搜档网
当前位置:搜档网 › 大跨度连续刚构桥线型控制qc

大跨度连续刚构桥线型控制qc

大跨度连续刚构桥线型控制qc
大跨度连续刚构桥线型控制qc

大跨度连续刚构桥线型控制

重庆鱼洞长江大桥

发表人:侯圣慧

中国铁建二十三局集团第六工程有限公司重庆鱼洞长江大桥二期项目经理部

2010年12月16日

目录

一、工程概况 (1)

二、小组概况 (1)

三、选题理由 (2)

四、现状调查 (2)

五、设定目标 (3)

六、原因分析 (4)

七、要因分析 (4)

八、制定对策 (5)

九、对策实施 (8)

十、效果检验 (11)

十一、巩固措施 (14)

十二、总结和今后打算 (15)

大跨度连续刚构桥线型控制

一、工程概况

重庆渔洞长江大桥正桥工程,起于大渡口区建胜水厂西侧,跨越长江后上穿巴南区滨江路,止于渔洞绢纺厂东侧,起讫里程K23+384.12~K24+925.72,全长1541.6m。桥跨布置为12×40连续箱梁(北岸引桥)+145.32+2×260+145.32(主桥连续刚构)+6×40连续箱梁(南岸引桥)。在0号桥台及6、12、16、22号桥墩和上游幅桥20号墩接南桥立交匝道处设置伸缩缝。全桥共分四联,即0号桥台至6号墩为第一联,6号墩至12号墩为第二联,12号墩至16号墩为第三联,16号墩至22号墩为第四联。全桥共设一个桥台,即0号桥台,采用重力式U型桥台,22号墩为交界墩。桥面总宽41.6m,单幅宽20.3m,箱宽12.9m,最大悬臂4.8m 根部梁高15.1m,跨中梁高4.6m,箱梁高均以外腹板外侧边缘为准,箱梁高度从合拢段中心到悬臂端根部按1.8次抛物线变化。

本桥主跨跨径达260m,合拢(刚成桥)时的线形与服务一定年限(一般为混凝土收缩、徐变终止的年限)后的线形差异明显,实现最终设计目标的难度大,对线形控制的要求高。二、小组概况

本小组成立于2010年10月1日,针对连续刚构桥线型展开活动。

三、选题理由

对于悬臂施工的预应力混凝土刚构桥,各个块件是通过预应力筋、普通钢筋及混凝土与前块件相接而成,其几何状态(平面、立面位置)是难以事后调整的,直接影响连续梁桥的外形美观。所以,施工控制主要通过事前预测和事中控制来实现,主要体现在施工控制中结构模拟(前进、倒退)计算,结构变形、应力监测、预警,施工误差分析与后续施工状态预测、调整、梁段立模标高提供、合拢方案制定等。

四、现状调查

1、影响连续刚构桥线型因素汇总表

制表人:侯圣慧 2010年10月

2、不合格点频率统计表

制表人:魏力 2010年10月

3、影响连续刚构桥线型因素排列图

制图人:侯圣慧 2010年10月

从图中我们可以看出,影响连续刚构桥线型的主要问题是节段高程及混凝土沉降过大。这是我们首先必须解决的问题。

五、设定目标

从统计表可以看出只要小组通过活动节段高程、混凝土沉降问题后,合格率可以达到业主要求的93.3%,考虑到能同时改进其他缺陷因素(轴线、错台等因素),将外观综合合格率标准定为95%以上。

制图人:许巍2010年10月

六、原因分析

制图人:孙建 2010年10月七、要因分析

1.前上横梁弹性变形

前上横梁的弹性变形直接影响到混凝土的沉降,弹性变形大,需要修改计算立模标高的条件。经过测量班在浇注混凝土的同时进行前上横梁的弹性变形观测,弹性变形最大2cm,与理论值相符。

制表人:许巍2010年11月

确认结果:非要因

2.挂篮弹性变形

挂篮在施工到一定节段后,为保证线型的准确,挂篮的弹性变形值需重新测量、设定。通过测量班与监控单位的配合,对挂篮的变形值进行了测量。

确认结果:要因

3.后锚锚固不紧

质检员在每次挂篮移动到位、钢筋绑扎完成后(即混凝土浇注前),均要对挂篮的后锚进行检查。经检查发现,挂篮后锚精轧钢受力不均匀。

确认结果:要因

4.缺乏施工经验

项目员工大多数是近几年刚毕业的大学生,对悬臂施工仅有点理论的印象,没有任何的施工经验。结合本项目的特点,特地外聘有丰富施工经验的同志作为项目T构长,专门负责T构施工,并带领一部分员工深入现场学习。

确认结果:要因

5.吊带未调整到位

项目质检人员在施工过程中由于对前吊带的检查力度不够,导致有些吊带还未竖直受力,就浇注混凝土。直接影响到混凝土的沉降问题。

确认结果:要因

6.手拉葫芦与前吊带未转换

工人在施工过程中,由于为了抢工期。部分手拉葫芦未全部松掉,导致葫芦直接受力。在浇注混凝土过程中很容易就把葫芦拉断。既有完全隐患,又存在质量问题。

确认结果:要因

7.翼板对拉葫芦

翼板对拉葫芦是用来调整桥梁边线的。在检查中发现,工人不紧对翼板利用葫芦对拉,而且还利用槽钢对翼板进行外撑,确保了边线的线型。是值得推广学习的。

确认结果:非要因

8.民工技术素质差

通过现场对技术工人的观察,工人对挂篮施工有较深的认识。而且还利用空闲时间对技术工人进行了理论与施工的技术加强培训。

确认结果:非要因

农民工技术培训

9.质量重视不够

施工中,项目领导对施工的质量总是放在第一位,对质量要求特别严格。加之,中国铁建业主的现场监督,项目所有员工都对质量问题不敢有半点马虎。

确认结果:非要因

10.后下横梁锚固不紧

在挂篮移动到位后,施工队就对后锚吊带进行了锚固。后锚总共六根吊带,全部利用扁担和千斤顶锚固。杜绝了底板错台的问题。

确认结果:非要因

11.模板加固不牢

外模板在钢筋绑扎前就利用贯通的28螺纹钢进行对拉。内模板则采用10cm的钢管进行对撑。而且每根模板的对拉杆全利用28螺纹钢配螺帽进行对拉。完全保证了在浇注混凝土中模板的稳定。

确认结果:非要因

12.混凝土配合比

由于我项目所使用的混凝土为商品混凝土,大大的减少了试验室的工作量。但在每次浇注混凝土前必须由项目试验室提供每次浇注的混凝土配合比。在浇注混凝土期间对每车混凝土的塌漏度进行严格控制,一经发现不合格,立即退掉。

确认结果:非要因

13.纵向预应力张拉

纵向预应力所用的钢绞线全部是经过权威部门鉴定过的。在张拉期间严格控制张拉力值,而且还保证了张拉力值与钢绞线伸长量的一致。

确认结果:非要因

八、制定对策

小组对末端因素逐一进行了现场确认,找出5个要因,并采取如下对策:

九、对策实施

实施一:后锚

通过质检员在混凝土浇注前,对后锚精轧钢进行检查,每根精轧钢必须受力均匀。可以采取穿心千斤顶进行加强,并且确定千斤顶对应的张拉油表的力值一致;也可以击打每根精轧钢,听声音辨别受力情况(施工经验丰富的老同志可以做到)。检查通过后方可浇注混凝土。

实施二:前吊带

在浇注混凝土前,质检员对每个前吊带进行检查,确保吊带竖直并且每根吊带都要均匀受力。

挂篮后锚精轧钢

挂篮前吊带

实施三:手拉葫芦与前吊带的转换

检查挂篮的每个需要转换的环节,确保在浇注混凝土时手拉葫芦不受力,吊带与精轧钢直接受力。

实施四:挂篮弹性变形观测。

由测量班在浇注混泥土过程中对挂篮弹性变形进行观测,并把数据交与监控方(监控是由业主指派的重庆交通大学完成)。由监控方根据观测数据来调整挂篮变形值与立模标高。

利于软件建立模型和材料性能指标之后,依据设计参数和控制参数,结合桥梁结构的结构状态、施工工况、施工荷载、二期恒载、活载等,输入前进分析系统中。从前进分析系统

中可获得结构按施工阶段每阶段的内力和挠度及最终成桥状态的内力和挠度。接着,假设成桥时为理想状态,对桥梁结构进行倒拆分析,利用前进分析所得的数据,可获得使桥梁结构最终成为理想状态的各阶段的预抛高值,得出各施工阶段的立模标高以及混凝土浇筑前、混凝土浇筑后、钢筋张拉前、钢筋张拉后的预计标高。

立模标高为:

gl i i i i i sji lm i f f f f f f H H ++++++=∑∑54321

式中:lmi H ----i 节段立模标高;

sji

H ----i 节段设计标高;

∑i

f

1----由各梁段自重在i 节段产生的挠度总和;

∑i

f

2----由张拉各节段预应力筋在i 节段产生的挠度总和;

i f 3----混凝土收缩徐变在i 节段产生的挠度; i f 4----其他临时施工荷载在i 节段产生的挠度;

i f 5----运营荷载在i 节段产生的相关挠度(即预拱度值);

gl

f ----挂篮变形值。

∑i

f

1、∑

i

f 2、

i f 3、i f 4四项在前进分析和倒退分析计算中已经加以考虑,倒退分析输

出结果中的预抛高值ypgi

H 即为这4项挠度的总和。上述可改为

gl

i ypgi sji lm i f f H H H +++=5

但是,实际的施工状态与理想的施工状态是有差别的。这就是说,如果按照计算的预抛高值施工,最终成桥状态不一定是理想的状态。这时,具有反馈控制的实时跟踪分析系统就是实现桥梁结构施工控制的关键。通过参数调整(如温度影响调整),预告出各阶段的实际状态值,结合实际观测值,得出调整方案,最终完成整个控制过程。

实施五:理论知识的学习。

利用空闲时间与晚上时间,到临近标段、兄弟单位进行现场观摩、学习。并由总工带头加强理论知识的学习,对各个环节的施工方案在讨论中学习,并应用于现场施工中。

挂篮施工技术培训

十、效果检验

经过小组活动,到11月30日连续刚构桥梁外观质量综合合格率由80.8%上升到95.6%,外观质量得到有效控制,达到了QC小组活动目的。

1.连续梁混凝土外观质量缺陷汇总表

制表人:吴安峰2010年11月

2、不合格点频率统计表

制表人:魏力 2010年11月3、QC活动后影响连续刚构桥线型因素排列图

制图人:侯圣慧2010年11月综上可以看出,经过QC小组活动,15#墩T构线型得到有效控制。

主桥15#墩线形测量

说明:主桥表中设计标高为距箱梁上游侧翼缘板角点5.8米处桥面设计标高,理论标高包括了除挂篮变形以外的预拱度。

制表人:宋成伟

2010年11月

制图人:宋成伟 2010年11月

重庆鱼洞长江大桥二期工程

拍摄于2010年11月

十一、巩固措施

此次的QC活动比较成功,圆满解决了连续刚构桥线型缺陷的问题。为了巩固本次成果,并进一步提高施工质量,在项目部挑选一批工程管理人员和技术工人进行了专门的培训,将该工艺在标段范围内推广、运用。同时,我们又进行了以下工作:

1.归纳整理了连续梁施工工艺和操作规范,各项工序严格按照操作规范实施。

悬臂施工工艺流程图

2.实行了小组人员岗位责任制,各负其责并定时组织质量大检查,做到及时发现问题,即时解决问题。

3.要求小组成员要不断完善预应力混凝土连续刚构桥的施工,积极研究、认真学习保证在施工过程中能够将新技术熟练掌握、灵活运用。

十二、总结和今后打算

本次QC小组活动在创造性地解决了生产中的实际问题的同时,也使小组成员的综合素质得到了提高。这次QC活动进展顺利,完全实现了小组的预定目标,并取得了良好的社会效益和经济效益。具体的经验和体会有以下几点:

1、小组必须要有明确的目标。它是QC攻关的方向,也是QC活动的目的。

2、对原因的分析要准确、透彻,采取针对性的措施,做到事半功倍,确保目标实现。

3、小组人员分工要明确,确保按计划完成每一项措施。

4、对于技术含量较高的项目,应该加强与高等院校的联系,做到理论与实际的有机结合。 通过本次QC 小组攻关的成功,提高了小组不怕困难,敢于创新的科研精神,同时也增强了小组的凝聚力,只有团结一致、共同攻关,才能取得丰硕的成果。下一步,我们将继续开展QC 活动,攻克技术难关,全面提高施工质量和工作效率,创建精品工程

小组在总结成果的时候,就综合素质的提高也做出了自我评价,并绘制了评分表和雷达图:

小组活动前后综合素质评分

雷达图自我评价:

质量意识

经济意识

解决问题能力

活动后

活动前

QC知识

团队精神

自我评价雷达图

今后打算:

1、继续深入开展QC 小组活动,提高小组人员素质和技术水平,采用科学方法指导施工,保证每一个施工工序都做到质量万无一失。

2、进一步完善混凝土施工中的质量检查制度,在开展QC 小组活动中,做到分工明确,各负其责。

大跨径预应力混凝土连续刚构桥

大跨径预应力混凝土连续刚构桥 的现状和发展趋势 周军生楼庄鸿 摘要:阐述了连续刚构桥是大跨径梁桥发展的必然趋势,以及要解决的防止过大温度应力及防止船撞的措施;收集和分析了国内外大跨径连续刚构桥的数据和资料,论述了上部构造轻型化和取消落地支架合拢边跨等趋势。 关键词:连续刚构;双壁墩身;上部构造轻型化 分类号:U448.23文献标识码:A 文章编号:1001-7372(2000)01-0031-07 The status quo and developing trends of large-span prestressed concrete bridges with continuous rigid frame structure ZHOU Jun-sheng LOU Zhuang-hong (Beijing Jianda Road & Bridge Consulting Company, Beijing 100101, China) Abstract:Adopting the structure of continuous rigid frame in construction of large-span beam bridge is an inevitable developing trend. The measures for decreasing temperature stress and protecting piers from vessel impacting are described. The data from some of domestic and overseas large-span beam bridges with continuous rigid frame structure are given and analyzed. The superstruture-lightening and non-drop-construction for closing-up of side span are discussed in the paper. Key words:continuous rigid fram; pier with double wall; superstructure-lightening 1 大跨径混凝土梁式桥的发展趋势 随着高速交通的迅速发展,要求行车平顺舒适,多伸缩缝的T型刚构也不能很好满足要求,因此连续梁得到了迅速的发展。悬臂施工时,梁墩临时固结,合拢后梁墩处改设支座,转换体系而成连续梁。连续梁除两端外其他无伸缩缝,有利于行车,但需梁墩临时固结和转换体系;同时需设大吨位盆式支座,费用高,养护工作量大。于是连续刚构应运而生,近年来得到较快的发展。其结构特点是梁体连续、梁墩固结,既保持了连续梁无伸缩缝、行车平顺的优点,又保持了T型刚构不设支座、不需转换体系的优点,方便施工,且有很大的顺桥向抗弯刚度和横向抗扭刚度,能满足特大跨径桥梁的受力要求。国内外一些大跨径的连续刚

高墩大跨超长联连续刚构桥设计

第33卷,第4期2008年8月 公路工程 H ighway Engi n eering V o.l 33,N o .4Aug.,2008 [收稿日期]2008)05)10 [作者简介]曾照亮(1971)),男,湖北钟祥人,硕士,高级工程师,主要从事公路与桥梁研究设计工作。 高墩大跨超长联连续刚构桥设计 曾照亮,王 勇,张安国 (中交第二公路勘察设计研究院有限公司,湖北武汉 430056) [摘 要]以贵州镇(宁)胜(境关)高速公路虎跳河特大桥主桥设计为背景,重点介绍高墩大跨超长联连续刚构的设计特点,如设计时考虑主墩截面特殊设计、合拢时顶推方法解决主梁位移较大及其产生的边主墩较大内力等问题。 [关键词]镇胜高速;虎跳河;高墩;大跨;超长联;连续刚构[中图分类号]U 442.5 [文献标识码]B [文章编号]1002)1205(2008)04)0103)02 Design of Conti nuous R igid Fra m e Bri dge wit h H igh pier , Long Span and Overlong Unit ZENG Zhaoliang ,WANG Yong ,ZHANG Anguo (Cccc Second H i g hw ay Consu ltan ts C o .Ltd ,W uhan ,H ube i 430056,China) [K ey words]zhensheng h i g hw ay ;huti a o river ;high pier ;l o ng span;overl o ng continuous un i;t continuous rig i d fra m e bridge 目前连续刚构以其跨越能力大、经济性较好等优势广泛运用于公路、城市桥梁,特别是高速公路进入山区后更是成为了跨越沟谷最常见的大跨度桥梁,以下结合虎跳河特大桥主桥的设计讨论联长较长的刚构桥设计。 1 概述 虎跳河特大桥为适应河流及地形特点,主桥桥 跨布置为120m +4@225m +120m 六跨一联的预应力混凝土连续刚构桥(见图1),长1140m ,为目前国内最长联的连续刚构桥。主墩均为薄壁墩,高度较高的6、7号桥墩(高度分别为106、150m )下部分采用整体(双幅)箱形断面。镇宁、胜境关两岸各设一交界墩,镇宁岸引桥为5@50m 先简支后连续的预应力T 梁,胜境关岸为5@50+6@50m 先简支后连续的预应力T 梁。全桥总长1957.74m 。 图1 虎跳河特大桥主桥布置图(单位:c m ) 连续刚构除两端外无其他伸缩缝,有利于行车。但是对于较长的连续刚构,由于主梁混凝土收缩徐 变及体系温差产生的主梁位移较大,从而引起边主墩位移过大,因此要设计较长的连续刚构必须解决主梁位移较大及其产生的边主墩较大内力问题。 2 设计特点 2.1 适当减小边、中跨比 主桥半幅桥宽采用单箱单室,C 50混凝土,三向预应力,箱底宽 6.7m,翼板悬臂2.65m ,全宽

连续梁线型监控实施细则。

新建铁路兰州至乌鲁木齐第二双线DK18+235~DK104+066 连续梁线型监控监理实施细则 编制: 审核: 审批: 日期:年月 北京铁科院兰新铁路甘青段监理站

目录 第一章编制依据 (2) 第一节综合依据 (3) 第二节主要技术规范及设计文件 (3) 第二章工程概况 (3) 第三章线型监控 (4) 第一节线型监控必要性 (4) 1、施工线形控制 (5) 2、施工控制的内容 (6) 第二节线型监控内容 (8) 1、施工过程中监理控制 (8) 2、施工控制的具体内容 (11) 第三节线型监控监理控制要点 (14) 1、监理控制流程 (15) 2、测量内容 (17) 3、有关数据的修正 (17) 4、立模标高的计算 (18) 5、对施工监控的工作及对施工工艺的要求 (18) 第一章编制依据

第一节综合依据 1.已编写批准的监理大纲、监理规划; 2.与本专业工程相关的验收标准、设计文件和技术资料; 3.建设单位的其他有关标准化管理体系文件与专业管理规定; 4.《铁路建设工程监理规范》(TB10420-2007)。 第二节主要技术规范及设计文件 1.《客运专线铁路桥涵工程施工技术指南》(TZ213-2005); 2.《铁路桥涵工程施工安全技术规程》(TB10303-2009); 3.《高速铁路工程测量规范》(TB10601-2009); 4. 新建兰新铁路第二双线LXJL-1段桥梁施工图 5、已批准的施工组织设计 第二章工程概况 监理LXJL-1标段线路总长度102.406km,其中DK1+700~DK18+325只包括站后工程,DK18+325~DK104+066包括新线建设和站后工程。 正线共设桥梁特大桥15座,大桥7座,中桥4座,桥梁总计26座。其中连续梁结构的桥见下表:

大跨度连续刚构桥线型控制qc

大跨度连续刚构桥线型控制 重庆鱼洞长江大桥 发表人:侯圣慧 中国铁建二十三局集团第六工程有限公司重庆鱼洞长江大桥二期项目经理部 2010年12月16日

目录 一、工程概况 (1) 二、小组概况 (1) 三、选题理由 (2) 四、现状调查 (2) 五、设定目标 (3) 六、原因分析 (4) 七、要因分析 (4) 八、制定对策 (5) 九、对策实施 (8) 十、效果检验 (11) 十一、巩固措施 (14) 十二、总结和今后打算 (15)

大跨度连续刚构桥线型控制 一、工程概况 重庆渔洞长江大桥正桥工程,起于大渡口区建胜水厂西侧,跨越长江后上穿巴南区滨江路,止于渔洞绢纺厂东侧,起讫里程K23+384.12~K24+925.72,全长1541.6m。桥跨布置为12×40连续箱梁(北岸引桥)+145.32+2×260+145.32(主桥连续刚构)+6×40连续箱梁(南岸引桥)。在0号桥台及6、12、16、22号桥墩和上游幅桥20号墩接南桥立交匝道处设置伸缩缝。全桥共分四联,即0号桥台至6号墩为第一联,6号墩至12号墩为第二联,12号墩至16号墩为第三联,16号墩至22号墩为第四联。全桥共设一个桥台,即0号桥台,采用重力式U型桥台,22号墩为交界墩。桥面总宽41.6m,单幅宽20.3m,箱宽12.9m,最大悬臂4.8m 根部梁高15.1m,跨中梁高4.6m,箱梁高均以外腹板外侧边缘为准,箱梁高度从合拢段中心到悬臂端根部按1.8次抛物线变化。 本桥主跨跨径达260m,合拢(刚成桥)时的线形与服务一定年限(一般为混凝土收缩、徐变终止的年限)后的线形差异明显,实现最终设计目标的难度大,对线形控制的要求高。二、小组概况 本小组成立于2010年10月1日,针对连续刚构桥线型展开活动。

桥梁监控方案参考

桥梁监控方案参考 Document number:BGCG-0857-BTDO-0089-2022

目录

XXXX连续箱梁桥施工监控方案 一、工程概况 ……。主箱梁预应力采用纵、横、竖三向预应力体系。主梁采用C50混凝士,按照悬臂现浇法施工。下部采用板式墩身,钻孔灌注桩基础。 本桥采用节段悬臂灌注法施工。先由0#段对称向两侧悬臂施工,形成单“T”,先合拢边跨,再合拢中跨,完成梁部施工。主梁最大悬臂施工长度64m,分成18个悬臂段,边跨直线段长22.85m,再边墩旁搭设支架现浇施工。 桥梁设计设计时速100km/h;设计荷载取按公路——I 级的倍,温度作用、汽车制动力及冲击力按《公路桥涵设计通用规范》(JTG D60-2004)规定计算。 二、施工控制的目的、意义 对于分节段悬臂浇筑施工的预应力混凝土连续梁桥来说,从开工到成桥要经过一个复杂的施工过程,结构要经过多次体系转换,结构内力和变形亦随之不断发生变化,并决定成桥后结构的受力及线形。由于各种因素的直接和间接影响,使得实际桥梁在施工过程中的每一状态几乎不可能与设计状态完全一致,施工控制就是在施工过程中根据施工监测所得的结构参数真实值进行施工阶段计算,确定出每个悬臂浇筑节段的立模标高,并在施工过程中根据施工监测的成果对

误差进行分析、预测和对下一立模标高进行调整,以此来保证施工沿着预定轨道(能达到成桥设计目标的施工路径)进行,从而保证主梁合拢段两悬臂端标高的相对偏差不大于规定值(±15mm),成桥后主梁各控制点的标高与设计值最大相差控制在30mm以内,成桥后主梁各控制截面的内力与设计值最大相差控制在10%以内。 总之,桥梁施工控制的目的就是保证施工过程中主桥结构的安全、桥梁顺利合拢、桥梁成桥受力状态及合拢后桥面线形良好。三、施工监控方法和依据 本桥采用悬臂施工,属于典型的自架设施工方法。由于连续梁桥在施工过程中的已成结构(悬臂梁段)几何状态(平面、立面)是无法事后调整的,所以,施工控制主要采用事前预测和事中控制法,主要体现在施工控制结构仿真分析、施工监测(包括结构变形与应力监测)、施工误差分析与后续施工状态预测、梁段施工立模标高提供等几个方面。 (一)施工控制方法 大跨度连续梁桥,悬臂施工中每个节段的受力状态达不到设计所确定的理想目标的重要原因是计算模型中计算参数的取值问题,主要包括混凝土弹性模量、材料的容重、徐变系数和预应力张拉力与施工中实际情况有一定的差距以及环境温度、临时荷载的影响。要得到比较准确的控制调整量,必须根据施工中实测到的结构反应来修正计算

浅析高墩大跨连续刚构桥施工技术

浅析高墩大跨连续刚构桥施工技术 发表时间:2018-08-23T13:41:08.753Z 来源:《建筑学研究前沿》2018年第10期作者:黄镇平 [导读] 预应力混凝土连续连续刚构桥是近几十年来新兴起的一种桥梁型式。 广东省南粤交通投资建设有限公司广东广州 510000 摘要:预应力混凝土连续刚构桥具有经济美观、跨越能力强、施工简便快捷的优势,在大跨度桥梁中具有广泛的应用。本文以广东省龙怀高速大埠河大桥预应力混凝土高墩大跨连续刚构桥为工程实例,浅析了高墩大跨连续刚构桥主墩和主梁的施工技术。 关键词:桥梁工程;高墩大跨;连续刚构桥;施工技术 引言 预应力混凝土连续连续刚构桥是近几十年来新兴起的一种桥梁型式,其具有经济美观、跨越能力强、施工简便快捷等优点[1],使之成为预应力混凝土大跨度梁式桥的主要桥型之一。 我国于上世纪80年代引进预应力混凝土连续刚构桥型,在高墩修建过程中,随着翻模施工、滑模施工等施工技术的发展,使得高墩尤其是超高墩的修建成为可能。随着我国“西部大开发”、“一带一路”以及“亚洲基础设施投资银行”等国家重大战略的相继实施,新一轮的交通基础设施建设热潮已经开始,高墩大跨连续刚构桥也迎来新的建设高峰。 1 工程概况 大埠河大桥位于汕头至昆明高速公路龙川至怀集段上,地处广东省连平县元善镇境内。大桥主桥为跨径82+150+82m的连续刚构桥,桥梁总体布置图如图1所示,主桥采用预应力混凝土箱梁形式,上下行分幅布置,箱梁顶板宽12.5m、底板宽6.2m。 图1大埠河大桥桥型布置图(单位:cm) 该桥设置三向预应力钢束,纵向预应力钢束:顶板束为15-25的高强预应力钢绞线、腹板束为腹板束为15-22、中跨合拢束为15-22高强预应力钢绞线、边跨束为15-17高强预应力钢绞线;横向预应力钢束:箱梁桥面板横向预应力采用15-2高强预应力钢绞线,纵向布置间距1.0m,单端交错整体张拉,管道成孔采用扁形塑料波纹管,固定端采用P 型锚具。竖向预应力钢束:采用15-3高强预应力钢绞线。横断面每道腹板内布2根,锚垫板下设置螺旋筋,管道成孔采用内径50mm的塑料波纹管。 主墩采用箱型墩,平面尺寸为5.0×6.2m(横桥向×顺桥向),壁厚1m,墩底8m、墩顶3m范围内为实心墩,1/2 墩高位置,设置1m高隔板。墩高67.35m至71.98m不等。 2 主梁施工技术 连续刚构桥主梁的施工主要有以下几种方法:悬臂施工法、支架现浇法、顶推法、缆索吊装法、旋转施工法、大型浮吊法及移动模架法等[2]。高墩大跨连续刚构桥由于其主墩较高,地形条件复杂,施工环境较差,采用对场地要求比较小的悬臂施工法进行施工。 悬臂浇筑法又称为无支架平衡伸臂法或挂篮法,它是以已经完成的墩顶节段(0#块)为起点,通过挂篮的前移对称的向两侧跨中逐段浇筑混凝土,并施加预应力的悬出循环作业法,我国已经建成的多数大跨混凝土桥梁大多采用此种方法。主要程序为移动挂篮位置、绑扎钢筋及预应力管道、浇筑混凝土、张拉预应力、移动挂篮,循环依次进行,直到达到最大悬臂块段,悬臂浇筑流程图如下图2所示。 图2悬臂浇筑施工工艺流程 3 主墩施工技术 3.1 主要施工技术概述 高墩大跨连续刚构桥主墩通常采用双薄壁墩、单薄壁空心墩及上部为双薄壁、下部为单薄壁空心墩的组合式桥墩形式[3-4],一般采用滑模、爬模、翻模三种方式进行施工[5]。 3.1.1 翻模施工 翻模施工墩身模板采用组合型大型钢模板,每个墩柱使用3套钢模板,每套模板高度为2.5m,一次翻模浇筑高度为4.5m。当浇注完混凝土达到拆模强度时后,拆除底下两层模板,上层一节模板不动,作为下一节墩柱模板的持力点,拆除的模板用钢丝绳或手拉葫芦直接吊在上层模板上,清除掉板面上的混凝土、涂刷脱模剂。当钢筋绑扎完毕后,用塔吊将模板安放到位,进入下道工序,以上是翻模施工的一

连续梁线形监控方案

1 工程概况 1、鲁南高铁花果峪特大桥DK212+220.5处跨S241省道,道路与线路为斜交,角度约30。,采用一联三孔(60+112+60)m的预应力混凝土双线连续箱梁跨越,梁全长233.5m。S241省道路面宽度为15米,公路交叉里程K13+747。桥型布置如图1-1所示。 图1-1 (60+112+60)m连续梁桥型布置图 (1)下部结构 本连续梁10#、13#边墩基础采用8-φ1.5m钻孔灌注桩,桩长分别为20.5m、15.0m,11#主墩基础采用12-φ1.8m钻孔灌注桩,桩长为15.0m,12#主墩基础采用12-φ1.8m 钻孔灌注桩,桩长为13.0m;10#、13#边墩承台尺寸:12.4×6.5×3m,边墩高度:10#墩10米;13#墩13.5米;11#主墩尺寸:14.0×10.3×4.0m,12#主墩尺寸:14.0×11.3×4.0m,桥墩采用圆端形实体直坡墩,10#、13#边墩高10.0m、13.5m,11#、12#主墩高9.0m、12.0m。 (2)梁部结构 箱梁为单箱单室、变高度、变截面箱梁,梁底、腹板、顶板局部向内侧加厚,均按直线线性变化。全联在端支点,中支点处设横隔板,横隔板设有孔洞,供检查人员通过。中支点处梁高9.017m,边支点处梁高5.017m。边支点中心线至梁端0.75m,梁缝分界线至梁端0.1m,边支座横桥向中心距离6.0m,中支座横桥向中心距离6.0m。桥面防护墙内侧净宽7.6m,桥梁宽12.6m,桥梁建筑总宽12.9m,底板宽7.0m。顶板厚度43.5-73.5cm,腹板厚度50cm~95cm,底板厚度50cm~90cm,腹、底板厚度均按折线变化。在梁体边支点、中支点共设4个横隔板,隔板中部设有孔洞,供检查人员通过。在0#段中跨梁侧底板处设φ1.0m进人洞,作为梁部桥墩检查通道。 梁体分11#、12#墩2个对称T构,单个T构分13个悬臂浇筑段,1(1')#段到4(4')#节段长度3.0m,5(5')#段到9(9')#节段长度3.5m,10(10')#节段到13(13')#节段长度4.0m,14#边跨合龙段、14'#中跨合龙段节段长度均为2.0m;0#段节段长度19.0m,重量1833.51t,15#边跨现浇段节段长3.75m,重量274t。连续梁悬臂段采用挂篮悬臂浇筑施工,0#段现浇段采用托架现浇法施工,15#边跨现浇段采用支架现浇法施工。 (3)预应力体系

高墩大跨径连续刚构桥

特高墩大跨径连续刚构桥 施工监控软件操作手册 特高墩大跨径连续刚构桥研究课题组 2004年5月

施工监控使用说明 一、监控内容和方法 施工监控包括挠度监控和应力监控两部分。 1、挠度监控利用现场测量数据识别系统状态,提前预报 悬浇过程中的变形,通过调整立模高度,克 服或减少施工中不确定因素影响,使成桥达 到设计形态。 2、应力监控通过大梁根部埋设的应力传感器监测根部应 力,判断根部索力,避免卡索、断索或张拉力 不均,保证每根(对)索预应力都达到设计状 态。 二、程序安装 开始——设置——控制面板——安装/删除程序——安装 具体按照提示逐步完成。 三、数据结构 程序中使用的数据集中存放在Bridge 子目录中。名称编 排如下:

每个梁系(桥墩)有五个文件。记录结构、计划、仪表、测量和预报数据。前四个要预先输入,预报数据自动建立。分述如下。 1、结构(受力)数据(Construct.txt )文件由五个表组成。各 表项的含义见以下图表: a、桥墩数据表 b、桥梁数据表

c、一类顶板索 d、二类顶板索 说明:无某类索时,其Frop=0。Soktpst.txt 表中( x,y) 也取零。 e、腹板索

附图: 2、索孔与传感器位置(soktpst.txt)

3、施工计划表(workproj.txt) 间。即ts

高墩大跨连续刚构桥线形控制实用方法

王艳:高墩大跨连续刚构桥线形控制实用方法 高墩大跨连续刚构桥线形控制实用方法 王艳 (甘肃省交通规划勘察设计院有限责任公司,兰州730030) 【摘要】桥梁施工控制是确保桥梁施工宏观质量的关键。衡量一座桥梁的施工宏观质量标准就是其成桥状态的线形以及受力情况符合设计要求。本文提出了基于桥梁博士作为结构分析软件的实用标高计算公式,总结出影响结构变形的主要因素并作适当误差分析,对高墩大跨连续刚构桥的施工监控具有一定的指导作用。 【关键词】高墩大跨连续刚构桥;控制;标高;误差调整 【中图分类号】TU375【文献标识码】B【文章编号】1001-6864(2012)11-0079-03 随着交通事业发展的需要,大量的公路需要建 设,这其中必然产生大量的大跨度桥梁。大跨度桥梁 作为一个系统工程,不仅设计的难度大,受各种因素 的影响,施工期间的风险也是不可预见的,很难实现 结构的实际状态与结构理想状态一致,甚至会出现难 以接受的事故,给社会造成经济和人员损失。为了确 保桥梁施工期间结构的状态与理想状态的误差在可 控范围内,避免不可预见的悲剧发生,需对桥梁施工 阶段的变形、应力进行监控并适时调整可能出现的误 差,以实现桥梁的顺利竣工。 1线形控制 大跨径连续刚构桥悬臂浇筑施工中挠度控制至 关重要,而施工挠度受梁体自重、预应力、混凝土徐 变、施工荷载、温度等诸多因素影响,精确计算施工挠 度是非常困难的。目前梁桥结构分析计算通常采用 平面杆系程序(如桥梁博士),该类分析软件用于连续 梁、连续刚构桥整体计算无疑是一种简单而有效的方 法。以桥梁博士作为结构分析软件对连续刚构桥的 施工过程进行模拟,各梁段立模高程主要按下式确定: H 1=H +f 1 +f 2 +f 3 +f 4 +f 5 -f 6 +T(q)(1) 式中,H 1为待浇箱梁段前端顶面立模标高;H 为 待浇箱梁段前端顶面设计标高;f 1 为考虑经历10年收 缩徐变,由永久作用,可变作用产生的累计效应值;f 2 为桥墩变形的修正值;f 3 为挂篮弹性变形对该施工段 的影响值;f 4为节段自重产生的挠度影响值;f 5 为附加 预拱度(由经验确定);f 6 为节段预应力影响值;T(q)为前一节段标高误差调整值;T为误差调整函数。 箱梁阶段施工需进行立模、混凝土浇筑前后、钢筋张拉前后的标高测量,测量应选择在一天之中温度比较稳定的时刻进行,以日出前为宜。各阶段的标高计算应根据立模标高进行推算,张拉后的目标标高可以用下式进行计算: H=H 1-f 2 -f 3 -f 4 +f 6 -T(q)(2) 式中,H为节段张拉后前端顶面标高目标值(没考 虑节段混凝土收缩徐变短期效应及温度变化影响)。 在施工过程中,采用高程跟踪测量管理,应用高 程逼近法来控制各段的标高,并结合设计部门提供的 理论数据及以往修建大桥积累的经验,比较恰当地控 制最后合拢时两侧梁体相对高差及成桥后的标高。为 了最大限度的减小合龙高差和使成桥后的标高与理 想线形逼近,就必须对引起标高误差的因素进行分析。 2误差分析 误差被认为是实测变形与理论变形的差值,受理 论计算、施工技术、温度及混凝土物理力学性能参数 等因素的影响,确定误差大小及其产生原因是施工监 控的难点,下面将影响结构变形的一些主要误差、误 差的严重程度以及解决方法分析如下。 (1)理论计算误差。仿真分析是施工监控的必 备手段,通过施工阶段的正装、倒装分析能够获得各 种工况下的理想状态。施工挠度的计算与荷载P、结构 刚度EI直接相关,如何考虑混凝土的物理力学性能参 数、长索预应力效应、及温度场的模拟问题等均会使 计算产生误差,同时还应考虑环境等外部因素的影响。 通过合理选取仿真模型物理、几何、环境参数可 使理论计算误差减小到能接受的范围,并适时根据施 工条件变化进行参数修正,并把参数的影响结果作为 修正值对结构下一阶段的状态进行调整。 (2)施工误差。受施工技术、管理水平的限制, 施工过程中结构变形会产生偏离理论变形的误差,导 致误差的原因包括结构尺寸偏差、临时荷载影响、挂 篮及模板定位及变形误差、预应力钢束张拉等方面。 结构尺寸偏差直接影响结构的刚度和自重,进而 影响结构的变形;临时荷载包括施工垃圾、临时设备、 材料等,因在结构上作用的时间较短,会对结构某一 个或几个阶段的结构变形产生影响,可将其影响的结 果算出,作为修正值在现场对结构的状态进行调整。 对于宽桥时,挂蓝的横向变形可能引起较大的误 97

连续梁施工控制要点

珠三角城际轨道交通网 广州至清远轨道交通GQZH-2标 连续梁施工控制要点中铁十一局集团广清城际GQZH-2标项目经理部 二○一四年八月

连续梁施工控制要点 引言:几个关键词定义 简支梁:两端为铰支承的梁。 连续梁:沿梁长方向有三处或三处以上由支座支承的梁。 连续刚构:梁与中间墩刚性连接的连续梁结构 悬臂浇筑法:在桥墩两侧设置工作平台,平衡地逐段向跨中悬臂浇筑混凝土梁体,并逐段施加预应力的施工方法。 一、连续梁支架系统 图1-1、支架钢管立柱图1-2、支架系统(1)主要施工工艺介绍 1、0#块及现浇段支架采用Φ630mm和800mm钢管立柱,钢管上横梁采用双拼56工字钢,纵向分配梁采用40工字钢,浇筑段坡度通过扇形排架来调整,扇形排架采用20工字钢,间距85cm。钢管之间剪刀撑采用20槽钢。 2、支架预压:预压荷载不小于最大施工荷载的1.2倍,预压加载分三级加载,分别为60%、100%、120%,第三级加载后最后两次沉落量观测平均值之差不大于2mm时,即可终止预压开始分级卸载。 图1-3、支架预压 (2)施工控制要点

1、钢管之间焊接要满焊,剪刀撑与钢管之间焊接采用钢板帮焊。控制好立柱倾斜度。 2、支架体系要严格按照方案执行。 3、扇形排架高度一定计算准确,直接决定了模板标高。 二、连续梁模板 图2-1、0#块模板安装 (1)主要施工工艺介绍 模板分底模、外模、内模。 连续梁模板采用大型钢模,先在平整场地将模板试拼,对模板尺寸及拼缝进行检查,发现问题及时与厂家联系。 图2-2、连续梁模板 (2)对于0#块及现浇段模板:先安装底模,待其标高和轴线调整到位,再安装外模。外模安装时先安装中间段再安装两端。待其调整到位进行底板及腹板钢筋安装,再安装内模,内模采用竹胶板。 普通节段模板:模板跟着挂篮一起行走,每节段只需对模板轴线、标高进行调整。 (2)施工控制要点 1、模板之间拼缝处理好,防止产生较大错台。模板标高、轴线要调整到位,

连续梁线形监控方案

新建铁路郑州至开封城际铁路工程(60+100 +60) m 连续梁 施工监控方案

郑州铁路局科学技术研究所二o—年七月

.word 格式, 4.2.1技术体系 4.2.2组织体系 4.2.3协调体系 5.4.1主梁线形监测 5.4.3线形控制的实施 1概述 1.1项目概况 1.2技术标准 1.3监控方案制定依据 2施工监控的目标 3施工监控的目的和任务 4拟采用的施工监控方法和体系 4.1 施工监控方法 4.2 施工监控体系 . 1 .1 .3 5.6 施工控制报告 1.5 6施工监控技术方案的保障措施 附表一:主梁施工控制数据指令表 15 16 附表二:梁段观测表 .18. 附表三:梁段模板变形观测表 2.Q. 附表四:桥梁实际参数测试表 22. 附表五:主梁轴线偏移及基础沉降观测表 23. .5. 4.3 对施工监控技术体系的进一步说明 4.3.1施工控制计算 4.3.2误差分析 .6. 4.3.3施工误差容许度指标 7. 5施工控制的主要工作 7. 5.1 实际参数的测试 5.2 实时控制 1.Q 5.3 监控计算 1Q 5.4 几何控制 12 .12. 14

1概述 1.1项目概况 新建铁路郑州至开封城际铁路工程(60+100+60) m预应力混凝土连续梁为单线、有砟曲线桥。主梁为单箱单室截面,中支点梁高7 m,跨中梁高4 m ,梁顶宽8.5 m,梁底宽5.5 m。顶板厚度除梁端附近外均为41.5 cm ;底板厚度38 cm至85. 2 cm,在梁高变化段范围内按抛物线变化,边跨端块处底板由38 cm渐变至108 cm ;腹板厚40 cm至75 cm,按折线变化,边跨端块处腹板厚由40 cm渐变至60 cm。全桥在端支点、中支点及跨中处共设5个横隔板,横隔板设有孔洞,供检查人员通过。全桥共分55个梁段,0号梁段长度13 m,普通梁段长度为 3.0?4.0 m,合拢段长2.0 m,边跨现浇直梁段长11.65 m。主梁两个边跨直梁段和主墩0#块均采用支架法施工,其余梁段均采用挂篮对称悬臂施工。悬臂段施工完毕后,先合拢边跨,再合拢中跨。 为保证本桥在施工过程中的安全和施工质量,成桥后线形满足设计要求,运营后环境因素 及列车荷载等对线形的影响规律,并结合本桥的施工方案特制定本桥的施工监控方案。 1.2技术标准 (1)铁路等级:联络线; (2)桥上线路:单线,有砟轨道,曲线半径R=400 m,轨顶至梁顶高0.826m ; (3)设计行车速度:不大于80 km/h ; (4)设计活载:ZK活载; (5)牵引类型:电力; (6)环境:一般大气环境,作用等级为T2,冻融环境为D1。 1.3监控方案制定依据 (1) <新建时速200?250公里客运专线铁路设计暂行规定》铁建设函[2005]140号); (2) 〈铁路桥涵基本设计规范》(TB10002.1-2005);

大跨度连续刚构桥的研究和发展

大跨度连续刚构桥的研究和发展 (所属杂志:此文章来自原稿)发布时间:2008-07-16 已阅读:1290 张伟,胡守增,韩红春,张勇 (西南交通大学土木工程学院桥梁系,四川成都610031) 摘要:介绍大跨度连续刚构桥的桥型特点,分析了连续刚构桥的结构受力特点,以及应用和发展现状,并以武汉军山长江公路大桥为例对其进行探讨;同时介绍了对连续刚构桥设计,施工控制等方面的创新方面的内容。 关键词:大跨径;连续刚构桥;桥型特点;受力特点 中图分类号:U448.23 文献标识码:A 就当代技术水平而言,大跨度、特大跨度桥梁无论是在设计理论、施工方法、建桥材料等方面都存在自身固有的特点和困难,这些问题解决的合理程度,不仅直接影响着大跨度桥梁的发展,制约着大跨度桥梁建设的经济效益,而且影响着交通事业的发展以及人类征服自然的历史进程。 在大跨径桥型方案比选中,连续梁桥型仍具有很强的竞争力。连续梁桥型在结构体系上通常可分为连续梁桥、连续刚构桥和刚构—连续组合梁桥。后者是前两者的结合,通常是在一联连续梁的中部一孔或数孔采用墩梁固结的刚构,边部数孔解除墩梁固结代之以设置支座的连续结构。 连续刚构是将连续梁的桥墩与梁部固结,以减小支座处的负弯矩和增

强结构的整体性。由于墩属小偏压构件,故与连续梁的桥墩相比配筋并不增加很多,而梁体受力则更为合理,因而在同等条件下连续刚构要比连续梁更为经济。此外,墩梁固结也在一定程度上克服了大吨位支座设计与制造的困难,也省去了连续梁施工过程中墩梁临时固结、合拢后再行调整的这一施工环节。 1连续刚构桥的结构受力特点、应用及现状 1.1 结构受力特点 连续刚构桥由于墩身与主梁形成刚架承受上部结构的荷载,一方面主梁受力合理,另一方面墩身在结构上充分发挥了潜能,因此该桥型在我国得到迅速的应用和发展:具有一个主孔的单孔跨径已达 270m,具有多个主孔的单孔跨径也达250m,最大联长达1060m。随着新材料的开发和应用、设计和施工技术的进步,具有一个主孔的单孔跨径有望突破300m的潜力。而对于多跨一联的连续刚构是不是也能在联长上有更大的发展呢?众所周知,墩身内力与其顺桥向抗推刚度和距主梁顺桥向水平位移变形零点的距离密切相关。抗推刚度小的薄壁式墩身能有效地降低其内力,但随着联长的加大,墩身距主梁顺桥向水平位移变形零点的距离亦将加大,在温度、混凝土收缩徐变等荷载的作用下,墩顶与主梁一道产生很大的顺桥向水平和转角位移,墩身剪力和弯矩将迅速增大,同时产生不可忽视的附加弯矩,致使刚构方案无法成立。在结构上将墩身与主梁的团结约束解除而代之以顺桥向水平和转角位移自由的支座,这样就变成刚构—连续组合梁的结构形式。于是边主墩墩身强度问题得以解决,且在一定条件下联长可相对延长。可见,刚构—连续组合梁是连续梁和连续刚构的组合,它兼顾了两者的优点而扬弃各自的缺点,在结构受力、使用功能和适应环境等方面均具

高墩大跨连续刚构桥施工技术研究报告之二

超高薄壁空心墩外翻内爬模施工技术 1前言 根据对典型高墩大跨连续刚构桥施工稳定性的研究指出,结构的稳定性计算表明,试验模型实测的失稳临界荷载总是大大低于理论的计算值,这是由于结构不可避免地存在一些几何偏差和缺陷,而几何缺陷对临界荷载的影响很大。本项目具有138m 高墩、主跨为160m为一典型的高墩大跨连续刚构,理论分析表明,“T”构在最大悬臂状态下(73m长)时,9#(138m墩高)和8#(130m墩高)墩的稳定特征值较小,稳定安全储备不大,如果高墩的墩身由于施工的原因而出现了偏斜、弯曲等几何缺陷,将会使结构的稳定性大大下降,甚至产生整体失稳的严重后果。在施工中只有严格控制墩身的垂直度,才能使结构的稳定得到根本的保证。 葫芦河特大桥位于陕西黄土沟壑地区,由于工程的特殊地理位置,日照温差较大,而且主墩均为薄壁空心墩,受日照温差影响后,墩身不可避免将出现位移。根据计算,日照温差致使混凝土箱形空心墩身发生弯曲变形,使墩顶发生较大位移,138m的高墩位移甚至可达到3cm±。温度变化对超高墩混凝土结构的受力与变形影响很大,并随温度的改变而改变。在不同时刻对结构状态进行量测,其结果是不一样的,如果在施工控制中忽略了该项因素,就必然难以得到结构的真实状态数据(与控制理想状态比较),从而也难以保证控制的有效性。因此,在施工控制中必须考虑日照温差对结构的位移影响。 2工程概况 葫芦特大桥是黄陵至延安段高速公路上的一座特大型连续刚构梁桥,位于中国西部黄土高坡陕西黄陵县境内,桥梁全长1468m,主桥为90m+3×160m+90m共660m五跨曲线连续刚构桥,上、下行分离。主梁为三向预应力连续箱梁结构。主桥桥墩采用双薄壁空心墩,单幅由两个4.0m×6.5m薄壁空心墩组成,其中9#墩最高,达138m 高。7#和10#墩壁厚0.5m,8#、9#墩壁厚横桥向0.7m,顺桥向1.2m。主桥桥墩7#、8#、9#、10#高度分别为80m、138m、130m、58m。7#墩单幅从基顶起40m高,8#墩单幅从基顶起44m、86m高,9#墩单幅从基顶起46m、92m高设高度为1m的横撑,将两个薄壁空心墩联接成一体。葫芦河特大桥主桥立面图见图2-1所示,箱梁墩顶和跨中断面图

连续梁线性监测

向莆铁路连续梁施工中实时监测的具体实施 摘要: 近年来我国铁路建设得到了迅猛的发展,而在施工中的实时监测就显得尤为重要。本文对向莆铁路FJ-5B标大樟溪台口特大桥(48+2×80+48)m连续梁施工中实时监测的实施进行了简单的介绍。 关键词: 向莆铁路;连续梁;实时监测 一、工程概况 向莆铁路FJ-5B标大樟溪台口特大桥位于永泰县洪山大桥下游1.5Km,起讫里程为FDK499+881.850~FDK500+614.655,全长732.805m。线路等级为I级,双线,线间距为4.6m,设计速度为200Km/h客货共线。其中,主跨孔跨布置为48+2×80+48m预应力混凝土连续梁。 该连续梁为单箱单室、变高度、变截面结构。箱梁顶宽12.2m,顶板厚34cm,腹板厚50-75-100cm,底板厚50~100cm。在端支点、中支点和中跨跨中共设7个横隔板,隔板设有孔洞。连续梁共分12段,0#~10#段长为3×3m+4×3.5m+3×4m,高6.4~3.8m,合拢段(11#段)长2m,高3.8m,边跨现浇段(12#段)长7.65m,高2.8m。悬臂段最重的达150.8t。0#段、1#段和边跨现浇段采用支架法施工,其余梁段采用挂篮对称悬臂施工。 二、监测目的 第一,从施工现场获取第一手参数和数据,对桥跨结构进行实时理论分析和结构验算,既可以根据分析验算结果制定后续工序的施工控制参数,又可以通过分析验算校核设计和施工的可靠性,为以后的桥梁设计、施工及研究积累资料。 第二,在控制断面埋设应变或应力测试元件,实施监测结构应力变化情况,形成施工安全预警机制,做到心中有底,避免发生意外,并能够有效保证结构的受力和变形始终处于安全的范围内,从而使得成桥后的结构内力和线性符合设计要求。 三、监测内容 1、物理监测 物理监测包括对时间、温度等的实时监测。 连续梁施工中各工序的完成时间直接影响到对混凝土收缩徐变的计算。在设

挂篮悬浇连续梁桥的施工监控

第1题 施工监测一般要求什么时间进行 A.早晨日出之前 B.晚上太阳落山之后 C.没有要求随时都可以测 D.根据施工的进度确定 答案:A 您的答案:A 题目分数:7 此题得分:7.0 批注: 第2题 临时锚固一般何时拆除 A.全桥合拢之后 B.边跨合拢之后 C.中跨合拢之前 D.边跨合拢之前 答案:B 您的答案:B 题目分数:7 此题得分:7.0 批注: 第3题 挂篮一般由哪个单位设计? A.设计单位 B.监控单位 C.施工单位 D.业主委托第三方 答案:C 您的答案:C 题目分数:7 此题得分:7.0 批注: 第4题 立模标高的精度是多少? A.?5mm B.?10mm C.?2mm D.-2mm,+5mm

答案:A 您的答案:A 题目分数:7 此题得分:7.0 批注: 第5题 立模标高中的预拱度数值是如何确定的 A.施工监控单位自己计算确定 B.由设计单位提供的数值确定 C.根据经验确定 D.施工监控单位计算后请设计单位确认后确定 答案:D 您的答案:D 题目分数:2 此题得分:2.0 批注: 第6题 桥梁施工监控工作开展过程中需要和哪些单位联系 A.建设单位 B.设计单位 C.监理单位 D.施工单位 E.质监站 答案:A,B,C,D 您的答案:A,B,C,D 题目分数:7 此题得分:7.0 批注: 第7题 挂篮预压的目的是什么? A.验证设计 B.消除非弹性变形 C.获取荷载-变形曲线 D.检验临时锚固的性能 答案:A,B,C 您的答案:A,B,C 题目分数:7 此题得分:7.0 批注:

第8题 施工控制的工作内容有哪些? A.有限元分析计算 B.通过立模指令指导现场施工 C.对施工监测数据进行分析,对现场的安全状况进行分析,及时预警 D.有异常情况时,及时组织各参建方共同商讨解决方案 答案:A,B,C,D 您的答案:A,B,C,D 题目分数:7 此题得分:7.0 批注: 第9题 施工监测的内容有哪些? A.梁体的应力 B.挂篮预压的变形观测 C.温度监测 D.梁体的变形观测 E.主墩的沉降观测 答案:A,B,C,D,E 您的答案:A,B,C,D,E 题目分数:7 此题得分:7.0 批注: 第10题 关于合拢段施工哪些说法是正确的? A.边跨合拢段施工时可以不进行配重 B.未来避免混凝土开裂,中跨预应力张拉要快,不宜进行分批张拉 C.合拢段施工的时机宜选择在一天当中温度最低的时段 D.中跨合拢段预应力张拉前主墩墩顶的支座的临时锚固要解除 E.边跨合拢段施工结束后,可以解除主墩的临时锚固 答案:D,E 您的答案:D,E 题目分数:7 此题得分:7.0 批注: 第11题 挂篮有哪几个部分组成?

浅谈高墩大跨连续刚构桥

浅谈高墩大跨连续刚构桥 中铁十四局集团三公司延延高速项目部任飞 摘要:本文结合延延高速黄河特大桥介绍了高墩大跨连续刚够桥的发展历程,结构特性以及施工中的重点难点。 关键词:连续钢构;高墩;大跨;施工 1、发展历程 在国外,伴随着预应力混凝土技术和悬臂施工技术的发展, 20世纪60年代在T型刚构桥的基础上出现了一种新的桥型,连续刚构桥。连续刚构桥主梁为连续刚体,与薄壁墩固结而成,吸收了连续梁桥和T型刚构桥的优点。具有适应性强、施工方便、易于养护、造型优美、经济性好、行车舒适等优点,自问世以来得到了迅速发展。 随着我国经济实力的增强,为了满足交通运输的需要,连续刚构桥因其具有优越的性能得到了广泛的应用。1990年建成了我国第一座跨径为180m的广州洛溪大桥。之后,相继建成了黄石长江大桥(162.5+3×245+162.5)m、虎门大桥辅航道桥(150+270+150)m等一系列具有代表性的桥梁,将连续刚构桥的建设推向新的高度。 近年来,高等级公路的建设逐步向西部延伸。那里地势险峻,地形多为深沟、陡坡,对桥梁建设提出了更高的要求,因此出现了大量高墩大跨连续刚构桥。目前在国内,主跨跨径最大的为重庆石板坡长江大桥复线桥,跨径为330米;墩高最高的为四川腊八斤沟特大桥,最大墩高182.5m。我项目部承建的延延高速黄河特大桥最大跨径160m,最大墩高141m,无论从设计水平上,还是施工难度上都处于同类桥梁的领先水平。 随着西部大开发的进一步推进和东部跨海连江工程的实施,连续刚构桥的建造热潮仍在继续。并且随着设计水平的提升和施工工艺的改善,以及在高原地区受地形环境的限制,为满足建桥的实际需要,连续刚构桥未来将会向着更大跨更高墩的方向发展。 2、结构特点及力学特性 连续刚构桥吸收了连续梁桥和刚架桥两种桥型的特点,是一种组合体系桥梁。一般将桥跨结构即主梁和墩台整体相连的桥称之为刚构桥。由于墩梁之间采用刚性连接,在竖向荷载作用下,将在主梁端部产生负弯矩,跨中的正弯矩也会随之减小,跨中截面尺寸也会相应的减小;支柱在承受竖向荷载的同时也会承受弯矩和水平推力,是一种有推力结构形式。 刚够桥大多数位超静定结构,这就造成了在混凝土收缩,温度变化,墩柱不均匀沉降等过程中产生附加内力;在施工过程中的体系转换过程中也会产生附加内力。在跨径较小的情况下一般选用

22007 预应力混凝土道岔连续梁桥的线形控制

优秀论文、施工技术总结申报表

大跨径、变截面预应力混凝土道岔连续梁桥 的线形控制 宋艳德 摘要:文章通过对厦深客运专线韩江双线特大桥采用悬臂浇筑法施工桥梁上部结构施工控制挠度等问题进行了主要论述。运用大型有限元程序建立全桥模型,计算出施工阶段的理论立模标高,提出了如何根据桥梁的结构安全和最终线型来确定立模标高,以及怎样在施工中快速有效地确定和预计下一块段的立模标高,对施工有一定的指导作用。 关键词:道岔连续梁;标高;线形控制 1、工程概述 韩江双线特大桥出岔连续梁为(48+2*80+88+48) m五跨预应力连续箱梁,梁长345.5m,为三向预应力体系。梁体变宽点设在DK200+202,左右正线及岔线关于桥梁纵向中心线对称布置,桥梁结构左右对称。桥梁计算跨径为(48+2x80+88+48)m ,中支点处梁高7.50m,跨中10m直线段及边跨13m直线段梁高为4.5m,梁底下缘按二次抛物线变化,边支座中心线至梁端0.75m。梁体变高段按二次抛物线Y=4.5+X2/341.333m变化。 出岔连续梁采用单箱双室变截面变高度结构。在线路出岔位置前箱梁顶宽12.2m,箱梁底宽6.7m,顶板厚度45cm,底板厚度42至100cm,按直线变化;腹板厚30至70cm线性变化,出岔后箱梁顶宽由12.20 m变至26.76m,箱梁底宽由6.7m变至21.66m,顶板厚度45cm,底板厚度42至100cm,按直线变化;腹板厚40至120cm线性变化;顶板悬臂板全桥厚度不变。 2、线形控制 2.1 线形控制的必要性 对高次超静定桥跨结构——多跨连续梁,其成桥的梁部理想的几何线型与合理的内力状态不仅与设计有关,而且还依赖于科学合理的施工方法。如何通过施工时的浇筑过程的控制以及主梁标高调整来获得预先设计的几何线型,是连续梁桥施工中非常关键的问题。 尽管在设计时已经考虑了施工中可能出现的情况,但是由于施工中出现的诸多因素(如材料的弹性模量、混凝土收缩徐变系数、结构自重、施工荷载、温度影响等)的随机影响,事先难以精确估计,而且在实际施工过程中由于施工在测量等方面产生的误差,会使实际结构的原理论设计值难以做到与实际测量值完全一致,两者之间会存在偏差。尤其值得注意的是,某些偏差(如主梁的竖向挠度误差)具有累积的特性。若对偏差不加以及时有效的调整,随着梁的悬臂长度的增加,主梁的标高会显著偏离设计值,造成合龙困难或影响成桥的线形。

相关主题