在是“一”不是“多”,是“静”不是“动”,他常常用归谬法从反面去证明:“如果事物是多数的,将要比是‘一’的假设得出更可笑的结果。”他用同样的方法,巧妙地构想出一些关于运动的论点。他的这些议论,就是所谓“芝诺悖论”。芝诺有一本著作《论自然》。在柏拉图的《巴门尼德》篇中,当芝诺谈到自己的著作时说:“由于青年时的好胜著成此篇,著成后,人即将它窃去,以致我不能决断,是否应当让它问世。”公元5世纪的评论家普罗克洛斯(Proclus)在给这段话写的评注中说,芝诺从“多”和运动的假设出发,一共推出40个各不相同的悖论。芝诺的著作久已失传,亚里士多德的《物理学》和辛普里西奥斯(Simplici-us)为《物理学》作的注释是了解芝诺悖论的主要依据,此外只有少量零星残篇可提供佐证。现在流传下来而广为人所知的所谓“芝诺悖论”共有九个:四个是关于运动的,三个是指向“多”的,一个是反对空间观念的,另一个则试图表明感觉是不可靠的,其中关于运动的4个悖论尤为著名。 直到19世纪中叶,亚里士多德关于芝诺悖论的引述及批评几乎是权威的,人们普遍认为芝诺悖论不过是一些诡辩。英国数学家B.罗素感慨的说:“在这个变化无常的世界上,没有什么比死后的声誉更变化无常了。死后得不到应有的评价的最典型例子莫过于埃利亚的芝诺了。他虽然发明了四个无限微妙无限深邃的悖论,后世的大批哲学家们却宣称他只不过是个聪明的骗子,而他的悖论只不过是一些诡辩。遭到两千多年的连续驳斥之后这些诡辩才得以正名。”19世纪下半叶以来,学者们开始重新研究芝诺。他们推测芝诺的理论在古代就没能得到完整的、正确的报道,而是被诡辩家们用来倡导怀疑主义和否定知识,亚里士多德正是按照被诡辩家们歪曲过的形象来引述芝诺悖论的。目前,学者们对芝诺提出这些悖论的目的还不清楚,但大家一致认为,芝诺关于运动的悖论不是简单的否认运动,这些悖论后面有着更深的内涵。亚里士多德的著作保存了芝诺悖论的大意,从这个意义上来说,他功不可没,但他对芝诺悖论的分析和批评是否成功,还不可以下定论。 芝诺悖论(Zeno's paradoxes)是芝诺提出的一系列关于运动的不可能性的哲学悖论。这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。芝诺为了支持他老师巴门尼德关于“存在不动”、是一的学说(万物为一且永不变化的学说),提出了著名的运动悖论和多悖论,以表明运动和多是不可能的。他的结论在常人看来当然很荒谬,但他居然给出了乍看起来颇令人信服的论证,故人们常常称这些论证构成了悖论或佯谬。不过,若细细推敲,其结论未必荒谬,其论证未必令人信服,故中性的称这些论证为芝诺论辨(Argument)最为合适。 这些悖论中最著名的两个是:“阿基里斯跑不过乌龟”和“飞矢不动”。这些方法现在可以用微积分(无限)的概念解释,但还是无法用微积分解决,因为微积分原理存在的前提是存在广延(如,有广延的线段经过无限分割,还是由有广延的线段组成,而不是由无广延的点组成。),而芝诺悖论中既承认广延,又强调无广延的点。这些悖论之所以难以解决,是因为它集中强调后来笛卡尔和伽桑迪为代表的的机械论的分歧点。这些悖论其实都可以简化为:1/0=无穷。

芝诺悖论的极限分析

芝诺悖论的极限分析 学生姓名:王慧文指导教师:岳进 摘要:古希腊哲学家芝诺提出了著名的“二分法”,其结论的荒谬性不言而喻,可是对他的论证我们 似乎很难找出毛病,好像是可以接受的。其结论之所以不可以接受,源于在他的论证中隐藏着一些 谬论。在极限方面过程中把带有统一度量单位的“无穷”混为一谈。在哲学方面违反了辩证法的客观 性原则、全面性原则和对立统一性原则;但芝诺悖论的提出,对辩证法的方法,以及运动过程中诸 要素的多种矛盾,通过逻辑运算对芝诺悖论的荒谬性进行反驳,对数学的发展起了很大的作用。 同时本文利用数学求极限的方法,通过逻辑运算,揭示阿基里斯永远追不上乌龟结论的错误。 关键词:悖论;无穷与有穷;运动与静止;连续与间断 引言: 数学悖论是数学发展过程中的一个重要的存在形态,它是数学体系中出现的一种尖锐的矛盾,对于这一矛盾的处理与研究,丰富了数学的内容,促进了数学的发展。 芝诺是公元五世纪古希腊埃利亚学派的代表人物。芝诺“二分法”悖论是说,你不能在有限的时间内穿过无穷的点。在你穿过一定的距离的全部之前,你必须穿过这个距离的一半。这样做下去就会陷入无止境,所以在任何一定的空间中都有无穷个点,你不能在有限的时间中一个接一个地接触无穷个点。运动只是假象,不动不变才是真实。假如承认有运动,就得承认速度最快的赶不上速度最慢的”,即快的“只能无限地接近但永远不能赶上”慢的。因为,快的要追上慢的,总要到达慢的所处,的所经过的每个出发点,而当它到达第一个出发点时,慢的已经往前走了“一段,即阿基里斯追赶乌龟的赛跑。 芝诺的哲学观点虽然不对,但是,他如此尖锐地提出了空间和时间是连续还是离散的问题,引起人们长期的讨论和发展,不能不说是巨大的贡献。本论文就是通过极限与哲学的分析,对芝诺悖论进行剖析。 1、悖论对数学产生的作用 1.1从悖论说起 什么是悖论?它既属于逻辑矛盾、语义矛盾,也属于思想方法上的矛盾。简单地说,悖论一般表现为这样的命题:如果你认为它真,则可以推出它为假;如果你认为它假,则可以推出它为真[1]。悖论往往以逻辑推理为手段,深入到原理论的基础之中深刻地揭露出该理论体系中的无法回避的矛

悖论的产生和意义

对于悖论存在及其意义的探究 摘要:悖论的存在已有数千年历史,悖论到底如何定义的?是为什么会存在的?历史上人们又是怎么对待悖论的?悖论能够怎样被解决?悖论的存在又有什么意义?这一切问题都需要我们深入思考研究。 关键词:悖论;逻辑哲学;存在;本体论;形而上学 一、什么是悖论? 在人类思想史上,已经提出了各种各样的谜题与悖论,它们对人类理智构成了严重的挑战,许多大家、巨擘以及无名氏前仆后继地对其进行了艰辛的探索。从古希腊、中国先秦时期到现代数学、逻辑学等众多学科中,已经发现了各种各样的悖论或怪论,悖论已经成为数学、逻辑学、哲学、语言学、计算机科学、思维科学等多学科专家共同探讨的课题,谈论“悖论”几乎成为时髦。那么,到底什么是悖论呢?悖论,亦称为吊诡或诡局,是指一种导致矛盾的命题。通常从逻辑上无法判断正确或错误称为悖论,似非而是称为佯谬;有时候违背直觉的正确论断也称为悖论。悖论的英文paradox一词,来自希腊语paradoxos,意思是“未预料到的”,“奇怪的”。如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。 二、悖论与逻辑哲学 说谎者悖论被认为是世界上最早的悖论,由公元前六世纪的哲学家克利特人艾皮米尼地斯提出:“所有克利特人都说谎,他们中间的一个诗人这么说。”这个悖论最简单的表述形式是:“我在说谎”。如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。矛盾不可避免。这类悖论的一个标准形式是:如果事件A 发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环。悖论的存在显然是因为某些命题正在逻辑上存在不合理性从而引起了众多学者的探究。 虽然逻辑不能等同于逻辑哲学,但是逻辑哲学基本上是和逻辑同时产生的,任何逻辑学家都在无形中进行着对逻辑哲学的研究。尤其是对于数学这样的极其讲究严密的逻辑性的研究领域,逻辑哲学的研究根本无法避免。著名的“罗素悖论”的出现甚至引起了第三次数学危机。所谓的罗素悖论是罗素针对当时建立不久的集合论体系提出的一个基础上存在的矛盾:“定义两个集合:P={A∣A∈A} ,Q={A∣A?A} 。问题:Q∈P 还是 Q?P?”。显然,无论是指定哪个判断为真,最后都能够推断出与其相反的结论。为了使其更容易被理解,罗素悖论又被称为“理发师悖论”:“有一个理发师说:‘我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸’”。那么这个理发师要不要给自己刮脸呢?无论他怎么做,最后都一定会违背自己当初的话。 悖论的流行引发了世界上的思想风暴。越来越多的人认识到我们现有社会中存在的不完美,思维方式不能再局限于既定逻辑,而要尝试打破规则,因为悖论的存在充分说明了现有的规则有着无法忽视的漏洞,甚至会动摇社会根基。 三、悖论与本体论 西方哲学从古希腊开始一直以研究世界的本原为己任, 形成了西方哲学的本体论传统。本体论的最主要特征就是研究存在问题, 即关于什么样的实体存在, 以及作为实体在资格

[亚里士多德,芝诺,悖论]浅谈亚里士多德实体与属性二分下的芝诺悖论

浅谈亚里士多德实体与属性二分下的芝诺悖论 一、导言 哲学有两种功效: 诊断和治疗。本文主要集中在对问题本身的诊断。维特根斯坦在《逻辑哲学论》中把哲学比喻为梯子,我们不应仅仅执迷于梯子上有什么,而应更加关注会有多少种梯子,因为不同的梯子可能会通向不同的方向。通常的解读下,哲学史是对柏拉图问题的回答,进一步讲,也可以认为是对巴门尼德问题的回答,但这只是问题的一个方面。如果把解决巴门尼德问题看作对真的追求,那么对芝诺问题的消解就可以看作对假的消除。既然哲学史可以解读为对真的追求,那么同样也可以解读为对假的消除,即哲学史既可以理解成是努力追求巴门尼德的真,亦可以理解成是在努力消解芝诺问题。 二、实体与属性: 芝诺悖论的多层结构 1. 按照胡吉特 ( Nick Huggett) 理论对芝诺悖论的结构分层 ( 1) 数量悖论。①密度悖论: 如果有多,他们必须与自身一样多,既不更多也不更少。但是如果他们和自身一样多,他们则是被限制的。如果他们是多,多这样的事物是不被限制的。因为在多的事物之间总是有其它的事物,并且在这些事物之间还有另一些事物,因此多这样的事物是不被限制的。②有限量悖论: 如果把其他存在的事物增加于它,这不会使其变大。因为如果它没有体量并且被增加,它在体量上也不可能增加。因此立即可以得出这样的结论,即被增加的是无。但是如果它被减少时其他事物并没有变小,它被增加时其他事物没有增加,那么显然被增加或减少的事物是无。但是如果它存在,每一个事物必须有一些体量和厚度,它的一部分必定与其他部分是不同的部分。同样的推理适用于在前面的部分。对于这部分,其自身有体量,所以其中也有在前的部分。现在基于同样的推理,不停重复。因为没有一个部分是最终的部分,也没有一个部分是与另一部分无关的。因此,如果有很多事物,他们必定是既小又大; 如此之小以至于没有体量,但是如此之大以至于是无限的。完全分割悖论:一旦一个事物被自然方法不停地分割,无论是用两分法或其他任何方法,如果这个事物确实被分了,那么最终什么都不可能留下虽然事实上可能没有一个物体能被这样分。 ( 2) 运动悖论。①二分法悖论: 你不能在有限的时间内越过无穷的点,当你穿过一定距离的全部之前,你必须穿过这个距离的一半,这样做下去就会陷入无止境。所以在任何一定的空间中都有无穷个点,你不能在有限的时间中一个一个接触无穷个点。②阿基里斯与龟悖论:阿基里斯永远追不上乌龟,他首先必须到达乌龟出发的地点,这时候乌龟会向前走了一段路,于是阿基里斯又必须赶上这段路,而乌龟又向前走了一段路。他总是愈追愈近,但是始终追不上它。③飞矢不动悖论: 飞着的箭是静止的,因为如果每一件东西在占据一个与它自身相等的空间时是静止的,而飞着的东西在任何一定的霎间总是占据一个与它自身相等的空间,那么它就不能动了。④运动场悖论: 运动场上有两排物体,每排由大小相等、数目相同的物体组成,各以相同速度按相反方向通过跑道,其中一排从终点开始排到中间,另一排从中间排到起点。他 [芝诺] 认为,这里包含了一个结论,一半时间等于一倍时间。 ( 3) 其他悖论。①空间悖论: 如果每一个存在的事物都占有一个空间,位置自身也占有一个空间,依此类推至无穷。②谷粒悖论:芝诺论证说米粒的任何一个部分都能发出声响,因为没有什么妨碍米粒的一个部分在不论什么时间中不能像一个整体的麦蒂蒙洛 (古希腊亚

悖论

概念 bèilùn (paradox,也称逆论,反论) 逻辑学和数学中的“矛盾命题”,是指一种导致矛盾的命题。 悖论的定义可以这样表述:由一个被承认是真的命题为前提,设为B,进行正确的逻辑推理后,得出一个与前提互为矛盾命题的结论非B;反之,以非B为前提,亦可推得B。那么命题B就是一个悖论。当然非B也是一个悖论。我们可以按照某些制定或约定的公理规则去判定或证明某一命题的真假,但是我们按照制定或约定的公理规则去判定或证明有些命题的真假时,有时却出现发生了无法解决的悖论问题,这种情况说明了什么问题? 自然在整体上是包含多样性的,而我们却置这些情况于不顾,而专门关注属于我们感兴趣的那一种特殊情况,当特殊情况与其它相反的情况或普遍性存在的一般情况相遇时必然产生某种相悖的结论。不是数学悖论对数学基础产生大的危机影响,而是对逻辑和认识产生重大影响。 无限集合本身就是一个模糊不清的概念规定,有限是可以称为集合,无限是不能称为集合的。集合是指表示在某一个范围内无限则是指范围为无限大的,否则就不应该称为无限而称有限。无限不应该成为一个任意性选择或适用的范围,一个数量当超过人类所能达到或认识的程度便进入无限的范围之中。到现在为止,人类还没有完全清楚地知道我们所能认识到的半径有多大,所以无法准确精确地规定无限与有限它们之间的界限究竟在那里。 集合本身的概念就是一个没有限制性的概念,总的集合可任意分成若干集合,都是集合,确切地说我们不知道究竟是在那种意义前提限制下的集合。 子集合中存在悖论,或与别的集合之间存在悖论,子母集合之间也还存在悖论,因为在每种具体的子集合中都有属于它自身的规定规则,只在自身范围有效。超越范围则失效,这是永远不可避免或取消的。除非取消类的集合层次之间的区别,那么又不符合对待具体事物的态度,无法满足实际应用要求。另外集合的本义与引申义常混合使用,有时与元素意义混同,集合在低层次相当于元素,当上升时为集合,当再次上升时又相当于元素,是累积式的。 罗素悖论在当它们还没有进行相互联系时是有效的,当它们进行相互联系时即它们已经成为一个类或一个整体,那么一个类或一个整体中是不允许或无法执行两种衡量标准或规定的,自我否定是和没说一个样,或等于没有规定一样。 哥德尔关于一阶逻辑完全性定理与不完全性定理的本身就是悖论,已经暴露出逻辑导致发生的问题。哥德尔不完全性定理是缺乏评判,以决定的主导方面为衡量标准,或衡量标准过多而引起的悖论。所谓的标准也是一种规定。失效以后还可以根据实际需要再次进行新的规则规定,反正原来的规则也是规定,为什么出现发生悖论以后不可以再次重新进行规定规则,以满足实际应用的目的的需要呢?明明是自己的规定,可是自己又制造新的规定来破坏原来的规定,如果这样来干活,那么将永远有活干了,永远有干不完的活。 类是人为区分出来的,但类是根据需要人为任意性制造的,若分类,故类有所不同。在整体上却不存在类同与不同,由于类不同,故数也有所不同,有些不同相悖是很正常必然的。然而人们又想进行类与数之间变换,那么又不得不重新再作新的规定。 证明也只是按照预先所设置和认为的规定去操作,必然会符合规定,我们只管按规定操作执行好了,证明又有什么作用或意义呢?类的悖论问题不是通过进行证明就所能解决得了的。 悖论是属于领域广阔、定义严格的数学分支的一个组成部分,这一分支以“趣味数学”知名于世。这就是说它带有强烈的游戏色彩。然而,切莫以为大数学家都看不起“趣味数学”问题。欧拉就是通过对bridge-crossing之谜的分析打下了拓扑学的基础。莱布尼茨也写到过他在独自玩插棍游戏(一种在小方格中插小木条的游戏)时分析问题的乐趣。希尔伯特证明

科学技术哲学论文全解

从数学史浅谈科学技术理念问题

摘要:本文从哲学、科学、数学之间的关系角度出发,结合自身研究与实践以及几位伟大数学家的范例,阐述和分析了科学技术中数学环节的重 要性和必要性,举例说明了科学数学与自然哲学之间的关系,同时讨 论了工程技术人材应该的树立正确的科学理念。接着讨论了工程技术 人员应该秉持的科学哲学理念。最后讨论了高科技技术人员的道德伦 理问题。 关键字:哲学、科学、科学理念、道德伦理 18世纪,康德提出:科学是一种知识系统的见解:“每一种学问,只要其任务是按照特定原则建立一个完整的知识系统的话,皆可被称为科学。” ——《自然科学的形而上学起源》科学和哲学是人类理论思维的两种基本方式。科学用于构筑关于世界的模型;而科学哲学建构关于科学的模型。科学一词拉丁文Scientia表示知识或学问。科学是以世界的各种不同的领域、不同的方面、不同的层次或不同的问题为对象,哲学则以“整个世界”为对象;科学提供关于世界的不同领域或不同方面的“特殊规律”,哲学则提供关于整个世界的“普遍规律”。因此,哲学理论思维较之科学理论思维来说在对世界的把握上就具有最高的概括性和最高的解释性。在此意义上,哲学是科学之帅。由于人类理论思维形成的过程首先是逻辑思维的形成过程,而古希腊时代的三位伟大哲人——苏格拉底、柏拉图和亚里士多德——都曾殚精竭虑地思考和追究过思维的逻辑问题,他们对概念和思维规则的探索和认识,使人类理论思维的能力逐步走向成熟。在此意义上来说,哲学是科学之母。因此,科技工作者从事科学研究,都必然会受到一定的哲学世界观的指导和哲学思维特性的影响。当然,科技工作者并非学了哲学才会思维,但学好了哲学,通晓思维的形式和规律之后,有助于他更正确地思考、提高自己的思维能力。下面我们将首先从数学史上的伟人着手,分析科学哲学的基本理念。 一、科学探索需要灵感,灵感来源于长期的思维碰撞摩擦 “假如别人和我一样深刻和持续地思考真理,他们会作出同样的发现。” ——高斯高斯是一对贫穷夫妇的唯一的儿子。母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育。他的父亲曾做过园丁,商人和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。 14岁时,布伦兹维克公爵卡尔·威廉·斐迪南召见了高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。

贝朗特悖论的解决

理学院 School of Science 课程设计报告 学生:凡 学生学号:200701121 所在班级:07数学1 所在专业:数学与应用数学 指导教师:樊嵘 实习场所:理工大学 实习时间:第六学期 课程设计成绩 总评 学习态度报告质量

使用SAS统计模拟方法解决Bertrand’s paradox Bertand’s paradox 是法国数学家Bertrand于1889提出的一个概率悖论:在圆任作一弦,其长度超过圆接正三角形边长的概率是多少?他在提出问题之后,给出了三种不同的解法,得到了三个不同的结果,是为悖论。 第一种解法如下: 由于弦交圆于两点。我们先固定弦的一个端点。以此端点作一个等边三角形(如图)。显然,只有穿过此三角形的弦才符合要求。而符合条件的弦的另一端正好占整个圆弧的1/3。并且,不论固定的那个 1/3。 第二种解法如下: 由于弦长只和圆心到它的距离有关。所以固定圆一条半径。当且仅当圆心到它的距离小于1/2才满足条件。并且,不论固定的是哪条半径,情况都是一样的。所以结果为1/2。 第三种解法如下; 弦被其中点唯一确定(除了圆心)。当且仅当其中点在半径为1/2的圆时才满足条件。此小圆面积为大圆的1/4。所以结果为1/4。 所以被称为悖论。

在以前对这问题的分析中,倾向于认为得到三种结果的原因是因为采用了不同的等可能性假定。 解法一假定端点在圆上均匀分布。 解法二假定半径在圆均匀分布以及弦的中点在半径上均匀分布。 解法三假定弦的中点在圆均匀分布。 先不论他们的假设是否合理,从这个问题的提法来看,问题考察 的是圆的随机弦问题。我们应该从弦的本质定义出发,即圆上任意两点的连线为弦。从这个思路,我们可以使用SAS 进行统计模拟,确定问题的答案。具体思路如下: 1.先进行1000次试验,每次试验进行1000次模拟,每次模拟从 圆上随机取两点,计算距离,记录d 1000个数据,数据集为cs ,其中的变量只有一个x 。对此数据进行分析,得到其方差与均值,可以求出概率。 2.为了得到弦长的分布,我们进行1000次模拟,每次模拟从圆上随机取两点,计算距离并记录。如此得到数据集为strx ,其中的变量有三个,分别记录两点的角度参数x ,y 与两点之间距离d 。 3.从圆进行推广,得到椭圆随机弦长的分布,思路同上。 4.从得到的结果进行理论分析。 数据的得到与数据集的建立: 使用matlab 编程可以得到模拟需要的数据,在SAS 中建立各数据集的程序如下: cs 数据集: strx 数据集:

悖论及其对数学发展的影响

悖论及其对数学发展的影响 【开场白:一个传说】一个讼师招收徒弟时约定,徒弟学成后第一场官司如果打赢,则交给师傅一两银子,如果打输,就可以不交银子。后来,弟子满师后却无所事事,迟迟不参与打官司。老讼师得不到银子,非常生气,告到县衙里,和这位弟子打官司。这位弟子却不慌不忙地说:“这场官司如果我打赢了当然不给您银子,如果打输了按照约定也不交给您银子,反正我横竖不交银子。”一句话把老讼师给气死了。 类似的: 1)我正在说谎?!! 2)鸡与鸡蛋何为先? 一、悖论的定义 “悖论”(英语:Paradox,俄语:Πарадокс)的字面意思是荒谬的理论,然而其内涵远没有这么简单,它是在一定理论系统前提下的看起来没有问题的矛盾。 关于悖论,目前并没有非常权威性1 的定义,以下的解释,在一定程度上是合理的。 通常认为,一个论断,如果不论是肯定还是否定它,都会导出一个与原始判断相反的结论,而要推翻它却又很难给出正当的根据时,这种论断称为悖论;或者,如果一个命题及其否定命题均可以用逻辑上等效的推理加以证明,而其推导又无法明确提出错误时,这种自相矛盾的命题叫做悖论。这种“定义”,比单纯从字面理解有所细化,也比较容易理解,但仍不够准确。 下述说法是A.A.富兰克尔给出的:如果某种理论的公理及其推理规则看上去是合理的,但在这个理论中却推出了两个互相矛盾的命题,或者证明了这样一个复合命题,它表现为两个矛盾命题的等价式,我们称这个理论包含了一个悖论。这里强调了悖论是依赖于一定的理论体系的,但是,只是说,某个理论体系包含了悖论,而没有言明什么是悖论。 悖论不同于通常的诡辩或谬论。诡辩、谬论可以通过已有的理论、逻辑论述其错误的原因,是与现有理论相悖的;而悖论虽感其不妥,但从它所在的理论体系中,不能阐明其错误的原因,是与现有理论相容的。悖论是(在当时)解释不了的矛盾。 悖论蕴涵真理,但常被人们描绘为倒置的真理; 悖论富有魅力,既让您乐在其中,又使您焦躁不安,欲罢不能; 数学历史中出现的悖论,为数学的发展提供了契机。 二、悖论的起源 起源之一:芝诺悖论(公元前五世纪) 芝诺(Zenon Eleates,约公元前490年——约公元前429年)出生于意大利南部的埃利亚(Elea)城,是古希腊埃利亚学派的主要代表人物之一。他是古希腊著名哲学家巴门尼德(Parmennides)的学生。他否定现实世界的运动,信奉巴门尼德关于世界上真实的东西只能是“唯一不动的存在”的信条。在他那个时代,人们对时间和空间的看法有两种截然不同的观点。一种观点认为,空间和时间无限可分,运动是连续而又平顺的;另一种观点则认为,时间和空间是由一小段一小段不可分的部分组成,运动是间断且跳跃的。芝诺悖论是针对上述二观点而提出的。他关于运动的四个悖论,被认为是悖论的起源之一。其中前两个悖论是针对那种连续的时空观而提出的,后两个悖论则是针对间断时空观提出的。 (1) 一物体要从A点到达B D点;而要到达D点,又必先抵达其1/8处之E点。如此下去,永无止境,因此,运动不可能存在。

对悖论的理解

对悖论的理解 一、什么是悖论 悖论,在物理学中也常称为佯谬。在英语中它们是同一个词paradox,指那些与常识相抵触、自相矛盾的反论,有的“似非而是”,又有的“似是而非”。严格说起来,佯谬只是悖论的一种,而且是其中最主要的一种,现在在自然科学工作者中几乎成了悖论的同义语。所谓佯谬,字面上的意思就是“假的谬误”,这是一些看起来是错的,实际上却是对的,即“似非而是”的那样一些论断。另外还有两种形式的悖论,我们把它总归为第二类。其一是在本来意义上的自相矛盾的反论。悖者,违背,违反之意也。如果对所考虑的某件事情,这样分析会得出一种结论,那样分析又会得出另一种结论,陷入左右为难,自相矛盾的境地,这就构成了悖论。其二则是那些真正错误的论断,可看起来似乎是对的,即“似是而非”,就是我们通常所说的诡辩。这与香港的黄展骥先生在“构成‘说谎者’悖论的两个矛盾———逻辑自身消解不了逻辑矛盾!”一文中把悖论定义为挑战常识的“大是若非”的卓论和“大非若是”的谬论的观点是一致的。 第一类,大是若非者,落实在“是”上,似非而是。数学史上导致三次里程碑式发现的悖论———希帕索斯(或毕达哥拉斯)无理数悖论(有些数不能表示成整数之比)、贝克莱无穷小悖论(无穷小量既等于零又不等于零)、罗素集合论悖论(可构造一个集合A,A∈A当且仅当A∈A)。前两次悖论的消解分别扩展了数的系统并引发了欧几里德几何公理系统和亚里斯多德逻辑体系的建立;将微积分建立在严格的极限理论基础上,发展了严密的数学分析学科;第三次悖论的余波至今未平,它推动了数理逻辑的发展,导致了哥德尔不完全性定理(在包含初等数论的形式公理系统中,至少存在着一个不可判定命题,该命题本身和它的否定命题在这个系统中都是无法证明的)。还有量子力学中的三大佯谬———EPR佯谬、薛定谔的猫、维格纳的朋友,以及导致狭义相对论发轫的光速佯谬(相向传播的两束光,它们的相对速度仍然是光速———或者与其等价的追光佯谬),导致广义相对论诞生的双生子佯谬,导致现代宇宙学诞生的奥尔伯斯夜黑佯谬等。当然,随着理论的发展,它们也都将不再成为悖论了。 第二类大非若是者,落实在“非”上,似是而实非。伊壁尼门德的说谎者悖论(“我说的这句话是谎话”)、罗素的理发师悖论(塞维利亚的男人可分两类,第一类是自己给自己刮脸的,第二类是自己不给自己刮脸的,凡自我刮脸的理发师就不给他刮脸,而不自己给自己刮脸的则理发师给他刮脸。那么理发师是否自己给自己刮脸呢?),芝诺悖论(善跑者追不上乌龟),公孙龙悖论(白马非马,因为马是形体的名称,而白是颜色的名称,形体不是颜色,所以白马不是马),芝诺的飞矢不动悖论等都可归入这类。说谎者悖论和理发师悖论在塔尔斯基指出应区分对象语言(“被谈论”的语言)和元语言(用来“谈论”对象的语言)后,从语义学上得到了澄清。实际上,“我这句话是假的”,这个语句是一个带有自我指涉的复合语

透过第二次数学危机浅谈神秘可恨的微积分

透过第二次数学危机浅谈神秘可恨的微积分 作者:华中师范大学计算机科学系2010级郑舒月学号77 内容摘要:基于大家在学习微积分的过程中的困惑,本文试图透过第二次数学危机谈一 谈这位既神秘又可恨可怜的“消失了的量的鬼魂”,以“贝克莱悖论(Berkeley paradox)”、 “芝诺悖论(Zeno paradox)”等悖论了解牛顿和莱布尼兹关于微积分的理论及公式。由于 18世纪的微积分的理论并不严谨,这就有悖于数学这一学科的首要特点。关于“无穷小量究 竟是否为0”的问题:就无穷小量在当时实际应用而言,它必须既是0,又不是0。但从形式 逻辑而言,这无疑是一个矛盾。从而掀起了第二次数学危机。 关键词:第二次数学危机微积分 Abstract:Based on most of students have the confusion in the process of studying calculus, from the second mathematical crisis,this paper tries to talk about this mysterious,hateful and poor "disappeared quantity of ghosts", with "Berkeley paradox ", "Zeno paradox" and so on, to know about the theories and formulas of Newton and . Because of calculus theori es were not rigorous in the 18th century, this is contrary to the primary feature of the question-- " whether infinitely small quantity is zero" :as infinitely small quantity is concerned in practical application at that time, it must be zero, and is not zero at the same time. But from the view of the form logic , there is no doubt that this is a contradiction. Thus the second mathematical crisis broke out. Key words:The second mathematical crisis calculus 前言 大家知道,在公元前5世纪出现了数学基础的第一次灾难性危机,这就是无理数的诞 生。这次危机的产生和解决大大地推动了数学的发展。初次接触微积分时,大家都被弄迷糊 了,基本学完教材微积分的知识,仍是无数个疑问让大家百思不得其解,比如:无穷小量似

相关主题