搜档网
当前位置:搜档网 › (完整word版)临床生化检验知识点,推荐文档.docx

(完整word版)临床生化检验知识点,推荐文档.docx

(完整word版)临床生化检验知识点,推荐文档.docx
(完整word版)临床生化检验知识点,推荐文档.docx

临床生化检验

1、糖酵解:指从葡萄糖至乳糖的无氧分解过程,可生成 2 分子 ATP。是体内糖代谢最主要途径。最终产物:乳酸。依赖糖酵解获得能量:红细胞。

2、糖氧化——乙酰 CoA。有氧氧化是糖氧化供能的主要方式。1分子葡萄糖彻底氧化为CO2和H2O,可生成 36 或 38 个分子的 ATP。

3、糖异生:非糖物质转为葡萄糖。是体内单糖生物合成的唯一途径。肝脏是糖异生的主要器官。防止乳酸中毒。

4、血糖受神经,激素,器官调节。

5、升高血糖激素:胰高血糖素( A 细胞分泌),糖皮质激素和生长激素(糖异生), 肾上腺素(促进糖原分解)。

降低血糖激素:胰岛素( B 细胞分泌)(唯一)

6、糖尿病分型:

Ⅰ型:内生胰岛素或 C 肽缺,易出酮症酸中毒,高钾血症,多发于青年人。

Ⅱ型:多肥胖,具有较大遗传性,病因有胰岛素生物活性低,胰岛素抵抗,胰岛素分泌功能异常。

特殊型及妊娠期糖尿病。

7、糖尿病的诊断标准:有糖尿病症状加随意血糖≥11.1 mmol/L;空腹血糖( FVPG)≥ 7.0 mmol/L ;( OGTT) 2h 血糖≥ 11.1 mmol/L 。初诊需复查后确证。

8、慢性糖尿病人可有:白内障(晶体混浊变形),并发血管病变以心脑肾最重。

9、糖尿病急性代谢并发症有:酮症酸中毒( DKA,高血糖,尿糖强阳性,尿酮体阳性,高酮

血症,代谢性酸中毒,多<40 岁,年轻人),高渗性糖尿病昏迷(NHHDC,血糖极高,>33.6mmol/L ,肾功能损害,脑血组织供血不足,多>40 岁,老年人),乳酸酸中毒( LA)。

10、血糖测定:葡萄糖氧化酶- 过氧化物酶偶联法(GOD-POD法)。己糖激酶法( HK):参

考方法

(> 7.0mmol/L 称为高血糖症。< 2.8mmol/L 称为低血糖症。)

11、空腹低血糖反复出现,最常见的原因是胰岛β细胞瘤(胰岛素瘤)。胰岛 B 细胞瘤临床特点:空腹或餐后 4— 5h 发作,脑缺糖比交感神经兴奋明显,有嗜睡或昏迷,30%自身进食可缓解故多肥胖。

12、血浆渗透压=2(Na+K) +血糖浓度。

13、静脉血糖〈毛细血管血糖〈动脉血糖。

14、血糖检测应立即分离出血浆(血清)尽量早检测,不能立即检查应加含氟化钠的抗凝剂。

15、肾糖阈: 8.9 — 10.0mmol/L 。

16、糖耐量试验:禁食10— 16h,5 分钟内饮完 250 毫升含有 75g 无水葡萄糖的糖水,每 30

分钟取血一次,监测到2h,共测量血糖 5 次(包括空腹一次)。

17、糖化血红蛋白:可分为 HbAIa, HbAIb,HbAIc(能与葡萄糖结合,占绝大部分),测定

时主要测 HbAI 组份或 HbAIc (4%--6%),反映前 6~8 周血糖水平,主要用于评定血糖控制

程度和判断预后。

18、糖化血清蛋白:类似果糖胺,反映前2— 3 周血糖水平。

19、 C 肽的测定可以更好地反映 B 细胞生成和分泌胰岛素的能力。

20、乳酸测定: NADH被氧化为 NAD+,可在 340nm处连续监测吸光度下降速度。(NADH 和

NADPH在 340nm有特征性光吸

收)

21、血脂蛋白电泳图(自阴极起):乳糜微粒, B- 脂蛋白,前 B 脂蛋白, A- 脂蛋白。

22、脂蛋白超速离心法:CM,VLDL,IDL ,LDL,LP(A), HDL(密度从小到大,分子从大到小)。

脂蛋白结构的主要成分

脂蛋白脂质载脂蛋白

CM TG: 90%, TC: 10%1%,Apo B48

VLDL TG: 60%, TC: 20%10%, Apo B100、 CⅡ、Ⅰ

IDL TG: 35%, TC: 35%15%, Apo B100、 E

LDL TG: 10%, TC: 50%20%, Apo B100

HDL TG:< 5%, TC:20%50%, Apo A Ⅰ、 AⅡ

脂蛋白( a)TG: 10%, TC: 50%20%, Apo B100 、 Apo( a)

23、 CM90%含 TG, VLDL中 TG占一半以上(称为富含甘油三酯的脂蛋白(RLP)),IDL中的

载脂蛋白以 Apo B100 为主,占 60%~ 80%, LDL(胆固醇含量最高)中几乎全部为 Apo B100

(占 95%以上), HDL(ApoA1和 ApoA4)中脂质和蛋白质各占一半。 LP( A)可作为动脉粥样硬化的独立危险因素指标,直接在肝中产生。

24、肝脏是载脂蛋白合成部位。ApoAⅠ由肝和小肠合成,是组织液中浓度最高的载脂蛋白。

25、运输内源性胆固醇的脂蛋白主要是LDL;

载脂蛋白的分类和所在位置

载脂蛋白分布

Apo AⅠHDL含大量, CM、 VLDL、LDL 含少量

Apo AⅡHDL, CM、 VLDL含少量

Apo AⅣHDL

Apo( a)Lp( a)

Apo B48CM

Apo B100VLDL、IDL 、 LDL

Apo CⅠVLDL

Apo CⅡCM、 VLDL、新生 HDL

Apo E CM、 VLDL、 IDL 、HDL

26、脂蛋白受体:LDL 受体: APOB/E受体(配体: ApoB100、 ApoE); VLDL受体:肝内基本

没有,配体为ApoE

27、肝素引起 LPL 酶释放入血称为肝素后现象, ApoCII 是激活剂(促进 VLDL的代谢), ApoCIII 是抑制剂。LCAT(卵磷脂胆固醇酰基转移酶)最优底物是新生的HDL( Apo AⅠ可活化)。

28、胆固醇是胆汁酸唯一前体和所有类固醇激素包括性激素和肾上腺素的前体。

29、冠心病的独立危险因素:CM、 VLDL残粒;变性LDL;B 型 LDL;LP(a)

高脂蛋白血症的分型及特征

分增加的血清脂质血清载

血清外观电泳原因

型脂蛋白浓度脂蛋白

TC: N to

B48↑

↑奶油样表层LPL 活性降低ⅠCM A- ↑原点深染

TG:↑↑下层透明ApoCⅡ缺乏

C- ↓↑

ⅡTC:↑透明或轻度LDL 受体缺陷或活

LDL B100↑深β带性降低

a TG: N浑浊

LDL 异化障碍

ⅡLDL,VL TC:↑↑B↑

深β带

不明

CⅡ↑浑浊VLDL→LDL 转换亢

b DL TG:↑深前β带

CⅢ↑进

TC:↑↑CⅡ↑

ⅢIDL CⅢ↑浑浊宽β带ApoE异常

TG:↑↑

E↑↑

TC: N to CⅡ↑VLDL合成亢进ⅣVLDL↑CⅢ↑浑浊深前β带VLDL处理速率变TG:↑↑E↑慢

CM TC:↑CⅡ↑↑

奶油样表层原点及前

LPL 活性低下

ⅤCⅢ↑↑VLDL,CM处理速度

VLDL TG:↑↑下层浑浊β带深染

E↑↑变慢

30、前白蛋白:由肝细胞合成,肝损伤敏感指标,运载维生素A。营养不良指标。

31、白蛋白:由肝实质细胞合成,是血浆中含量最多的蛋白质。功能:内源性氨基酸营养源,酸碱缓冲能力,非特异性载体(运输),维持血浆胶体渗透压。

32、正向急性时相反应蛋白(浓度升高):α 1- 抗胰蛋白酶、α1- 酸性糖蛋白(主要)、触

珠蛋白( Hp)、铜蓝蛋白、C4、C3、纤维蛋白原、 C-反应蛋白(极灵敏)等。

33、负向急性时相反应蛋白(浓度下降):前白蛋白、白蛋白、转铁蛋白 TRF(缺铁时升高)。

34、触珠蛋白( Hp):急性血管内溶血时 Hp 浓度明显下降。

35、α 2- 巨球蛋白(α 2-MG或 AMG):分子量最大的血浆蛋白,也有抗蛋白酶活性,低白蛋

白血症患者浓度会下降。 a2- 巨球蛋白不是急性时相反应蛋白。

36、铜蓝蛋白( CER):急性时相反应蛋白。有氧化酶活性,在血中将Fe2+氧化为 Fe3+,协助诊断 Wilson 病的“肝豆状核变性”。(Wilson 病患者血清总铜浓度不变,铜蓝蛋白含量

降低,而伴有血浆可透析的铜(游离铜)含量增加。此病为常染色体隐性遗传。)

37、β 2- 微球蛋白(BMG):主要用于监测肾小管功能损伤。特别用于肾移植后排斥反应的监测(尿中升高)。

38、溴甲酚绿法( BCG法):阴离子染料,pH4.2 的缓冲液,黄色变成蓝绿色,628nm波长的吸光度。

39、血清蛋白电泳从正极到负极依次为:(PA) 、 ALB、 a1、 a2、β、γ - 球蛋白。

40、肾病时 Alb 降低,α 2 和β升高。

41、肝硬化时出现β区带和γ带难以分开而连在一起叫:β- γ桥。 (IgA 增高所致 )

42、 CK和 GGT都是男性高于女性。酒后γ -GT升高明显。

43、酶释放的速度与其分子量成反比。如 LD分子量大于 CK,而当有心肌梗死时,LD 在血液

中升高的时间就晚于CK。

44、连续监测法:又称动力学法或速率法、连续反应法。在酶反应过程中,用仪器监测某一

反应产物或底物浓度随时间的变化所发生的改变,通过计算求出酶反应初速度。

45、用免疫法测酶的优点是灵敏度和特异性高。酶反应动力学中所指速度就是反应的初速度。

46、米氏方程是反映酶促反应速度与底物浓度关系的方程式,其中Km称米氏常数(只与酶

的性质有关,而与酶浓度无关)。Km值最小的底物一般称为该酶的最适底物或天然底物。

影响酶活性的因素有:底物、样品存放时间、温度、PH值、缓冲液的浓度

47、 LDH、 ALP在冻融时可被破坏, LDH在低温反不如室温稳定的现象为“冷变性”。

48、在实验规定的条件下(温度,最适PH,最适底物物浓度时),在 1 分钟内催化 1μmol

底物发生反应所需的酶量作为 1 个酶活力国际单位。

49、CK-MB是诊断 AMI 最有价值酶学生化指标。 3~ 8h 出现升高,发病后 9~ 30h 达峰值,于

48~ 72h 恢复至正常水平。

50、LDH含量(主要存在于细胞内):LDH2(H3M)LDH1(主要存在于心脏,RBC)LD3( H2M2,肺脾) LD4( H3M) LD5(主要存在于肝脏、横纹肌)。(正常人LD2>LD1>LD3>LD4>LD5)

51、急性心肌梗死发作后早期,血清中的LD1和 LD2 活性均升高,而 LD1 升高更早,更明显,

可致 LD1/LD2 比值增高。如 LD5也升高提示心衰伴有肝脏淤血或肝功能衰竭。

52、肝实质病变(病毒性肝炎、肝硬化、原发性肝癌)LD5> LD4。骨骼肌疾病时LD5>LD4。

肺部疾患可有LD3 升高。

53、 AST 的同工酶:分别存在于细胞质(c-AST)和线粒体(m-AST)。正常人主要为c-AST;各种肝脏、心脏等病变时AST明显升高。此时主要为m-AST。

54、重症肝炎或亚急性重型肝坏死时,一度上升的 ALT 在症状恶化的同时,酶活性反而降低,

而胆红素却进行性升高,出现“ 酶胆分离”,常是肝坏死征兆。

55、慢性活动性肝炎或脂肪肝:ALT轻度增高( 100~ 200U),或属正常范围,且AST> ALT。

56、急性胰腺炎时,血和尿中的AMY显著增高。发病

后8~ 12h 血清 AMY开始增高, 12~ 24h

达高峰, 2~ 5d 下降至正常。尿AMY约于发病后 12~ 24h 开始升高,下降比血清AMY慢,因此,在急性胰腺炎后期测定尿 AMY更有价值。血清与尿中 AMY同时减低主要见于肝炎。

57、诊断肝实质细胞受损的酶: ALT、 AST、 LD( LD5)

反映肝细胞合成功能的酶: ChE、 LCAT、凝血酶原

诊断胆道梗阻的酶: ALP、 GGT( 405nm处吸光度增高)

58、抗利尿激素( ADH):→增强远端肾小管对水的重吸收,减少尿量→血容量上升,血渗

透压下降,血压升高

59、血浆晶体渗透压=2( Na+ K)+葡萄糖+尿素

60、阴离子隙( AG) =Na+-( HCO3-+Cl-)。参考值:8~16mmol/L ,平均 12mmol/L。升高多见于代谢性酸中毒( AG> 16mmol/L):肾功不全的氮质血症或尿毒症引起的磷酸盐、硫酸盐储留,乳酸堆积,酮体堆积。

61、醛固酮:作用于肾小管,保钠排钾作用。

62、水过多:高渗性(盐中毒)、等渗性(水肿)、低渗性(水中毒)。

63、血浆钠浓度小于 135mmol/L 称为低钠血症。血清钠浓度>145.0mmol/L 称为高钠血症。

血浆钠浓度是血浆渗透浓度(Posm)的主要决定因素。

64、肾排钾对维持钾平衡起主要作用。酸中毒时,尿钾增多;碱中毒时,尿钾减少。代谢性

酸中毒,细胞内钾向细胞外转移,同时肾小管上皮细胞泌 H+增加,泌 K+减少,使钾潴留于体内(高钾血症)。严重创伤时血钾浓度明显升高。

65、 97%~ 98%与 Hb结合成氧合血红蛋白( HbO2)的形式存在;当PO2升高时, O2与 Hb结合, PO2降低时, O2与 Hb 解离。

66、 pH降低时,氧解离曲线右移,释放氧增加;pH 上升时则曲线左移。这种因pH 改变而影

响 Hb 携氧能力的现象称为Bohr 效应。

67、酸碱平衡 2 个重要判断指标:

(1)、 [HCO3-] ( 主要判断代谢性 ) (分析试题时, BB、BE同 HCO3-)代酸常伴高血钾,代碱

常伴低血钾。

(2)、 PCO2(主要判断呼吸性 ) ( 35-45mmHg) (mmHg X 0.133=KPa ;KPa X 7.5=mmHg)PaCO2↑:呼酸 (AB> SB)。(> 45mmHg高碳酸血症,常见于慢支、肺气肿、肺心病等,通气

不足)

PaCO2↓:呼碱 (AB< SB)。(< 35mmHg低碳酸血症,通气过度)

以下是分析举例:(pH 正常为代偿性, pH 异常为失代偿:< 7.35酸中毒,> 7.45 碱中毒)

呼酸: [H2CO3]原发性升高。

代偿性呼吸性酸中毒 : pH 正常,[HCO3-] ↑, PCO2↑

呼碱: PaCO2↓, HCO3-↓( Cl- 增高, K+轻度降低, AG轻度增

高)

非代偿性呼吸性碱中毒 : pH 升高, [HCO3-] ↓, PCO2↓

代酸: [HCO3-] 原发性下降。( AB=SB<正常,未代偿)

代偿性代谢性酸中毒:pH 正常, [HCO3-] ↓, PCO2↓

非代偿性代谢性酸中毒:pH 下降, [HCO3-] ↓, PCO2↓

代碱: PaCO2↑, HCO3-↑( AB=SB>正常,未代偿)

呼吸性碱中毒合并代谢性碱中毒:PaCO2↓, HCO3-↑

68、甲状旁腺激素:升钙降磷

降钙素:降钙降磷

活性维生素 D(即 1α ,25- (OH) -D

3):升钙升磷

2

慢性肾功能不全:血磷上升,血钙降低

69、地方性呆小病和甲状腺肿:缺碘

克山病和大骨节病:缺硒

70、生物转化提高药物极性和水溶性,使大多数药物失去药理活性,有利于药物的排出体外。

第一相反应是药物氧化、还原和水解;第二相是结合反应。主要部位在肝脏。

71、药物浓度测定的常见技术有:光谱法、色谱法、放射免疫法、荧光免疫法、酶免疫法;

72、肌红蛋白( Mb) AMI 的早期诊断标志物(AMI 发生 1~2 小时可升高);胸痛发作后6~12h 不升高,有助于排除 AMI 的诊断;用于判断再梗死;是溶栓治疗中判断有无再灌的较敏

感而准确的指标。

73、心肌肌钙蛋白(cTn)是 ACS的确诊标志物。早期诊断 AMI 最好的标志物;cTn 兼有 CK-MB 升高较早和 LD1 诊断时间窗长的优点。 cTn 最早可在症状发作后 2h 出现;具有较宽的诊断

窗: cTnT(5~ 15d),cTnI (4~ 1Od),是维持时间最长的非酶类标志物。估计梗死面积和

心功能。

cTnT、 cTnI 是诊断 AMI 的首选标志物。

74、冠脉再灌的早期指标有CK-MB、 Mb。CTn 对于再灌的评估不够理想。

75、胆汁酸由胆固醇转化生成,存在于胆汁中。在脂肪的吸收、转运、分泌和调节胆固醇

代谢方面起重要作用。

76、胆酸 / 鹅脱氧胆酸比值可作为肝胆阻塞性疾病与肝实质细胞性疾病的鉴别指标。胆道阻

塞时, CA/CDCA> 1;肝实质细胞损伤时, CA/CDCA< 1。

77、胆红素:主要以胆红素-白蛋白复合物的形式存在和运输(不能被肾小球滤过),水溶

性的结合胆红素(可通过肾脏)。

78、黄疸的发生机制:红细胞破坏过多、肝细胞摄取胆红素能力下降、肝细胞处理胆红素能

力下降、胆道梗阻;

(1)溶血性黄疸:来源增多。血中游离胆红素浓度明显升高,尿胆原升高 , 尿中胆红素阴性。(2)阻塞性黄疸:排泄受阻。血中结合胆红素明显升高,尿胆原降低,尿胆红素阳性。

(3)肝细胞性黄疸:处理障碍。血中两种胆红素都升高,尿胆原正常或升高,尿胆红素阳

性。

79、 GGT是胆汁淤积、胆管梗阻最敏感酶。

80、集合管不包含在肾单位中。

81、血尿素氮和血肌酐日益升高是急性肾功能衰竭的可靠依据,分少尿期,多尿期,恢复期。

82、内生肌酐清除率(Ccr)80—50为肾功能不全代偿期,50— 25 为失代偿期, <25ml/min 为肾衰竭期, 10 为终末肾衰,。

83、血清β 2 微球蛋白 ( 小于 2.5mg/L) 与血清肌酐有正相关。

84、测定对氨基马尿酸(PAH)清除率和碘锐特清除率均可反映肾血流量,放射性核素肾图能比较敏感地反映肾血浆流量。

85、肾小球滤过膜分:内皮细胞,基底膜,上皮细胞三层。

86、近曲小管是重吸收的重要部位。自身调节是指肾血流量及肾小球滤过率基本保持不变。

肾神经调节主要是对肾入球小动脉作用致肾小球滤过率下降。

87、球管反馈( TGF)是对更远端的肾小管作更精细调节。其中最主要的是抗利尿激素和醛

固酮。

88、近端小管功能:酚红排泄率(PSP)

89、远端肾单位功能:浓缩 - 稀释试验、尿渗量测定、渗透溶质清除率测定、自由水清除率测

定。

90、早期肾损伤的检测项目:

肾小球标记 : 微量清蛋白 (mAlb) ,尿转铁蛋白 UTf(肾小球滤膜损伤的灵敏指标)、选择性蛋白

尿(选择性指数( SPI ):即测定 IgG 清除率与转铁蛋白清除率的比值)。

肾小管标记 : 尿低分子量蛋白质( LMWP)、尿α 1- 微球蛋白( U-α 1m)、尿β 2- 微球蛋白( U-β2m)。(反映近曲小管受损,早期标志)

肾组织蛋白 / 相关抗原(尿酶):N-乙酰 - β -D- 氨基葡萄糖苷酶( NAG)和丙氨酸氨基肽酶( AAP)91、各种原因导致的活动性肾小管损伤时,尿 NAG(在肾皮质含量最高,髓质次之)往往是最早发生变化(活性上升)的标记物。

92、尿渗量测定常采用冰点下降法,尿渗量正常值:600— 1000mosm/kg,血浆渗量正常值:275— 305mosm/kg,Uosm<200mOsm/( kg· H20),为低渗尿,提示严重受损。Uosm/Posm比值能够很好的反映肾脏的浓缩稀释功能,急性肾小管坏死时此值≤ 1.2 ;肾功能衰竭时此值

≤1;而肾小球损伤时此值> 1.2 。

93、尿微量白蛋白( mAlb):尿中排出量为30— 300mg/24h 内,是糖尿病肾病最早期的客观指标之一,是高血压性肾损伤的早期标志。

94、甲状腺素( T4)和三碘甲状腺原氨酸(T3)都是在甲状腺滤泡上皮细胞中合成

常见甲状腺功能紊乱的检查结果

项目甲亢甲减

Grave 病甲状腺腺样瘤垂体腺瘤异源性 TS 甲状腺垂体下丘脑H性性性

血清甲状腺激素升高升高升高升高降低降低降低血清 TSH降低降低升高升高升高降低降低

TRH兴奋试验阴性阴性阳性阴性强阳性阴性延迟反应

95、 FT3、 FT4 不受甲状腺激素结合球蛋白(TBG)影响,直接反映甲状腺功能状态,其敏感性和特异性明显高于总T3 和总 T4。

96、 TT4 是判定甲状腺功能最基本的筛选试验。TT4 和 TT3 测定受到 TBG和结合力变化的影响。甲减时 TT4 或 FT4 降低早于 TT3 或 FT3。

96、TSH不受 TBG浓度影响, TSH增高可见于原发性甲减、甲状腺激素抵抗综合征、异位 TSH 综合征、 TSH分泌肿瘤等。 TSH降低可见于甲亢、亚临床甲亢、PRL瘤等。

97、促甲状腺激素释放激素( TRH)兴奋试验:静脉注射 TRH后 TSH有升高反应,可排除

Graves 病;如 TSH不增高则支持甲亢的诊断。

98、肾上腺髓质(嗜铬细胞瘤最好发部位)合成和释放肾上腺素( E)、去甲肾上腺素( NE)、多巴胺( DA),结构上均为儿茶酚胺类,血液及尿中的肾上腺素几全为肾上腺髓质分泌,尿香草扁桃酸( VMA)是儿茶酚胺的代谢产物,测定时芬氟拉明可致假阴性。

99、肾上腺皮质分(由外向内):球状带(盐皮质激素--- 醛固酮)、束状带(糖皮质激素-皮质醇及少量皮质酮,是机体应激反应时的主要激素)、网状带(雄激素和少量雌激素)。

(原料:胆固醇;降解部位:肝脏)代谢产物主要有17- 羟皮质类固醇( 17-OHCS)及 17-酮类固醇( 17-KS),由尿中排除。这三类激素是由17 个碳原子组成的四环烷,称类固醇激素。

100、糖皮质激素的分泌主要通过下丘脑- 垂体 - 内分泌腺轴来调节。

101、皮质醇增多常见于垂体促肾上腺皮质激素(ACTH,呈脉冲式分泌,上午 8 时至 10 时最高,夜为上午的二分之一)分泌亢进引起的库欣病。

102、库欣综合症的病理特点:脂肪代谢障碍(面部和躯干部脂肪堆积,向心性肥胖),蛋

白质代谢障碍(处氮负平衡,蛋白消耗过多),糖异生加强,电解质紊乱。

103、原发性肾上腺皮质功能减退(Addison 病):醛固醇(人体主要的储盐激素)缺乏,

糖异生减弱,肾排水减弱,出现皮肤色素沉着。

104、 17- 羟皮质类固醇(17-OHCS)及 17- 酮类固醇( 17-KS),检查肾上腺皮质功能紊乱的

首选项目。

105、生长激素:缺乏,垂体性侏儒症;分泌过多,巨人症(儿童)肢端肥大症(成人)。

106、垂体激素均为多肽或糖蛋白。

107、催乳素瘤是功能性垂体腺瘤中最常见的,好发于女性。

108、所有性激素都是类固醇。

109、睾酮代谢物为雄酮是17-KS 的主要来源,雌二醇(生物活性最强的天然雌激素,女性早熟指标)和雌酮代谢物是雌三醇,孕酮(确证排卵)代谢物是孕烷二醇(黄体功能指标)。110、淀粉酶清除率与肌酐清除率比值在2— 5%(Cam/Ccr),降低见于巨淀粉酶血症者。111、血清脂肪酶在急性胰腺炎时4— 8h 内升 24h 达峰,持续8— 14 天,但腮腺炎和巨淀粉

酶血症时不升高。

112、发射光谱分析:荧光分析法和火焰光度法;

吸收光谱分析:可见及紫外光分光光度法、原子吸收分光光度法;

散射光谱分析:比浊法(丁泽尔现象)

113、凝胶层析:又称分子筛过滤,用于分离不同分子大小蛋白质

114、区带电泳有:滤纸电泳、琼脂糖电泳、PAGE电泳、琼脂电泳、醋酸纤维素薄膜电泳;

(完整word版)生物化学实验知识点整理,推荐文档

生物化学实验知识点整理 实验一 还原糖的测定、实验二 粮食中总糖含量的测定 1.还原糖测定的原理 3,5-二硝基水杨酸与还原糖溶液共热后被还原成棕色的氨基化合物,在550nm 处测定光的吸收增加量,得出该溶液的浓度,从而计算得到还原糖的含量 2.总糖测定原理 多糖为非还原糖,可用酸将多糖和寡糖水解成具有还原性的单糖,在利用还原糖的性质进行测定,这样就可以分别求出总糖和还原糖的含量 3.电子天平使用 4.冷凝回流的作用: 使HCl 冷凝回流至锥形瓶中,防止HCl 挥发,从而降低HCl 的浓度。 5.多糖水解方法: 加酸进行水解 6.怎样检验淀粉都已经水解: 加入1-2滴碘液,如果立即变蓝则说明没有完全水解,反之,则说明已经完全水解。 7.各支试管中溶液的浓度计算 8.NaOH 用量:HCl NaOH n n = 9.不能中途换分光光度计,因为不同的分光光度计的光源发光强度不同 10.分光光度计的原理:在通常情况下,原子处于基态,当通过基态原子的某辐射线所具有的能量(或频率)恰好符合该原子从基态跃迁到激发态所需的能量(或频率)时,该基态原子就会从入射辐射中吸收能量,产生原子吸收光谱。原子的能级是量子化的,所以原子对不同频率辐射的吸收也是有选择的。这种选择吸收的定量关系服从式/E h hc νλ?==。 实验证明,在一定浓度范围内,物质的吸光度A 与吸光样品的浓度c 及厚度L 的乘积成正比,这就是光的吸收定律,也称为郎伯-比尔定律 分光光度计就是以郎伯比尔定律为原理,来测定浓度 11.为什么要水解多糖才能用DNS 因为DNS 只能与还原糖溶液在加热的条件下反应生成棕红色的氨基化合物,不能与没有还原性的多糖反应。 12.为什么要乘以0.9 以0.9才能得到多糖的含量。 13.为什么要中和后再测? 因为DNS 要在中性或微碱性的环境下与葡萄糖反应 实验三 蛋白质的水解和纸色谱法分离氨基酸、实验四 考马斯亮蓝法测定蛋白质浓度 1.纸色谱分离氨基酸分离原理 由于各氨基酸在固定相(水)和流动相(有机溶剂)中的分配系数不同,从而移动速度不同,经过一段时间后,不同的氨基酸将存在于不同的部位,达到分离的目的。 2.天然氨基酸为L 型 3.酸式水解的优点是:是保持氨基酸的旋光性不变,原来是L 型,水解后还是L 型,由于甘氨酸所有的R 基团是氢原子,所以它不是L 型

生物化学知识点

生物化学知识点 时间:2011-8-10 18:04:44 点击:486 核心提示:生物化学一、填空题 1、大多数的蛋白质都是由(碳)、(氢)、(氧)、(氮)等主要元素组成的,组成蛋白质的基本单位是(氨基酸)。 2、蛋白质二级结构的主形式是(a-螺旋)、(B-折叠)(B-转角)(无规则卷曲)。 3、维行蛋白质的空间结稳定的化学键主要有(氢键)、(盐键)、(疏水键)、(范德华力)等... 生物化学 一、填空题 1、大多数的蛋白质都是由(碳)、(氢)、(氧)、(氮)等主要元素组成的,组成蛋白质的基本单位是(氨基酸)。 2、蛋白质二级结构的主形式是(a-螺旋)、(B-折叠)(B-转角)(无规则卷曲)。 3、维行蛋白质的空间结稳定的化学键主要有(氢键)、(盐键)、(疏水键)、(范德华力)等非共价键和(二硫键)。 4、使蛋白质沉淀常用的方法有(盐析法)、(有机溶剂沉淀法)、(某些酸类沉淀法)、(重金属盐沉淀法)。 5、核酸分(核糖核酸)和(脱氧核糖核酸)两大类。构成核酸的基本单位是(氨基酸),核酸彻底水解的最终产物是(碳酸)、(戊糖)、(含氮碱),此即组成核酸的基本成分。 6、核酸中嘌呤碱主要有(腺嘌呤A)和(鸟嘌呤B)两种,嘧啶碱主要有(胞嘧啶C)、(尿嘧啶U)和(胸腺嘧啶T)三种。 7、酶是指(由活细胞产生的能够在体内外起催化作用的生物催化剂),酶所催化的反应称为(酶促反应),酶的活性是指(酶的催化能力)。 8、酶促反应的特点有(催化效率高)、(高度专一性)(酶活性的不稳定性)。 9、酶促反应速度受许多因素影响,这些因素主要有(酶浓度)、(底物浓度)、(温度)、(PH)、(激活剂)、(抑制剂) 10、正常情况下空腹血糖浓度为(3.9-6.1mmol/L),糖的来源有(食物中糖的消化吸收)、(肝糖原的分解)、(糖异生作用),糖的正常去路有(氧化供能)、(合成糖原)、(转化成脂肪等),异常去路有(尿糖)。

生物化学知识点总整理

一、蛋白质 1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。 2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电 荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。 3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。 4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点: 在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。 5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。 6.半胱氨酸连接用二硫键(—S—S—) 7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。 8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的 α羧基,称为羧基端或C端。 9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键, 其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基 酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和 相互作用。 10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在 螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。 11.模体:在许多蛋白质分子中可发现两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。 12.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域。 13.变构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。 14.蛋白质胶体结构的稳定因素:颗粒表面电荷与水化膜。 15.什么是蛋白质的变性、复性、沉淀?变性与沉淀关系如何?导致蛋白质的变性因素?举 例说明实际工作中应用和避免蛋白质变性的例子? 蛋白质的变性:在理化因素的作用下,蛋白质的空间构象受到破坏,其理化性质发生改变,生物活性丧失,其实质是蛋白质的次级断裂,一级结构并不破坏。 蛋白质的复性:当变性程度较轻时,如果除去变性因素,蛋白质仍能恢复或部分恢复其原 来的构象及功能,这一现象称为蛋白质的复性。

临床生化检验知识点

临床生化检验 1、糖酵解:指从葡萄糖至乳糖的无氧分解过程,可生成2分子ATP。是体内糖代谢最主要途径。最终产物:乳酸。依赖糖酵解获得能量:红细胞。 2、糖氧化——乙酰CoA。有氧氧化是糖氧化供能的主要方式。1分子葡萄糖彻底氧化为CO2和H2O,可生成36或38个分子的ATP。 3、糖异生:非糖物质转为葡萄糖。是体内单糖生物合成的唯一途径。肝脏是糖异生的主要器官。防止乳酸中毒。 4、血糖受神经,激素,器官调节。 5、升高血糖激素:胰高血糖素(A细胞分泌),糖皮质激素和生长激素(糖异生),肾上腺素(促进糖原分解)。 降低血糖激素:胰岛素(B细胞分泌)(唯一) 6、糖尿病分型: Ⅰ型:内生胰岛素或C肽缺,易出酮症酸中毒,高钾血症,多发于青年人。 Ⅱ型:多肥胖,具有较大遗传性,病因有胰岛素生物活性低,胰岛素抵抗,胰岛素分泌功能异常。 特殊型及妊娠期糖尿病。 7、糖尿病的诊断标准:有糖尿病症状加随意血糖≥11.1 mmol/L;空腹血糖(FVPG)≥7.0 mmol/L;(OGTT)2h血糖≥11.1 mmol/L。初诊需复查后确证。

8、慢性糖尿病人可有:白内障(晶体混浊变形),并发血管病变以心脑肾最重。 9、糖尿病急性代谢并发症有:酮症酸中毒(DKA,高血糖,尿糖强阳性,尿酮体阳性,高酮血症,代谢性酸中毒,多<40岁,年轻人),高渗性糖尿病昏迷(NHHDC,血糖极高,>33.6mmol/L,肾功能损害,脑血组织供血不足,多>40岁,老年人),乳酸酸中毒(LA)。10、血糖测定:葡萄糖氧化酶-过氧化物酶偶联法(GOD-POD法)。己糖激酶法(HK):参考方法 (>7.0mmol/L称为高血糖症。<2.8mmol/L称为低血糖症。) 11、空腹低血糖反复出现,最常见的原因是胰岛β细胞瘤(胰岛素瘤)。胰岛B细胞瘤临床特点:空腹或餐后4—5h发作,脑缺糖比交感神经兴奋明显,有嗜睡或昏迷,30%自身进食可缓解故多肥胖。 12、血浆渗透压=2(Na+K)+血糖浓度。 13、静脉血糖〈毛细血管血糖〈动脉血糖。 14、血糖检测应立即分离出血浆(血清)尽量早检测,不能立即检查应加含氟化钠的抗凝剂。 15、肾糖阈:8.9—10.0mmol/L。 16、糖耐量试验:禁食10—16h,5分钟内饮完250毫升含有75g无水葡萄糖的糖水,每30分钟取血一次,监测到2h,共测量血糖5次(包括空腹一次)。

生物化学知识点总结

生物化学复习题 1. 组成生物体的元素有多少种?第一类元素和第二类元素各包含哪些元素? 组成生物体的元素共28种 第一类元素包括C、H、O、N四中元素,是组成生命体的最基本元素。第二类元素包括S、P、Cl、Ca、Na、Mg,加上C、H、O、N是组成生命体的基本元素。 第二章蛋白质 1. 名词解释 (1)蛋白质:蛋白质是由许多氨基酸通过肽键相连形成的高分子含氮化合物 (2)氨基酸等电点:当氨基酸溶液在某一定pH时,是某特定氨基酸分子上所带的正负电荷相等,称为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH即为该氨基酸的等电点 (3)蛋白质等电点:当蛋白质溶液处于某一pH时,蛋白质解离形成正负离子的趋势相等,即称为兼性离子,净电荷为0,此时溶液的pH称为蛋白质的等电点 (4)N端与C端:N端(也称N末端)指多肽链中含有游离α-氨基的一端,C端(也称C末端)指多肽链中含有α-羧基的一端 (5)肽与肽键:肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键,许多氨基酸以肽键形成的氨基酸链称为肽 (6)氨基酸残基:肽链中的氨基酸不具有完整的氨基酸结构,每一个氨基酸的残余部分称为氨基酸残基 (7)肽单元(肽单位):多肽链中从一个α-碳原子到相邻α-碳原子之间的结构,具有以下三个基本特征①肽单位是一个刚性的平面结构②肽平面中的羰基与氧大多处于相反位置③α-碳和-NH间的化学键与α-碳和羰基碳间的化学键是单键,可自由旋转 (8)结构域:多肽链的二级或超二级结构基础上进一步绕曲折叠而形成的相对独立的三维实体称为结构域。结构域具有以下特点①空间上彼此分隔,具有一定的生物学功能②结构域与分子整体以共价键相连,一般难以分离(区别于蛋白质亚基)③不同蛋白质分子中结构域数目不同,同一蛋白质分子中的几个结构域彼此相似或很不相同 (9)分子病:由于基因突变等原因导致蛋白质的一级结构发生变异,使蛋白质的生物学功能减退或丧失,甚至造成生理功能的变化而引起的疾病 (10)蛋白质的变构效应:蛋白质(或亚基)因与某小分子物质相互作用而发生构象变化,导致蛋白质(或亚基)功能的变化,称为蛋白质的变构效应(酶的变构效应称为别构效应)(11)蛋白质的协同效应:一个寡聚体蛋白质的一个亚基与其配体结合后,能影响此寡聚体中另一个亚基与配体结合能力的现象,称为协同效应,其中具有促进作用的称为正协同效应,具有抑制作用的称为负协同效应 (12)蛋白质变性:在某些物理和化学因素作用下,蛋白质分子的特定空间构象被破坏,从而导致其理化性质改变和生物活性的丧失,变性的本质是非共价键和二硫键的破坏,但不改变蛋白质的一级结构。造成变性的因素有加热、乙醇等有机溶剂、强碱、强酸、重金属离子和生物碱等,变形后蛋白质的溶解度降低、粘度增加,结晶能力消失、生物活性丧失、易受蛋白酶水解 (14)蛋白质复性:若蛋白质的变性程度较轻,去除变性因素后,蛋白质仍可部分恢复其原有的构象和功能,称为复性 2. 问答题 (1)组成生物体的氨基酸数量是多少?氨基酸的结构通式、氨基酸的等电点及计算公式? 组成人体和大多数生物的为20种,结构通式如右图。氨基酸的等电点 指当氨基酸溶液在某一定pH时,是某特定氨基酸分子上所带的正负电荷相 等,称为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH 即为该氨基酸的等电点,计算公式如下: 中性氨基酸) ' ' ( 2 1 2 1 pK pK pI+ = 一氨基二羧基氨基酸) ' ' ( 2 1 2 1 pK pK pI+ = 二氨基一羧基氨基酸) ' ' ( 2 1 3 2 pK pK pI+ = (2)氨基酸根据R基团的极性和在中性条件下带电荷的情况如何分类?并举例 -1-

生物化学知识点整理

生物化学知识点整理(总33 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为 机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。 第二节脂类的消化与吸收

脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶”,HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾 上腺素、肾上腺素等。 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、 雌二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3-磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化。 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体。 2)过程: ①脂酸的活化——脂酰CoA的生成(细胞质)

生物化学知识点梳理

生化知识点梳理 蛋白质水解 (1)酸水解:破坏色胺酸,但不会引起消旋,得到的是L-氨基酸。(2)碱水解:容易引起消旋,得到无旋光性的氨基酸混合物。 (3)酶水解:不产生消旋,不破坏氨基酸,但水解不彻底,得到的是蛋白质片断。(P16) 酸性氨基酸:Asp(天冬氨酸)、Glu(谷氨酸) 碱性氨基酸:Lys(赖氨酸)、Arg(精氨酸)、His(组氨酸) 极性非解离氨基酸:Gly(甘氨酸)、Ser(丝氨酸)、Thr(苏氨酸)、Cys(半胱氨酸),Tyr(酪氨酸)、Asn(天冬酰胺)、Gln(谷氨酰胺) 非极性氨基酸:Ala(丙氨酸)、Val(缬氨酸)、Leu(亮氨酸)、Ile(异亮氨酸)、Pro(脯氨酸)、Phe(苯丙氨酸)、Trp(色氨酸)、Met(甲硫氨酸) 氨基酸的等电点调整环境的pH,可以使氨基酸所带的正电荷和负电荷相等,这时氨基酸所带的净电荷为零。在电场中既不向阳极也不向阴极移动,这时的环境pH称为氨基酸的等电点(pI)。 酸性氨基酸:pI= 1/2×(pK1+pKR) 碱性氨基酸:pI=1/2×(pK2+pKR) 中性氨基酸:pI= 1/2×(pK1+pK2) 当环境的pH比氨基酸的等电点大,氨基酸处于碱性环境中,带负电荷,在电场中向正极移动;当环境的pH比氨基酸的等电点小,氨基酸处于酸性环境中,带正电荷,在电场中向负极移动。 除了甘氨酸外,所有的蛋白质氨基酸的α-碳都是手性碳,都有旋光异构体,但组成蛋白质的都是L-构型。带有苯环氨基酸(色氨酸)在紫外区280nm波长由最大吸收 蛋白质的等离子点:当蛋白质在某一pH环境中,酸性基团所带的正电荷预见性基团所带的负电荷相等。蛋白质的净电荷为零,在电场中既不向阳极也不向阴极移动。这是环境的pH称为蛋白质的等电点。 盐溶:低浓度的中性盐可以促进蛋白质的溶解。 盐析:加入高浓度的中性盐可以有效的破坏蛋白质颗粒的水化层,同时又中和了蛋白质分子电荷,从而使蛋白质沉淀下来。 分段盐析:不同蛋白质对盐浓度要求不同,因此通过不同的盐浓度可以将不同种蛋白质沉淀出来。 变性的本质:破坏非共价键(次级键)和二硫键,不改变蛋白质的一级结构。蛋白质的二级结构:多肽链在一级结构的基础上借助氢键等次级键叠成有规则的空间结构。组成了α-螺旋、β-折叠、β-转角和无规则卷曲等二级结构构象单元。α-螺旋α-螺旋一圈有3.6个氨基酸,沿着螺旋轴上升0.54nm,每一个氨基酸残基上升0.15nm,螺旋的直径为2nm。当有脯氨酸存在时,由于氨基上没有多余的氢形成氢键,所以不能形成α-螺旋。 β-折叠是一种相当伸展的肽链结构,由两条或多条多肽链侧向聚集形成的锯齿状结构。有同向平行式和反向平行式两种。以反向平行比较稳定。 β-转角广泛存在于球状蛋白中,是由于多肽链中第n个残基羰基和第n+3个氨基酸残基的氨基形成氢键,使得多肽链急剧扭转走向而致 超二级结构:指多肽链上若干个相邻的二级结构单元(α-螺旋、β-折叠、β-转角)彼此相互作用,进一步组成有规则的结构组合体(p63 )。主要有αα,

生物化学知识点整理

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。

第二节脂类的消化与吸收 脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶”,HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾

上腺素、肾上腺素等。 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、 雌二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3-磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化。 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体。 2)过程: ①脂酸的活化——脂酰CoA的生成(细胞质) 脂肪酸 脂酰 消耗了2 ②脂酰CoA进入线粒体 酶:a.肉碱酰基转移酶 I(脂肪酸氧化分解的关键酶、限速酶) b.肉碱酰基转移酶Ⅱ c.脂酰肉碱——肉碱转位酶(转运体) ③脂酸的β氧化 a.脱氢:脂酰

(完整版)生物化学知识点重点整理

一、蛋白质化学 蛋白质的特征性元素(N),主要元素:C、H、O、N、S,根据含氮量换算蛋白质含量:样品蛋白质含量=样品含氮量*6.25 (各种蛋白质的含氮量接近,平均值为16%), 组成蛋白质的氨基酸的数量(20种),酸性氨基酸/带负电荷的R基氨基酸:天冬氨酸(D)、谷氨酸(E); 碱性氨基酸/带正电荷的R基氨基酸:赖氨酸(K)、组氨酸(H)、精氨酸(R) 非极性脂肪族R基氨基酸:甘氨酸(G)、丙氨酸(A)、脯氨酸(P)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I)、甲硫氨酸(M); 极性不带电荷R基氨基酸:丝氨酸(S)、苏氨酸(T)、半胱氨酸(C)、天冬酰胺(N)、谷氨酰胺(Q); 芳香族R基氨基酸:苯丙氨酸(F)、络氨酸(Y)、色氨酸(W) 肽的基本特点 一级结构的定义:通常描述为蛋白质多肽链中氨基酸的连接顺序,简称氨基酸序列(由遗传信息决定)。维持稳定的化学键:肽键(主)、二硫键(可能存在), 二级结构的种类:α螺旋、β折叠、β转角、无规卷曲、超二级结构, 四级结构的特点:肽键数≧2,肽链之间无共价键相连,可独立形成三级结构,是否具有生物活性取决于是否达到其最高级结构 蛋白质的一级结构与功能的关系:1、蛋白质的一级结构决定其构象 2、一级结构相似则其功能也相似3、改变蛋白质的一级结构可以直接影响其功能因基因突变造成蛋白质结构或合成量异常而导致的疾病称分子病,如镰状细胞贫血(溶血性贫血),疯牛病是二级结构改变 等电点(pI)的定义:在某一pH值条件下,蛋白质的净电荷为零,则该pH值为蛋白质的等电点(pI)。 蛋白质在不同pH条件下的带电情况(取决于该蛋白质所带酸碱基团的解离状态):若溶液pHpI,则蛋白质带负电荷,在电场中向正极移动。(碱性蛋白质含碱性氨基酸多,等电点高,在生理条件下净带正电荷,如组蛋白和精蛋白;酸性蛋白质含酸性氨基酸多,等电点低,在生理条件下净带负电荷,如胃蛋白酶), 蛋白质稳定胶体溶液的条件:(颗粒表面电荷同性电荷、水化膜), 蛋白质变性:指由于稳定蛋白质构象的化学键被破坏,造成其四级结构、三级结构甚至二级结构被破坏,结果其天然构象部分或全部改变。实质:空间结构被破坏。变性导致蛋白质理化性质改变,生物活性丧失。变性只破坏稳定蛋白质构象的化学键,即只破坏其构象,不破坏其氨基酸序列。变性本质:破坏二硫键 沉降速度与分子量及分子形状有关沉降系数:沉降速度与离心加速度的比值为一常数,称沉降系数 沉淀的蛋白质不一定变性变性的蛋白质易于沉淀 二、核酸化学 核酸的特征性元素:P,组成元素:C、H、O、N、P,核苷酸的组成成分:一分子磷酸、一分子戊糖、一分子碱基(腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶T、尿嘧啶U),

生物化学知识点

生物化学名词解释及基本概念整理 第一章蛋白质化学 Ⅰ基本概念 1、等电点(pI):使氨基酸离解成阳性离子和阴性离子的趋势和程度相等,总带电荷为零(呈电中性) 时的溶液pH值. A溶液pHpI,氨基酸带负电荷,在电泳时向正极运动。 2、修饰氨基酸(稀有氨基酸):蛋白质合成后,氨基酸残基的某些基团被修饰后形成的氨基酸。没有 相应的密码子,如甲基化、乙酰化、羟基化、羧基化、磷酸化等。 3、肽键(peptide bond):合成肽链时,前一个氨基酸的α-羧基与下一个氨基酸的α-氨基通过脱 水作用形成的酰胺键,具有部分双键性质。 4、肽键平面(酰胺平面):参与肽键的六个原子位于同一平面,该平面称为肽键平面。肽键平面不能 自由转动。 5、蛋白质结构: A一级结构:是指多肽链从N端到C端的氨基残基种类、 数量和顺序。主要的化学键:肽键,二硫键。 B 二级结构:是指蛋白质分子中某一段肽链的局部空间结构, 即蛋白质主链原子的局部空间排布(不涉及侧链原子的位置)。 分α-螺旋( α -helix):较重要,为右手螺旋,每圈螺旋含3.6个 氨基酸残基(13个原子),螺距为0.54nm、β-片层(β-折叠, β-pleated sheet)、β-转角(β-turn )、无规则卷曲(random coil)、π-螺旋(π -helix )。维持二级结构的化学键:氢键。 模体:蛋白质分子中,二级结构单元有规则地聚集在一起形成 混合或均有的空间构象,又称超二级结构。 C 结构域:蛋白质三级结构中,折叠紧凑、可被分割成独立的球状或纤维状,具有特定功能的 区域,称为结构域。为构成三级结构的基本单元。 D三级结构:是指整条多肽链中所有氨基酸残基的相对空间位置(肽链上所有原子的相对空间位 置).化学健:疏水键和氢键、离子键、范德华力等来维持其空间结构的相对稳定。 E 四级结构:蛋白质分子中几条各具独立三级结构的多肽链间相互结集和相互作用,排列形成 的更高层次的空间构象。作用力:亚基间以离子键、氢键、疏水力连接。此外,范德华力、二 硫键(如抗体)。 6、分子伴侣:一类在序列上没有相关性但有共同功能,在细胞中能够帮助其他多肽链(或核酸)折 叠或解折叠、组装或分解的蛋白称为分子伴侣。如热休克蛋白。 7、一级结构是形成高级结构的分子基础,蛋白质一级结构的改变,可能引起其功能的异常或丧失(“分 子病”);同功能蛋白质序列具有种属差异与保守性。 蛋白质分子的空间结构是其发挥生物学活性的基础,蛋白质分子构象的改变影响生物学功能或 导致疾病的发生,蛋白质一级结构不变,但由于折叠错误,导致蛋白质构象改变而引起的疾病, 称为蛋白质构象病(折叠病)。 8、蛋白质变性:在某些理化因素的作用下,特定的空间结构被破坏而导致其理化性质改变及生物活 性丧失的过程。为非共价键和二硫键断裂,物理(高温、高压、紫外线),化学(强酸碱、有机溶剂、重金属盐)等因素导致。 9、20种AA名称及缩写: A 非极性疏水性AA:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、亮氨酸(Leu)、异亮氨酸(Ile)、

生物化学重点知识归纳

生物化学重点知识归纳 酶的知识点总结 一、酶的催化作用 1、酶分为:单纯蛋白质的酶和结合蛋白质的酶,清蛋白属于单纯蛋白质的酶 2、体内结合蛋白质的酶占多数,结合蛋白质酶由酶蛋白和辅助因子组成,辅助因子分为辅酶、辅基;辅酶和酶蛋白以非共价键结合,辅基与酶蛋白结合牢固,一种酶蛋白只能与一种辅助因子结合,所以酶蛋白决定酶反应特异性。结合蛋白质酶;酶蛋白:决定酶反应特异性;辅酶:结合不牢固辅助因子辅基:结合牢固,由多种金属离子;结合后不能分离 3、酶的活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的局部空间结构 4、酶的有效催化是降低反应的活化能实现的。 二、辅酶的种类口诀:1脚踢,2皇飞,辅酶1,NAD, 辅酶2,多个p; 三、酶促反应动力学:1 Km为反应速度一半时的[S](底物浓度),亦称米氏常数,Km增大,Vmax不变。

2、酶促反应的条件:PH值:一般为最适为7.4,但胃蛋白酶的最适PH为1.5,胰蛋白酶的为7.8;温度:37—40℃; 四、抑制剂对酶促反应的抑制作用 1、竞争性抑制:Km增大,Vmax不变;非抑制竞争性抑制:Km不变,Vmax减低 2、酶原激活:无活性的酶原变成有活性酶的过程。 (1)盐酸可激活的酶原:胃蛋白酶原 (2)肠激酶可激活的消化酶或酶原:胰蛋白酶原 (3)胰蛋白酶可激活的消化酶或酶原:糜蛋白酶原 (4)其余的酶原都是胰蛋白酶结合的 3、同工酶:催化功能相同,但结构、理化性质和免疫学性质各不相同的酶。 LDH分5种。LDH有一手(5种),心肌损伤老4(LDH1)有问题,其他都是HM型。 脂类代谢的知识点总结 1、必需脂肪酸:亚麻酸、亚油酸、花生四烯酸(麻油花生油) 2、脂肪的能量是最多的,脂肪是禁食、饥饿是体内能量的主要来源

生物化学期末考试知识点归纳

生物化学期末考试知识点归纳 三羧酸循环记忆方法 一:糖无氧酵解过程中的“1、2、3、4”1:1分子的葡萄糖2:此中归纳为:6个2 2个阶段;经过2个阶段生成乳酸 2个磷酸化; 2个异构化,即可逆反应; 2个底物水平磷酸化;2个ATP消耗,净得2个分子的ATP; 产生2分子NADH 3:整个过程需要3个关键酶4:生成4分子的ATP. 二:糖有氧氧化中的“1、2、3、4、5、6、7”1:1分子的葡萄糖2:2分子的丙酮酸、2个定位3:3个阶段:糖酵解途径生成丙酮酸丙酮酸生成乙酰CO-A三羧酸循环和氧化磷酸化 4:三羧酸循环中的4次脱氢反应生成3个NADH和1个FADH2 5:三羧酸循环中第5步反应:底物水平磷酸化是此循环中唯一生成高能磷酸键的反应6:期待有人总结7:整个有氧氧化需7个关键酶参与:己糖激酶、6-

磷酸果糖激酶、丙酮酸激酶、丙酮酸脱氢酶复合体、拧檬酸合酶、异拧檬酸脱氢酶、a-酮戊二酸脱氢酶复合体一.名词解释: 1.蛋白质的等电点:当蛋白质溶液处在某一pH值时,蛋白质解离成正、负离子的趋势和程度相等,即称为兼性离子或两性离子,净电荷为零,此时溶液的pH值称为该蛋白质的等电点。、 2.蛋白质的一级结构:是指多肽链中氨基酸的排列的序列,若蛋白质分子中含有二硫键,一级结构也包括生成二硫键的半胱氨酸残基位置。维持其稳定的化学键是:肽键。蛋白质二级结构:是指多肽链中相邻氨基酸残基形成的局部肽链空间结构,是其主链原子的局部空间排布。蛋白质二级结构形式:主要是周期性出现的有规则的α-螺旋、β-折叠、β-转角和无规则卷曲等。 蛋白质的三级结构是指整条多肽链中所有氨基酸残基,包括相距甚远的氨基酸残基主链和侧链所形成的全部分子结构。因此有些在一级结构上相距甚远的氨基酸残基,经肽链折叠在空间结构上可以非常接近。 蛋白质的四级结构是指各具独立三级结构多肽链再以各自特定形式接触排布后,结集所形成的蛋白质最高层次空间结构。 3..蛋白质的变性:在某些理化因素的作用下,蛋白质的空间结构受到破坏,从而导致其理化性质的改变和生物学活性的丧失,这种现象称为蛋白质的变性作用。蛋白质

生物化学糖代谢知识点汇总

生物化学糖代谢知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

各种组织细胞 门静脉 肠粘膜上皮细胞 体循环 小肠肠腔 第六章糖代谢 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G )、果糖(F ),半乳糖(Gal ),核糖 双糖:麦芽糖(G-G ),蔗糖(G-F ),乳糖(G-Gal ) 多糖:淀粉,糖原(Gn ),纤维素 结合糖: 糖脂 ,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体内葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代谢概况——分解、储存、合成 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化 消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收 吸收途径: SGLT 肝脏

过程 第二阶段:丙酮酸的氧化脱羧 第四阶段:氧化磷酸化 TAC 循环 四、糖的无氧分解 第一阶段:糖酵解 第二阶段:乳酸生成 反应部位:胞液 产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATP E1 E2 E3 调节:糖无氧酵解代谢途径的调节主要是通过各种变构剂对三个关键酶进行 变构调节。 生理意义: 五、糖的有氧氧化 E1:己糖激酶 E2: 6-磷酸果糖激酶-1 E3: 丙酮酸激酶 NAD + 乳 酸 NADH+H + 关键酶 ① 己糖激酶 ② 6-磷酸果糖激酶-1 ③ 丙酮酸激酶 调节方式 ① 别构调节 ② 共价修饰调节 ? 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。 ? 是某些细胞在氧供应正常情况下的重要供能途径。 ① 无线粒体的细胞,如:红细胞 ② 代谢活跃的细胞,如:白细胞、骨髓细胞 第一阶段:糖酵解途径 G (Gn ) 丙酮酸 乙酰CoA 胞液 线粒体

生物化学知识点整理

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。

第二节脂类的消化与吸收 脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶",HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾上

腺素、肾上腺素等. 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、雌 二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3—磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化. 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体. 2)过程: ①脂酸的活化-—脂酰CoA的生成(细胞质) 脂肪酸+ HSCo 脂酰~SCoA + AMP + Pi 消耗了2个高能磷酸键 ②脂酰CoA进入线粒体 酶:a.肉碱酰基转移酶 I(脂肪酸氧化分解的关键酶、限速酶)b。肉碱酰基转移酶Ⅱ c。脂酰肉碱-—肉碱转位酶(转运体)

生物化学考试重点笔记(完整版)

第一章蛋白质的结构与功能 第一节蛋白质的分子组成 一、组成蛋白质的元素 1、主要有C、H、O、N和S,有些蛋白质含有少量磷或金属元素铁、铜、锌、锰、钴、钼, 个别蛋白质还含有碘。 2、蛋白质元素组成的特点:各种蛋白质的含氮量很接近,平均为16%。 3、由于体内的含氮物质以蛋白质为主,因此,只要测定生物样品中的含氮量,就可以根据 以下公式推算出蛋白质的大致含量:100克样品中蛋白质的含量( g % )= 每克样品含氮 克数×6.25×100 二、氨基酸——组成蛋白质的基本单位 (一)氨基酸的分类 1.非极性氨基酸(9):甘氨酸(Gly)丙氨酸(Ala)缬氨酸(Val)亮氨酸(Leu) 异亮氨酸(Ile)苯丙氨酸(Phe)脯氨酸(Pro)色氨酸(Try)蛋氨酸(Met) 2、不带电荷极性氨基酸(6):丝氨酸(Ser)酪氨酸(Try) 半胱氨 酸 (Cys) 天冬酰胺 (Asn) 谷氨酰胺(Gln ) 苏氨酸(Thr ) 3、带负电荷氨基酸(酸性氨基酸)(2):天冬氨酸(Asp ) 谷氨酸(Glu) 4、带正电荷氨基酸(碱性氨基酸)(3):赖氨酸(Lys) 精氨酸(Arg) 组氨酸( His) (二)氨基酸的理化性质 1. 两性解离及等电点 等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性 离子,呈电中性。此时溶液的pH值称为该氨基酸的等电点。 2. 紫外吸收 (1)色氨酸、酪氨酸的最大吸收峰在280 nm 附近。 (2)大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析 溶液中蛋白质含量的快速简便的方法。 3. 茚三酮反应 氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。由于此吸 收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法 三、肽 (一)肽 1、肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键。 2、肽是由氨基酸通过肽键缩合而形成的化合物。 3、由十个以内氨基酸相连而成的肽称为寡肽,由更多的氨基酸相连形成的肽称多肽 4、肽链中的氨基酸分子因为脱水缩合而基团不全,被称为氨基酸残基 5、多肽链是指许多氨基酸之间以肽键连接而成的一种结构。 6、多肽链有两端:N 末端:多肽链中有自由氨基的一端 C 末端:多肽链中有自由羧基的一端 (二)几种生物活性肽 1. 谷胱甘肽 2. 多肽类激素及神经肽 第二节蛋白质的分子结构 一、蛋白质的一级结构 1、定义:蛋白质的一级结构指多肽链中氨基酸的连接方式、排列顺序和二硫键的位置。 2、主要的化学键:肽键,有些蛋白质还包括二硫键。 3、一级结构是蛋白质空间构象和特异生物学功能的基础。

临床生化检验知识点

1、糖酵解:指从葡萄糖至乳糖的无氧分解过程,可生成2分子ATP。是体内糖代谢最主要途径。最终产物:乳酸。依赖糖酵解获得能量:红细胞。 2、糖氧化——乙酰CoA。有氧氧化是糖氧化供能的主要方式。1分子葡萄糖彻底氧化为CO2和 H2O,可生成36或38个分子的ATP。 3、糖异生:非糖物质转为葡萄糖。是体内单糖生物合成的唯一途径。肝脏是糖异生的主要器官。防止乳酸中毒。 4、血糖受神经,激素,器官调节。 5、升高血糖激素:胰高血糖素(A细胞分泌),糖皮质激素和生长激素(糖异生),肾上腺素(促进糖原分解)。 降低血糖激素:胰岛素(B细胞分泌)(唯一) 6、糖尿病分型:Ⅰ型:内生胰岛素或C肽缺,易出酮症酸中毒,高钾血症,多发于青年人。 Ⅱ型:多肥胖,具有较大遗传性,病因有胰岛素生物活性低,胰岛素抵抗,胰岛素分泌功能异常。 特殊型及妊娠期糖尿病。 7、糖尿病的诊断标准:有糖尿病症状加随意血糖≥11.1 mmol/L;空腹血糖(FVPG)≥7.0 mmol/L;(OGTT)2h血糖≥11.1 mmol/L。初诊需复查后确证。 8、慢性糖尿病人可有:白内障(晶体混浊变形),并发血管病变以心脑肾最重。 9、糖尿病急性代谢并发症有:酮症酸中毒(DKA,高血糖,尿糖强阳性,尿酮体阳性,高酮血症,代谢性酸中毒,多<40岁,年轻人),高渗性糖尿病昏迷(NHHDC,血糖极高,> 33.6mmol/L,肾功能损害,脑血组织供血不足,多>40岁,老年人),乳酸酸中毒(LA)。 10、血糖测定:葡萄糖氧化酶-过氧化物酶偶联法(GOD-POD法)。己糖激酶法(HK):参考方法(>7.0mmol/L称为高血糖症。<2.8mmol/L称为低血糖症。) 11、空腹低血糖反复出现,最常见的原因是胰岛β细胞瘤(胰岛素瘤)。胰岛B细胞瘤临床特点:空腹或餐后4—5h发作,脑缺糖比交感神经兴奋明显,有嗜睡或昏迷,30%自身进食可缓解故多肥胖。 12、血浆渗透压=2(Na+K)+血糖浓度。 13、静脉血糖〈毛细血管血糖〈动脉血糖。 14、血糖检测应立即分离出血浆(血清),尽量早检测,不能立即检查应加含氟化钠的抗凝剂。 15、肾糖阈:8.9—10.0mmol/L。 16、糖耐量试验:禁食10—16h,5分钟内饮完250毫升含有75g无水葡萄糖的糖水,每30分钟取血一次,监测到2h,共测量血糖5次(包括空腹一次)。

(完整版)生物化学知识点总结

生物化学知识点总结 一、蛋白质 蛋白质的元素组成:C、H、O、N、S 大多数蛋白质含氮量较恒定,平均16%,即1g氮相当于6.25g蛋白质。6.25称作蛋白质系数。 样品中蛋白质含量=样品中含氮量×6.25 蛋白质紫外吸收在280nm,含3种芳香族氨基酸,可被紫外线吸收 等电点(pI):调节氨基酸溶液的pH值,使氨基酸所带净电荷为零,在电场中,不向任何一极移动,此时溶液的pH叫做氨基酸的等电点。 脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,其余的氨基酸与茚三酮反映均产生蓝紫色物质。氨基酸与茚三酮反应非常灵敏,几微克氨基酸就能显色。 肽平面:肽键由于C-N键有部分双键的性质,不能旋转,使相关的6个原子处于同一平面,称作肽平面或酰胺平面。 生物活性肽:能够调节生命活动或具有某些生理活动的寡肽和多肽的总称。 1)谷胱甘肽:存在于动植物和微生物细胞中的一种重要三肽,由谷氨酸(Glu)、半胱氨酸(Cys)和甘氨酸(Gly)组成,简称GSH。由于GSH含有一个活泼的巯基,可 作为重要的还原剂保护体内蛋白质或酶分子中的巯基免遭氧化,使蛋白质或酶处在 活性状态。 寡肽:10个以下氨基酸脱水缩合形成的肽 多肽:10个以上氨基酸脱水缩合形成的肽 蛋白质与多肽的区别: 蛋白质:空间构象相对稳定,氨基酸残基数较多 多肽:空间构象不稳定,氨基酸残基数较少 蛋白质的二级结构:多肽链在一级结构的基础上,某局部通过氢键使肽键平面进行盘曲,折叠,转角等形成的空间构象。 ??-螺旋的结构特点: 1)以肽键平面为单位,以α-碳原子为转折盘旋形成右手螺旋;肽键平面与中心轴平行。2)每3.6个氨基酸残基绕成一个螺圈,螺距为0.54nm,每个氨基酸上升0.15nm。3)每一个氨基酸残基中的NH和前面相隔三个残基的C=O之间形成氢键,氢键的方向与中心轴大致平行,是稳定螺旋的主要作用力

生物化学-考试知识点_生物氧化 (2)

生物氧化 单选题 一级要求 1 从低等的单细胞生物到高等的人类,能量的释放、贮存和利用都以下列哪一种 为中心? A D GTP ATP B E UTP CTP C C C TTP D 2 3 4 下列物质中哪种是呼吸链抑制剂? A ATP D氰化物" B E 寡酶素2,4-二硝基苯酚 二氧化碳 D NADH脱氢酶可以以下列什么物质作为受氢体: A D NAD+ FMN B E FAD CoQ 以上都不是 D 能以甲烯蓝为体外受氢体的是: A氧化酶 B D 不需氧脱氢酶C E 需氧脱氢酶Cyt C Cyt aa3 C 5 参与糖原合成的核苷酸是: A D CTP TTP B E GTP C UTP GTP UMP C 6 7 参与蛋白质合成的核苷酸是: A D CTP ADP B E UTP C GMP C 能直接以氧作为电子接受体的是: A细胞色素 b B D 细胞色素 C 细胞色素 a3 C E 细胞色素 b1 细胞色素 C1 D 8 9 氢原子经过呼吸链氧化的终产物是: A D H2O2 CO2 B E H2O O C H+ B 加单氧酶催化代谢需要下列哪种物质参与? A C E NAD+ B 细胞色素b 细胞色素 P450 细胞色素 b5 D 细胞色素 aa3 C D C 10 11 12 下列物质中哪一种称为细胞色素氧化酶? A D CytP450 Cytaa3 B Cytc Cyta C Cytb NAD+ CoQ E 生物氧化中大多数底物脱氢需要哪一种作辅酶? A D NADH+H+的受氢体是: FAD CoQ B E FMN Cytc C C A FAD B FMN

生物化学-考试知识点_糖代谢 (2)

糖代谢 一级要求单选题 1 一摩尔葡萄糖经糖的有氧氧化过程可生成的乙酰CoA数是: A D 1摩尔 4摩尔 B E 2摩尔 5摩尔 C 3摩尔 B 2 由己糖激酶催化的反应的逆反应所需的酶是 A C E 果糖二磷酸酶 磷酸果糖激酶 I 磷酸化酶 B D 葡萄糖6—磷酸酶 磷酸果糖激酶Ⅱ B 3 4 糖酵解过程的终产物是 A丙酮酸 B 葡萄糖 乳酸 C 果糖 D 乳糖 E E 糖酵解的脱氢反应步骤是 A 1,6—二磷酸果糖→3—磷酸甘油醛+磷酸二羟丙酮 B C D E 3—磷酸甘油醛冲磷酸二羟丙酮 3-磷酸甘油醛→1-3二磷酸甘油酸 1,3—二磷酸甘油酸→3-磷酸甘油酸 3—磷酸甘油酸→2-磷酸甘油酸 C 5 6-磷酸果糖→1,6—二磷酸果糖的反应,需哪些条件? A果糖二磷酸酶,ATP和Mg2 + B C D E 果糖二磷酸酶,ADP,Pi和Mg2 + 磷酸果糖激酶,ATP和Mg2 + 磷酸果糖激酶,ADP,Pi和Mg2 + ATP和Mg2+ C 6 7 糖酵解过程中催化一摩尔六碳糖裂解为两摩尔三碳糖反应的酶是: A磷酸己糖异构酶 B D 磷酸果糖激酶 C E 醛缩酶磷酸丙糖异构酶 烯醇化酶 C 糖酵解过程中NADH + H+的代谢去路: A使丙酮酸还原为乳酸 B C D E 经—磷酸甘油穿梭系统进入线粒体氧化 经苹果酸穿梭系统进人线粒体氧化 2-磷酸甘油酸还原为3-磷酸甘油醛 以上都对 A 8 9 底物水平磷酸化指: A ATP水解为ADP和 Pi B C D E 底物经分子重排后形成高能磷酸键,经磷酸基团转移使ADP磷酸化为ATP分子呼吸链上H+传递过程中释放能量使ADP磷酸化为ATP分子 使底物分于加上一个磷酸根 使底物分子水解掉一个ATP分子 B 缺氧情况下,糖酵解途径生成的NADH + H+的代谢去路: A进入呼吸链氧化供应能量

相关主题