搜档网
当前位置:搜档网 › Nebular and stellar properties of a metal poor HII galaxy at z=3.36

Nebular and stellar properties of a metal poor HII galaxy at z=3.36

Nebular and stellar properties of a metal poor HII galaxy at z=3.36
Nebular and stellar properties of a metal poor HII galaxy at z=3.36

a r X i v :a s t r o -p h /0409352v 1 14 S e p 2004

Mon.Not.R.Astron.Soc.000,1–??(2001)Printed 2February 2008

(MN L A T E X style ?le v1.4)

Nebular and stellar properties of a metal poor HII galaxy

at z =3.36.

M.Villar-Mart′?n 1?,M.Cervi?n o 1&R.M.Gonz′a lez Delgado 1

1Instituto

de Astrof′?sica de Andaluc′?a (CSIC),Aptdo.3004,18080,Granada,Spain

ABSTRACT

We have characterized the physical properties (electron temperature,density,

metallicity)of the ionized gas and the ionizing population (age,metallicity,pres-ence of WR stars)in the Lynx arc,a HII galaxy at z =3.36.The UV doublets (CIII],SiIII]and NIV)imply the existence of a density gradient in this object,with a high density region (0.1-1.0×105cm ?3)and a lower density region (<3200cm ?3).The temperature sensitive ratio [OIII]λλ1661,1666/λ5007implies an electron temperature T e =17300+500?700K,in agreement within the errors with photoionization model predic-tions.Nebular abundance determination using standard techniques and the results from photoionization models imply a nebular metallicity of O/H ~10±3%(O/H)⊙,in good agreement with Fosbury et al (2003).Both methods suggest that nitrogen is overabundant relative to other elements,with [N/O]~2.0-3.0×[N/O]⊙.We do not ?nd evidence for Si overabundance,as Fosbury et al.(2003).

Photoionization models imply that the ionizing stellar population in the Lynx arc

has an age of <~5Myr.If He +

is ionized by WR stars,then the ionizing stars in the Lynx arc have metallicities Z star >5%Z ⊙and ages ~2.8-3.4Myr (depending on Z star ),when WR stars appear and are responsible for the He +2emission.However,alternative excitation mechanisms for this species are not discarded.Since the emission lines trace the properties of the present burst only,nothing can be said about the possible presence of an underlying old stellar population.

The Lynx arc is a low metallicity HII galaxy that is undergoing a burst of star formation of <~5Myr age.One possible scenario that explains the emission line spec-trum of the Lynx arc,the large strength of the nitrogen lines and the He +2emission is that the object has experienced a merger event that has triggered a burst of star formation.WR stars have formed that contribute to a fast enrichment of the ISM.

As Fosbury et al.(2003),we ?nd a factor of >~10discrepancy between the mass of the instantaneous burst required to power the luminosity of the H βline and the mass implied by the continuum level measured for the Lynx arc.We discuss several possible solutions to this problem.The most likely explanation is that gas and stars have di?erent spatial distributions so that the emission lines and the stellar continuum su?er di?erent gravitational ampli?cation by the intervening cluster.

Key words:cosmology:observations –galaxies:abundances –galaxies:high redshift –HII regions –stars:formation

1INTRODUCTION

H II galaxies are dwarf emission-line galaxies undergoing a burst of star formation.They are characterized by strong and narrow emission lines originated in a giant star-forming region which dominate their observable properties at opti-

?e-mail:montse@iaa.es cal wavelengths (e.g.(Terlevich et al.2004)).Most are blue

compact galaxies (BCGs).They have very low metallicities,high rates of star formation and a very young stellar con-tent.Many are compact and isolated.One of the reasons why these objects have attracted signi?cant attention is the possibility that they are very young galaxies in the process of formation.This possibility,however,has been challenged since evidence for an old (several Gyr)stellar population has

c

2001RAS

2Villar-Mart′?n,Cervi?n o&Gonz′a lez Delgado

been found in numerous BCGs(see(Kunth&¨Ostlin2000) for a review).Therefore,a model with a single,instanta-

neous burst of star formation does not seem appropriate to

describe these galaxies and a succession of short starbursts separated by quiescent periods seems more likely((Terlevich

et al.2004)).

Even in the case if HII galaxies are not primeval,little chemical evolution has happened and they provide impor-

tant information about how galaxies form and evolve,as well

as about the process of star formation in low metallicity en-

vironments.

The most distant HII galaxy in the catalogue compiled

by Terlevich et al.(1991)is at redshift z~0.31,while the

vast majority are at z<0.1.The proximity of these galaxies allows studies of their structure,metal content and stellar

population with high sensitivity and precision,di?cult to

achieve for high redshift star forming galaxies.Still,?nding high redshift HII galaxies is of great interest to investigate

their abundance patterns and stellar properties at earlier

epochs,compare them with the nearby counterparts and ob-tain further information about the formation and evolution

of galaxies using objects that have undergone little chemical

evolution.

The Lynx arc is a star forming object at z=3.36.It was discovered during spectroscopic follow-up of the cluster RXJ

0848+4456(z=0.57)from the ROSAT Deep Cluster Survey

((Holden et al.2001)).The arc shows a very red R-K color and very strong optical and UV(rest frame)narrow emission

lines.From the analysis of HST WFPC2images and Keck

optical and near infrared spectroscopy,Fosbury et al.(2003, FOSB03hereafter)concluded that the arc is an HII galaxy

magni?ed by a factor of~10by a complex intervening clus-

ter environment.The authors concluded that the continuum

is mostly nebular.

By means of photoionization modeling,(FOSB03)

showed that the spectroscopic properties of the Lynx arc are

all consistent with a simple HII region model of a cluster of ~106massive stars,characterized by a very high T ef f~80 000K,a high ionizing parameter(U~0.1)and low nebu-

lar metallicity Z~5%Z⊙.Indirect arguments suggest that the ionizing stellar population could have much lower https://www.sodocs.net/doc/0d16225337.html,ing simple photoionizaton models,the authors conclude that the spectroscopic properties of the Lynx arc are consistent with those of a metal-poor nebula ionized by a cluster of primordial(i.e.metal-free)stars.In this scenario, the overabundance of Si implied by the models is explained as due to enrichment by past pair-instability supernovae, requiring stars more massive than120M⊙.

We investigate in this paper the possibility that normal

(i.e.non primordial)stars are responsible for the excitation of the gas in the Lynx arc.Our?rst goal is to constrain the physical properties of the gas:electron temperature,density, metallicity.We will?rst use standard spectroscopic tech-niques of nebular analysis(e.g.(Aller1984)).These results will be compared with those from detailed photoionization modeling and those obtained by(FOSB03).

The second goal is to characterize the ionizing stellar population:age,metallicity,stellar mass of the burst,possi-ble presence of WR stars.This will be achieved by means of detailed photoionization models,whose objective is to?nd an ionizing stellar population able to explain all the spec-troscopic properties of the Lynx arc(line ratios,equivalent widths,intensity of the continuum).In addition,such mod-els set tight constrains on the nebular properties,which must be consistent with the results from the standard techniques mentioned above.

We present in§2the results of the nebular analysis and the photoionization models.These results will be discussed in§3.Summary and conclusions are presented in§4.

2ANALYSIS

2.1Nebular properties

In this section we will set constrains on the electron tem-perature,density and the nebular abundances of the ionized gas in the Lynx arc.

All the analysis and discussion presented below are based on spectra obtained with di?erent slit widths and orientations(see(FOSB03)for a detailed description of the data set and reduction techniques).For this reason, (FOSB03)estimated carefully scaling factors that were ap-plied in order to derive a consistent calibration.We will therefore assume that the errors introduced by calibration uncertainties are negligible.

The results are also dependent on whether reddening is present or not.We have ignored this e?ect.The very strong UV lines and the lack of evidence for dust reddening from the photoionization models and the?t to the continuum shape((FOSB03))makes as con?dent that such assumption is reasonable and our results are not seriously a?ected by it.Our own work presented in this paper will show that the line ratios are consistent with no dust reddening.

2.1.1Electron temperature

The[OIII]4363/[OIII]5007ratio has been traditionally used to measure electron temperatures in ionized nebulae.Unfor-tunately,the[OIII]λ4363line is outside the observed spec-tral range.We have used the UV[OIII]doublet instead,since the[OIII]λλ1661,1666/[OIII]λ5007ratio is mostly sensitive to electron temperature.

We show in Fig.1 the dependence of the[OIII]λλ1661,1666/[OIII]λ5007ratio with electron temperature The position of the Lynx arc(the value of the ratio is0.074±0.005,see Table1)is also shown as a?lled circle.It implies T e~17300+500

?700

K.This value is somewhat higher than that predicted by the photoioniza-tion models presented in§2.2which give T e=16200±500K, although taking errors into account,the discrepancy is not important.This further supports that dust reddening e?ects are negligible,otherwise,the temperature derived from Fig. 1would be a lower limit and large discrepancies with the photoionization model predictions would arise.This tem-perature is much lower than that derived by(FOSB03)and (Binette et al.(2003))by means of photoionization model-ing(~20000K).The discrepancy is due to a combination of the very hard ionizing continuum(very energetic electrons are therefore released in the ionization processes)and high U(ionization parameter)value used by these authors.

c 2001RAS,MNRAS000,1–??

A metal poor HII galaxy at z =3.36

3

Figure 1.Dependence of the [OIII]λλ1661,1666/[OIII]λ5007ra-tio with electron temperature T e .The position of the Lynx arc is indicated with a solid circle.This diagram implies T e ~17300+500?700K for this object.

CIII]1907

1892

1.5±0.1<2000

NIV 1483

Table 1.Electron densities measured for the Lynx arc using the CIII],SiIII]and NIV]UV doublets.

2.1.2Electron density

There are three UV line doublets we can use to estimate

the electron density in the Lynx arc:CIII]λλ1907,1909,SiIII]λλ1883,1892and NIV λλ1483,1487(see (Keenan,Feibleman &Berrington 1992),(Keenan et al.1995)).The results shown in Table 1correspond to T e ~10000-20000K range,where the ratios are quite insensitive to temperature.The upper limits take the errors into account (i.e.the densi-ties shown correspond to the minimum possible value of the line ratio).

The SiIII]doublet density determination has to be con-sidered carefully.We have noticed that the predictions by Keenan,Feibleman &Berrington (1992,see Fig.2)are ac-tually inconsistent with the results of our photoionization models (§2.3).As an example,for some of the n e =1000cm ?3models presented in §2.3,SiIII]1883/1892=1.8,which is above the maximum possible value (~1.5)predicted by those authors for this ratio.For models with n e =10cm ?3,we ?nd that the ratio reaches a value of 2in some cases.We also ?nd that the ratio varies for a ?xed density (be-tween 1.45and 1.8for n e =1000cm ?3),depending on other parameters such as the spectral energy distribution (SED)properties.

The range of densities implied by the di?erent doublets suggests that there is a gradient in the Lynx arc.The highly ionized region responsible for the emission of the N +3lines has n e ~[0.1-1.0]×105cm ?3.The C +3lines (1549,1551?A )

are also emitted within this region.There is a zone of lower ionization level,where the C +2,Si +2and N +2lines are emit-ted and which has n e <3200cm ?3.

Usually,the optical estimates of electron densities of H II regions,based on forbidden emission line ratios,are in the range 100to 1500cm ?3.However,radio techniques have revealed the existence in the Galaxy of very small and dense (n 4>104-105cm ?3)objects,the so-called compact or ultracompact HII regions (e.g.(Habing &Israel 1979)).

Density gradients in several giant and galactic HII re-gions have been observed (e.g.(Copetti et al.2000)).In most of these cases,the spatial variation of density may be interpreted as a radial gradient with the density decreasing from the centre to the edges.A good example is the Orion nebula.Based on measurements of the ratio [O II]3729/3726,Osterbrock &Flather (1959)showed the existence of a steep radial density gradient in the Orion Nebula,with the elec-tron density decreasing from 1.8×104cm ?3in the centre to 2.6×102cm ?3near the edge.2.1.3

Nebular abundances

Photoionization models by (FOSB03)imply that the nebu-lar abundances in the Lynx arc are ~5%solar within a fac-tor of 2.We set here tighter constraints by means of using standard techniques of nebular abundance determination.

The following expressions were used to calculate the ionic abundances of several elements (Aller 1984),assuming the low density regime.These expressions will then be used to calculate total element abundances.O +2

t E 04,2×10

1.25/t [OIII ]5007,4959

H +=7.29×10?7

Ne +2

t E 04,2×10

1.59/t

[NeIII ]3869

H +=2.04×10?8

HβC +2

t E 04,2×10

3.28/t CIII ]1906,1909

H +

=2.17×10?8

N +3

t E 04,2×10

4.20/t

NIV ]1487

H +

=2.99×10?7

where t =T e /104and E 04,2=1.387t

?0.983

×10?0.042/t For silicon we have used the expression:

c

2001RAS,MNRAS 000,1–??

4Villar-Mart′?n,Cervi?n o&Gonz′a lez Delgado Si+2

CIII]1906,1909

(from(Garnett et al.1995))

Garnett et al.(1995)showed that this expression is a good approximations within the temperature range10000-20000K and for the n e values expected for the Lynx arc, well below the critical densities of all the lines considered above.

The total element abundances are then calculated as follows:

O

H+Ne

H+

In both cases,we assume that most oxygen and neon atoms are twice ionized and therefore the ion abundance ra-tio is a good representation of the element abundance ratio. This assumption is supported by the high level of ionization of the gas implied by the high[OIII]/Hβand[OIII]/[OII] ratios of the Lynx arc.It is also con?rmed by our photoion-ization models(see§2.2)which show that~99%of O and Ne are in the O+2and Ne+2forms.

For the other elements we use:

C

H+

N

H+~

N+3+N+2

C =

Si+2

X(C+2)

]?1=

Si+2

Ion Lynx Lynx

t=1.7t=1.6

Element Lynx Lynx

t=1.7t=1.6

Table2.Abundances of some ions and elements in the Lynx arc

for two di?erent t values1.6and1.7.The range given for Si cor-

responds to the extreme values of the ionization correction factor

ICF implied by our photoionization models(see text).The sec-

ond value corresponds to models with WR stars.The two values

given for oxygen correspond to the calculations performed using

the[OIII]λλ4959,5007and the[OIII]λλ1661,1666doublets.The

errors on the abundances relative to the Sun are less than few per

cent.This only considers the errors on the ionic abundances and

do not account for uncertainties on the Solar values.

solar abundance values come from photospheric abundances

of Allende-Prieto,Lambert&Asplun(2002,2001),while N,

Ne,Mg,Si and Fe are from(Holweger(2001)).Uncertainties

on these values were not considered in the error calculation.

Calculations were done for two temperature values

T e=16000and17000K(t=1.6and1.7)to account for the

most likely T e range implied by the photoionization models

(§2.2)and the[OIII]lines(§2.1.1).It is important to note

that the electron temperature is di?erent in high and low

ionization zones of HII regions.To perform a more accurate

abundance determination,this temperature variation should

be taken into account.Most of the gas is ionized in the Lynx

arc(~99%of oxygen in the O+2form)and there is not a

low ionization zone(i.e.a region where species such as[OI],

[OII],[SII],etc exist).We expect therefore that the electron

temperatures measured using the[OIII]lines can be safely

assumed to be representative of a large fraction of the neb-

ula.Somewhat higher temperatures might be present in the

most highly ionized region.In such case,the abundances

presented in Table2,are upper limits?.

We conclude that the nebular metallicity in the Lynx

this value is determined by the uncertainties on the reconstruction

model of the line pro?le,rather than the line?ux measurements

((FOSB03))

?The small discrepancy between the O/H values calculated with

the[OIII]λλ5007,4959and OIII]λλ1661,1666values(see Table

2)could be due the fact that the excitation of the UV doublet

requires somewhat higher electron temperatures than the optical

doublet.

c 2001RAS,MNRAS000,1–??

A metal poor HII galaxy at z=3.365

arc(de?ned as O/H)is in the range~10-<20%Z⊙.This is somewhat higher than the value derived by(FOSB03)of ~5%Z⊙.

In addition,we conclude that nitrogen is overabundant relative to oxygen by a factor of~2.0-3.0compared with the solar abundance.

Departures from the constant density case may produce variations in the derived ICF values and therefore,the el-ement abundances(Luridiana&Cervi?n o2003,Luridiana et al.2004,in prep.).This does not a?ect oxygen seriously. However,the derived abundance of nitrogen can be o?by up to a factor of1.75for their models with the steepest power law density gradient(index>1.5).It is therefore possible, that N is not overabundant and the large derived N/O is a consequence of assuming constant density.

(FOSB03)concluded that silicon has to be well over-abundant relative to other elements,to be able to explain the strong SiIII]lines detected in the Lynx arc.The reason for this discrepancy will be discussed in§2.2.

Photoionization models in§2.2will set further con-strains on the nebular abundances of all elements.

2.2Age and metallicity of the ionizing stellar

population

We have characterized the age and metallicity of the ioniz-ing stellar population in the Lynx arc by means of produc-ing photoionization models that best reproduce the emission line properties.Further constraints on the nebular physical properties and chemical abundances will also be set.

The most outstanding spectroscopic properties of the Lynx arc that models should reproduce are(see(FOSB03)):?The large strength of the UV collisionally excited lines (NIVλ1486,CIVλ1550,OIII]λ1663,NIII]λ1750,etc)relative to recombination lines such as Hβ

?The large[OIII]/Hβ(=7.5)and the weakness of [OII]λ3727relative to other lines([OIII]/[OII]≥30, [OII]/Hβ≤0.25and[NeIII]λ3869/[OII]≥2.8)).I.e.,the high ionization level of the gas.

?The strength of the He+2emission (HeIIλ1640/Hβ=0.11)

?The extremely weak UV and optical continuum

All the SEDs used in this paper were computed by Cervi?n o,Mas-Hesse&Kunth(2004,hereafter CMK04) available at https://www.sodocs.net/doc/0d16225337.html,eff.esa.es/users/mcs/SED. The isocrones were computed following the prescriptions quoted in(Cervi?n o,G′o mez-Flechoso&Castander(2001)) and the models assume a power law Initial Mass Function (IMF)with a Salpeter slope,α=2.35((Salpeter1955))in the mass range2–120M⊙.We have adopted the evolution-ary tracks with standard mass loss rates by(Schaller et al.(1992);Schaerer et al.(1993a);Schaerer et al.(1993b); Charbonnel et al.(1993))and the following atmosphere models:(Schaerer&de Koter(1997))CoStar for main-sequence hot stars more massive than20M⊙,(Schmutz, Leitherer&Gruenwald(1992))for WR stars and(Kurucz (1991))for the remaining stars.An instantaneous star for-mation law was assumed.We have also considered the in-?uence of the X-ray emission of the starburst in the SED by varying the e?ciency of conversion of kinetic energy into X-rays.However,we have found that this e?ect does not produce signi?cant di?erences in the predicted emission line spectrum at the young ages considered here.Therefore,we have ignored it and we present only the results for SED models without X-ray emission.

We used the numerical code Cloudy((Ferland et al. 1998))to predict the line ratios in di?erent circumstances.

Given the complete lack of information on the geometry of the gas and the relative distribution between stars and gas in the arc,we have assumed the standard spherical geometry often used in photoionization models of other extragalactic HII regions and HII galaxies.The distance between the ion-izing source and the gas r0was assumed to be10pc and we used constant density n=1000cm?3.The?lling factor ff was varied until?nding the model that best reproduces the Lynx arc line ratios.Conclusions on the size and geometry of the ionized region cannot be extracted from our modeling since di?erent values of ff,n and r0might produce the same output spectrum.In addition,the assumption of spherical geometry is likely to be too simple,since the ionizing stars might be distributed in several clusters.

We adopt log Q(H)=55.20,as calculated by(FOSB03) from the Hβ?ux and corrected for magni?cation.Q(H)is the ionizing luminosity in erg s?1.Since the authors assumed covering factor CC=1in these calculations,we have also adopted this value.

We show in Tables3to6the results of the models that best reproduce the Lynx spectrum,together with the Lynx measurements.Although He+2is a problem for some of these models,they are also shown because of the very good agreement with the rest of the line ratios.The He+2 problem will be discussed in more detail in§3.1.We?nd that the nebular metallicity Z neb that produces the best?t to the Lynx spectrum is~10%Z⊙.This is in very good agreement with the results obtained in§2.1.3.

Z neb=5%Z⊙models are rejected.The models that can produce[OIII]5007/Hβ>~7,require very high?lling factor ff>~0.32(i.e.high ionization level).The predicted electron temperature is~20000K,much higher than the value im-plied by the[OIII]lines(§2.1.1).In addition,due to the high T e and ionization level of the nebula,the high ionization UV lines such as CIVλ1550and[OIII]λ1665become too strong, with CIV/Hβ>7.

The opposite e?ect is found for models with Z neb≥15% Z⊙,which can also be rejected with con?dence.Due to the higher metallicity,lower?lling factors(i.e.ionization level) are required to produce the same[OIII]λ5007/Hβ.For those models with[OIII]5007/Hβ>~7-8,the predicted T e is~14 000K,too low compared with the expected value(§2.1.1). In addition,because of the low ionization level and the low electron temperature,the high ionization UV collisionally excited lines become too weak,with CIV/Hβ<~1.

Therefore,all the models presented here assume Z neb=10%Z⊙for all elements(except nitrogen,see below). The most discrepant line ratios will always be shown in bold characters.

Z stars=5%Z⊙models

The results of these models are shown in Table3.The 2Myr(a)model assumes that all elements have an abun-dance of10%the solar value.Notice that the NIII]and NIV lines are severely underestimated.This is the case for all models considered below,as long as N abundance is not en-

c 2001RAS,MNRAS000,1–??

6Villar-Mart′?n,Cervi?n o&Gonz′a lez Delgado

hanced.The discrepancy disappears if we assume that this element is overabundant by a factor of~3.This result was

also suggested by the nebular abundance determination in

§2.1.3.Hereafter,this overabundance will be assumed in all models.

Models with ages≤4Myr reproduce very well the Lynx

line properties,except the He+2emission.Ages of5Myr and specially older present strong discrepancies with the mea-sured line ratios,due to the drastic reduction of the ionizing photons as stars get older.We only show5and a6Myr models in Table3for illustration.

The He+2lines are always predicted too faint.The rea-

son is that according to the stellar evolution models no WR stars are formed in such low metallicity environment(but see§3.1).

Z stars=20%Z⊙models

Models with ages<~3Myr are in very good agreement with the Lynx spectrum(Table4),except for the He+2lines which are predicted too faint.At~3.4Myr Wolf Rayet stars make an important contribution to the the hard ionizing radiation and the He+2problem is solved.NV should be detected according to this model.However,given the uncer-tainties on the estimation of the upper limit for this line, the predicted ratio is likely to be well within the errors ((FOSB03))of the measured value.Ages of4Myr and older produce strong discrepancies with the measured spectrum. We show4and5Myr models in Table4for illustration.

Z stars=40%Z⊙models

Models with ages<3Myr are in good agreement with

the Lynx emission line spectrum,except for the He+2lines

which are predicted too weak(Table5).Between3.0and 4Myr,WR stars appear and the He+2problem is solved. Ages of4Myr and older produce strong discrepancies with the measured spectrum.We show4and5Myr models in Table5for illustration.

Z stars=Z⊙models

Models with ages<~5Myr can explain the Lynx emission line spectrum remarkably well,except the He+2lines,which are predicted too weak.The appearance of WR stars at2.8 Myr solves the He+2problem and produces a good?t to the observed spectrum.Ages of6Myr and older produce strong discrepancies with the measured spectrum.We only show a 6Myr model in Table6for illustration.

To summarize,the best photoionization models imply:?The nebular abundances in the Lynx arc are~10±3% Z⊙.This is in very good agreement with the measured abundances in§2.1.3and with(FOSB03)within the errors. Lower(<7%Z⊙)and higher(≥15%Z⊙)metallicities pro-duce strong discrepancies with the measured line ratios.?Nitrogen is overabundant.The models suggest N/O~3×(N/O)⊙.This is in good agreement with the results obtained in§2.1.3.

?Our models do not imply overabundance of Si relative to O,contrary to the results obtained by(FOSB03).The reason to claim Si overabundance by this authors is that their model predicts SiIII]/Hβratios a factor of~100below the measured value.Si+2is the species found in the Lynx arc with the lowest ionization potential(IP).All other lines detected are emitted by ions with higher IP(N+2and C+2 are next,with47.4eV and47.9eV respectively).A hot black body(80000K in(FOSB03)models)produces a large supply of ionizing photons that e?ciently remove Si+2while still keeping a considerable amount of other species such as N+2and C+2.The same can be said about(Binette et al. (2003))models.The ionization of the gas in our models is dominated by much colder stars that allow the survival of Si+2in the nebula.

?The electron temperature is T e~16200±500K,in good agreement within the errors with the value determined from the[OIII]1663/5007ratio(see§2.1.1).

?Ages<~5Myr produce good?ts to the Lynx spectrum, except for the He+2lines,which are predicted too faint in most cases.Only when Wolf Rayet stars appear,the He+2 lines are properly?t.If Wolf Rayet stars are responsible for the ionization of He+(but see§3.1),this implies:

–Z stars must be>5%Z⊙,since no Wolf Rayet stars are formed at lower metallicities,according to the models (but see§3.1).

–the Lynx arc is undergoing a WR phase and the age of the burst is in the range2.8-3.4Myr,depending on the stellar metallicity.

3DISCUSSION

3.1The He+2problem

All models in Tables3to6with ages of~5Myr or younger (depending on the stellar metallicity)reproduce remarkably well most line ratios of the Lynx spectrum.Some of those models,however(those with no contribution from WR stars) cannot explain the He+2nebular emission.

HeIIλ4686nebular emission has been detected in the optical spectrum of numerous extragalactic HII regions and star forming galaxies(e.g.(Garnett et al.1991)).If the excitation of this line is due to photoionization by hot stars, these must have T ef f>~55000K.Based on photoionization modeling,(FOSB03)concluded that T ef f~80000K in the Lynx arc,in the range of values typical of Wolf Rayet stars.

We have shown that Wolf Rayet stars are good candi-dates to explain the He+2emission in the Lynx arc(they could also be responsible for the out?owing wind discovered by(FOSB03)).The non detection of the typical Wolf Rayet bumps found in Wolf Rayet galaxies(e.g.(Vacca&Conti 1992))is simply due to the fact that the stellar population is not detected at all(see§3.3).

We have used two of the SEDs that best reproduce the Lynx spectrum(Z stars=20%Z⊙and3.4Myr;Z stars=40% Z⊙and3.0Myr,see§2.2)to predict the number of WR stars in the Lynx arc.CMK04models predict2.9×10?4 and2.5×10?4Wolf Rayet stars per solar mass for these two https://www.sodocs.net/doc/0d16225337.html,ing the total stellar burst masses estimated from the Hβluminosity(see§3.3),we obtain2.7×104or2.1×104 WR stars for the20%Z⊙and40%Z⊙SEDs respectively. This is in the range of values found for low redshift WR galaxies,where the presence of100to100000WR stars has been inferred((Vacca&Conti1992)).

WR stars have been proposed to explain the He+2emis-sion in stellar ionized nebulae.However,this is an unsolved problem in nearby star forming objects.For this reason,we

c 2001RAS,MNRAS000,1–??

A metal poor HII galaxy at z=3.367 NVλ1240≤0.090.010.010.010.030.010.130.27

SIVλλ1394≤0.090.130.120.120.100.120.130.09

SIVλλ1402≤0.090.060.060.060.060.060.100.07

NIV]λ14860.42±0.050.520.180.520.470.520.280.06

CIVλ1549 3.65 3.63 3.90 3.69 3.33 3.63 1.970.60

HeIIλ16400.11±0.030.0080.0080.0080.0040.0050.0120.023

OIII]λ16650.56±0.040.520.540.520.460.520.370.17

NIII]λ17500.18±0.020.170.050.170.130.170.170.13

SiIII]λ18830.09±0.020.120.110.110.110.120.030.11

SiIII]λ18920.06±0.020.070.050.070.070.070.020.08

CIII]λ19090.59±0.060.940.880.910.740.990.840.84

[OII]λ3727≤0.250.080.080.080.060.080.030.43

[NeIII]λ38690.69±0.060.620.630.620.590.620.580.37

[NeIII]λ3968≤0.220.190.190.190.180.190.170.11

HeIIλ46860.015-0.0250.00110.00110.00110.00060.00070.00160.0024

[OIII]λ50077.50±0.38.258.368.287.978.257.8 5.43

Hβ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100001.73+0.50

?0.70

1.64 1.64 1.65 1.59 1.64 1.48 1.31

Z stars/Z⊙Lynx20%20%20%20%20%20% Age stars1Myr2Myr3Myr 3.4Myr4Myr5Myr Z neb/Z⊙10%10%10%10%10%10% N/N⊙10%30%30%30%30%30% log(ff)-1.7-1.5-0.5-1.50.00.0

t 1.73+0.50

?0.70

1.67 1.62 1.56 1.62 1.50 1.28

WR

8Villar-Mart′?n,Cervi?n o&Gonz′a lez Delgado

NVλ1240≤0.090.010.0220.120.160.200.24

SIVλλ1394≤0.090.120.110.110.090.060.08

SIVλλ1402≤0.090.060.060.060.050.040.07

NIV]λ14860.420.450.480.530.520.510.03

CIVλ1549 3.65 3.13 3.34 3.69 3.69 3.770.50

HeIIλ16400.110.0070.0060.100.140.180.02

OIII]λ16650.560.480.480.480.440.400.07

NIII]λ17500.180.180.150.140.090.040.06

SiIII]λ18830.090.130.100.090.060.0180.19

SiIII]λ18920.060.080.060.060.040.0130.12

CIII]λ19090.590.980.840.700.500.210.77

[OII]λ3727≤0.250.090.080.080.060.03 2.17

[NeIII]λ38690.690.600.600.590.570.570.20

[NeIII]λ3968≤0.220.180.180.180.170.170.06

HeIIλ46860.015-0.0250.0010.00080.0120.0170.0220.002

Hβ 1.00 1.00 1.00 1.00 1.00 1.00

[OIII]λ50077.507.957.977.857.597.8 3.01

Hβ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table5.Z stars=0.008=40%Z⊙.All models assume N/O~3×(N/O⊙).In spite of the He+2problem(see text)the agreement between the models and the observations is remarkably good for an age of3.3Myr or less.The best models are those with age~3Myr, when WR stars appear and ionize He+.Models of4Myr or more produce strong discrepancies with the observations.

NVλ1240≤0.090.020.040.150.320.160.58

SIVλλ1394≤0.090.120.090.100.100.100.16

SIVλλ1402≤0.090.060.050.060.060.060.14

NIV]λ14860.420.470.490.510.520.520.046

CIVλ1549 3.65 3.26 3.48 3.57 3.73 3.90.79

HeIIλ16400.110.0120.0090.130.260.0380.071

OIII]λ16650.560.480.450.450.420.440.06

NIII]λ17500.180.160.110.120.080.080.04

SiIII]λ18830.090.100.090.090.080.050.17

SiIII]λ18920.060.060.050.060.050.030.14

CIII]λ19090.590.900.630.620.470.440.49

[OII]λ3727≤0.250.080.040.090.090.05 2.81

[NeIII]λ38690.690.600.610.560.530.570.12

[NeIII]λ3968≤0.220.180.180.170.160.170.03

HeIIλ46860.015-0.0250.00160.00120.0170.0330.00460.0063

[OIII]λ50077.508.008.27.497.07.5 1.53

Hβ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table6.Z stars=0.020=Z⊙.All models assume N/O~3×(N/O⊙).In spite of the He+2problem(see text)the agreement between the models and the observations is remarkably good for ages of5Myr or less.The best model corresponds to2.8Myr of age,when Wolf Rayet are responsible for the ionization of He+.Models of6Myr or more produce strong discrepancies with the observations.

c 2001RAS,MNRAS000,1–??

A metal poor HII galaxy at z=3.369

do not reject the possibility that another unknown ioniza-tion source is present.

As an example,evidence for the existence of Wolf Rayet stars in the metal poor galaxy I Zw18(Z=1/50Z⊙)has been reported by several authors((Izotov et al.1997),(Legrand et al.1997)).(Stasi′n ska&Schaerer(1999))showed that the He+2nebular intensity can be reproduced using a radiation ?eld consistent with the observed Wolf-Rayet spectral fea-tures in this object(see also(de Mello et al.1998)).However, it is not clear whether WR stars can explain the spatial dis-tribution of the He+2emission((V′ilchez&Iglesias-P′a ramo 1998)).

Izotov et al.(2004)have recently discovered the high ionization emission line[NeV]λ3426in the spectrum of the blue compact low metallicity galaxy TOL1214-277.Fricke et al.(2001)detected the[FeV]λ4227line.Izotov et al.(2004) conclude that the stellar radiation is too soft to explain the existence of these high ionization species and propose that fast shocks or high mass X-ray binary systems could be re-sponsible.The possibility that ultra-luminous X-ray sources (ULX)are responsible for the He+2emission in the dwarf ir-regular galaxy Holmberg II has been proposed by(Pakull& Mirioni(2002))and(Kaaret,Ward&Zezas(2004)).ULXs may be be accreting normal mass(<20M⊙)black holes or neutron stars.An alternative possibility is that ULXs are high-mass X-ray binaires with super-Eddington mass trans-fer rates((King et al.2001)).

Peimbert,Sarmiento&Fierro(1991)showed that the emission line spectra of giant HII regions can be altered by the presence of shock waves produced by stellar winds or su-pernova events.This is also the case in star forming galaxies depending on the evolutionary phase of the stellar cluster ((Viegas,Contini&Contini1999)).The out?owing wind in the Lynx arc discovered by(FOSB03)provides evidence for the possible presence of shocks in the Lynx arc.Such kind of e?ects are not included in our synthesis models(where the supernova X-ray emission is the time-average contribution of the events).

A?nal possibility is the presence of super-soft X-ray sources((Rappaport,di Stefano&Smith1994)).One of the physical models proposed to explain the nature of these sources involves mass transfer from a main-sequence or sub-giant donor star to the surface of a white dwarf in a binary system((van den Heuvel et al.1992)).If this is the case in the Lynx arc,an additional stellar population with an age older than50Myrs must be present.

Therefore,we do not discard the possibility that alter-native mechanisms to WR stars are responsible for the ion-ization of He+in the Lynx arc.

3.2The nitrogen overabundance

We have found that the strength of the NIII]and NIV] lines cannot be explained assuming solar abundances.As ex-plained above,a possible explanation for this discrepancy is the assumption of constant density,rather than taking into account the presence of a gradient(see§2.1.3)(Luridiana et al.2004,in preparation).

An alternative explanation is that N is overabundant by a factor~2-3relative to the solar abundance(see§2.1.3 and§2.2).Signi?cant nitrogen excesses,although rare,have been found in some star forming objects.Particularly in-teresting are the?ve extremely metal poor BCGs with large nitrogen excesses(see(Pustilnik et al.(2004))for a more de-tailed discussion on this issue).The authors propose that the nitrogen excesses could be a consequence of merger events and a short powerful starburst phase when many WR stars contribute to a fast enrichment of the ISM.

The morphology((FOSB03))of the Lynx arc is remi-niscent of a merging system(several clumps A,B,C and D joined by a very faint arc),but this is misleading since it is strongly distorted by the e?ects of the lensing cluster.In their strong lensing model,(FOSB03)assume that the Lynx arc consists of two di?erent clumps(A and C)of the same source,while B and D are mirror images of A and C re-spectively.A and C(or B and D)might be two components of a merging system.The evidence,however,is not strong enough to con?rm this.

3.3The continuum problem

We investigate here whether the starburst luminosity re-quired to excite the strong emission lines in the Lynx arc is consistent with the non detection of the stellar component.

(FOSB03)found a discrepancy(a factor of~20)be-tween the mass of the starburst needed to power the Hβlu-mininosity of the Lynx arc and the mass of a starburst whose continuum would be just marginally detected,in agreement with the fact that the observed continuum is mostly nebular. We have done a similar exercise using the SED models that best reproduce the spectroscopic properties of the Lynx arc.

Using the SEDs by(CMK04)we have calculated the stellar mass of a burst that can generate the observed Lynx Hβluminosity L(Hβ)=4.3×1042erg s?1(corrected for magni?cation,(FOSB03)).The results are shown in Table 7for two of the SEDs that best reproduce the emission line spectroscopic properties of the Lynx arc(see§2.2).

The calculations have been done assuming covering fac-tor CC=1((FOSB03)).We obtain M stars~9×107M⊙. This is a lower limit,since we have assumed that all ionizing photons are absorbed by the gas and there is no dust red-dening.It is important to note that the uncertainties on the assumed magni?cation factorμare large.(FOSB03)found a rather wide range of models that successfully describe the Lynx arc system.This introduces serious uncertainties in the estimated cluster mass.

We have then calculated the stellar continuum at~1600?A(rest frame)emitted by these instantaneous bursts and compared it with the continuum level measured for the Lynx arc which is~0.15μJy(observed frame value cor-rected for magni?cation,(FOSB03)).This corresponds to Fν=7.89×10?32erg s?1cm?2Hz?1(rest frame).The results are shown in Table7.The theoretical values are a factor of ~10higher than the value measured for the Lynx arc.The discrepancy is even higher if we take the nebular continuum into account,which according to(FOSB03)is the dominant continuum component.

As(FOSB03),we therefore conclude that the stellar burst that reproduces the measured Hβluminosity would produce an observable continuum much(~10times)brighter than that detected from the Lynx arc.Adding the nebular contribution,the continuum should be even brighter.The conclusion is not a?ected by uncertainties on the magni?-cation factorμif the continuum and the Hβ?ux scale in

c 2001RAS,MNRAS000,1–??

10Villar-Mart′?n,Cervi?n o&Gonz′a lez Delgado

20% 3.4 3.2×10349.4×107 6.2×10?31

40% 3.0 3.5×10348.6×107 6.4×10?31

Lynx7.9×10?32

A metal poor HII galaxy at z=3.3611 than the expectation for a normal cluster of hot stars with

the same total mass and a Salpeter IMF.Bromm,Kudritzki

&Loeb(2001)estimated that a cluster of106M⊙of popIII

stars with a heavy IMF would produce~2.3×1042erg s?1

in the HeIIλ1640line and a spectral luminosity per unit

frequency of1.8×1027erg s?1Hz?1.For the observed lu-

minosity of the HeIIλ1640in the Lynx arc(~4.4×1042erg

s?1)a cluster of~2×106M⊙of primordial stars would be re-

quired.Such a cluster would produce a spectral?ux per unit

frequency of3.1×10?32erg s?1cm?2Hz?1at the distance

of the Lynx arc.This is a factor of~2.3below the contin-

uum measured for the Lynx arc.The discrepancy,therefore,

disappears and this result is consistent with the conclusion

by(FOSB03)that the continuum is mostly nebular.

The possibility that the Lynx arc is a popIII object was

proposed and discussed in detail by(FOSB03).It is di?cult

to explain,however,nebular abundances as high as~10%if

the stellar population is primordial.

4SUMMARY AND CONCLUSIONS

We have characterized the physical properties(electron tem-

perature,density,chemical abundances)of the ionized gas

and the ionizing stellar population in the Lynx arc,a gravi-

tationally ampli?ed HII galaxy at z=3.36.The temperature

sensitive ratio[OIII]λλ1661,1666/λ5007implies an electron

temperature T e=17300+500

?700K,in good agreement within the

errors with photoionization model predictions.The UV dou-blets imply the existence of a density gradient in this ob-ject,with a highly ionized high density region(0.1-1.0×105 cm?3)and a low density region(<3200cm?3)with lower ionization state.

Both the photoionization modeling and standard tech-niques of chemical abundance determination imply that the gas metallicity is~10±3%Z⊙.Both methods suggest that nitrogen is overabundant with N/O~2.0-3×[N/O]⊙,unless a density gradient produces this apparent e?ect.We do not ?nd evidence for Si overabundance as Fosbury et al.(2003). The reason is the di?erent shape of the ionizing continuum assumed by these authors(80000K black body,much hotter than the dominant ionizing stars in our models).

Photoionization models imply that the ionizing stars have very young ages<~5Myr.Since the emission lines trace the properties of the present burst only,nothing can be said about the possible presence of an underlying old stellar pop-ulation.Instantaneous burst models with Z star>5%Z⊙and ages~2.8-3.4Myr(depending on Z star),are in excellent agreement with the Lynx spectrum,including the strong He+2emission.At this age Wolf Rayet stars make an impor-tant contribution to the hard ionizing luminosity and they are responsible for the excitation of the He+2emission.In such case,we infer the existence of~2.5×104WR stars in the Lynx arc.Alternative excitation mechanisms for He+2, however,cannot be discarded.

Therefore,the Lynx arc is a low metallicity HII galaxy that is undergoing a burst of star formation of<~5Myr age. One possible scenario that explains the emission line spec-trum of the Lynx arc,the strength of the nitrogen lines and the strong He+2emission is that the object has experienced a merger event that has triggered a powerful starburst phase.Wolf Rayet stars have been formed and contribute to a fast chemical enrichment of the interstellar medium.

As Fosbury et al.(2003),we?nd a factor of>10discrep-ancy between the mass of the instantaneous burst implied by the luminosity of the Hβline and the mass implied by the continuum level measured for the Lynx arc.We have dis-cussed several possible solutions to this problem.The most satisfactory explanation is that gas and stars have di?erent spatial distribution so that the emission lines and the stellar continuum su?er di?erent gravitational ampli?cation by the intervening cluster.Detailed gravitional lensing models are needed to test the vailidity of this scenario. ACKNOWLEDGMENTS

We thank an anonymous referee for providing very useful comments that helped to improve this paper substantially. We thank Valentina Luridiana for useful scienti?c discus-sions and Andrew Humphrey for providing Figure1.M. Villar-Mart′?n and M.Cervi?n o are supported by the Spanish National program Ram′o n y Cajal.We acknowledge support by the Spanish Ministry of Science and Technology(MCyT) through grant AYA-2001-3939-C02-01.

REFERENCES

Allende-Prieto C.,Lambert D.L.,Asplund M.,2001,ApJ,556, L63

Allende-Prieto C.,Lambert D.L.,Asplund M.,2002,ApJ,573, L137

Aller L.H.,1984,Physics of Thermal Gaseous Nebulae,D.Reidel, https://www.sodocs.net/doc/0d16225337.html,pany,Dordrecht.

Binette L.,Groves B.,Villar-Mart′?n M.,Fosbury R.A.E.,Axon

D.,2003,A&A,405,975

Bromm V.,Kudritzki R.P.,Loeb A.,2001,ApJ,552,464

Cervi?n o M.,Mas-Hesse J.M.,1994,A&A,284,749

Cervi?n o M.,G′o mez-Flechoso M.A.,Castander F.J.,Schaerer D., Molla M.,Kn¨o dlseder J.,Luridiana V.,2001,A&A,376,422 Cervi?n o M.,Mas-Hesse J.M.,Kunth D.2004available at https://www.sodocs.net/doc/0d16225337.html,eff.esa.es/users/mcs/SED(CMK04) Charbonnel C.,Meynet G.,Maeder A.,Schaller G.,&Schaerer

D.,1993,A&AS,101,415

Chapman S.,Scott D.,Windhorst R.,Frayer D.,Borys C.,Lewis

G.,Ivison R.,2004,ApJ,606,85

Copetti M.V.F.,Mallmann J.A.H.,Schmidt A.A.,Casta?n eda

H.O.,2000,A&A,357,621

de Mello D.F.,Schaerer D.,Heldmann J.,Leitherer C.,1998,ApJ, 507,199

Ferland G.J.,Korista K.,Vernet D.,Ferguson J.,Kingdon J., Verner E.,1998,PASP,110,761

Fosbury R.A.E.,Villar-Mart′?n M.,Humphrey A.,Lombardi M., Rosati P.,Stern D.,Hook R,Holden B.P.,et al.2003,ApJ, 596,797

Fricke K.J.,Izotov Y.,Papaderos P.,Guseva N.G.,Thuan T.X., 2001,AJ,121,169

Garnett D.R.,Kennicutt R.C.,Chu Y.Skillman E.D.,1991, ApJ,373,458

Garnett D.,Dufour R.J.,Peimbert M.,Torres-Peimbert S., Shields G.A.,Skillman E.D.,Terlevich E.,Terlevich R.J, 1995,ApJ,449,L77

Gonz′a lez Delgado R.&P′e rez E.,2000,MNRAS,317,64

Guzm′a n R.,Koo D.C.,Faber S.M.,Illingworth D.,Takamiya M., Kron R.G.,Bershady M.A.,1996,ApJ,460,L5

Habing H.J.,Israel F.P.,1979,ARA&A,17,345

c 2001RAS,MNRAS000,1–??

12Villar-Mart′?n,Cervi?n o&Gonz′a lez Delgado

Holden B.P.,Stanford S.A.,Rosati P.,Squires G.,Tozzi P.,Fos-bury R.A.E.,Papovich C.,Eisenhardt P.,Elston R.,Spinrad

H.,2001,AJ,122,629

Holweger H.,2001,Joint SOHO/ACE workshop”Solar and Galactic Composition”.Ed.R.F.Wimmer-Scheweingruber.

American Institute of Physics Conferece proceedings vols.

598,p.23.

Hunt L.K.,Vanzi L.,Thuan T.X.,2001,A&A,377,66

Izotov Y.I.,Lipovetskij V.A.,Guseva N.G.,Knyazev A.Y., 1990,Astronomicheskii Zhurnal(AZh),67,682

Izotov Y.,Foltz C.B.,Green R.F.,Guseva N.G.,Thuan T.X., 1997,ApJ,487,L37

Izotov Y.,Noeske K.G.,Guseva N.G.,Papaderos P.,Thuan T.X., Fricke K.J.,2004,A&A,415,L27

Kaaret P.,Ward M.J.,Zezas A.,2004,MNRAS,351,L83 Keenan F.P.,Feibleman W.A.,Berrington K.A.,1992,ApJ,389, 443

Keenan F.P.Ramsbottom C.A.,Bell K.L.,Berrington K.A., Hibbert A.,Feibelman W.A.,Blair W.P.,1995,ApJ,438, 500

King A.,Davies M.,Ward M.,Fabbiano G.,Elvis M.,2001,ApJ, 552,L109

Kunth D.,¨Ostlin,2000,A&ARv,10,1

Kurucz,R.L.1991,in Stellar Atmospheres,Beyond Clasical Lim-its,Crivellari L.,Hubeny I.,Hummer D.G.(eds.),Kluwer, Dordrecht,p.441(https://www.sodocs.net/doc/0d16225337.html,/grids/) Legrand F.,Kunth D.,Roy J-R.,Mas-Hesse J.M.,Walsh J.R., 1997,A&A,326,L17

Leitherer C.,Schaerer D.,Goldader J.D.,Gonz′a lez Delgado R.M., Robert C.,Foo Kune D.,de Mello D.F.,Devost D.,Heckman T.,1999,ApJSS,123,3

Luridiana V.,Cervi?n o M.,2003,in Star Formation Through Time,ASP Conference Proceedings,Vol.297,p.49Perez E., Gonzalez Delgado R.M.and Tenorio-Tagle G.Eds.

Maiz-Apell′a niz,Mas-Hesse J.,Mu?n oz-Tu?n′o n C.,V′ilchez J.M., Castaeda H.O.,1998,A&A,329,409

Mas-Hesse J.M.,Kunth D.,1998,in Ultraviolet Astrophysics Be-yond the IUE Final Archive:Proceedings of the Conference held in Sevilla,Spain,from11th to14th November1997.W.

Wamsteker and R.Gonzalez Riestra Eds..Noordwijk,The Netherlands:ESA Publications Division,1998.(ESA SP;

413),p.537

Melnick J.,Terlevich R.,Eggleton P.P.,1985,MNRAS,216,255 Osterbrock D.,Flather E.,1959,ApJ,129,26

Pakull M.,Mirioni L.,2002,in proceedings of the symposium New Visions of the X-ray Universe in the XMM-Newton and Chandra Era,26-30November2001,ESTEC,The Nether-lands

Peimbert M.,Sarmiento A.,Fierro J.,1991,PASP,103,815 Pustilnik S.,Kniazev A.,Pramskij A.,Izotov Y.,Foltz C.,Brosch N.,Martin J-M.,Ugryumov A.,2004,A&A,419,469 Racine R.,1992,ApJ,395,L65

Rappaport,S.,di Stefano R.,Smith J.D.,1994,ApJ,426,692 Rieke G.H.,Loken K.,Rieke M.J.,Tamblyn P.,1993,ApJ,412, 99

Salpeter E.E.,1955,ApJ,121,161

Schaerer D.,Charbonnel C.,Meynet G.,Maeder A.,&Schaller

G.,1993a,A&AS,102,339

Schaerer D.,Meynet G.,Maeder A.,&Schaller G.,1993b,A&AS, 98,523

Schaerer D.,de Koter A.,1997,A&A,322,598

Schaller,G.,Schaerer D.,Meynet G.&Maeder A,1992,A&AS, 96,269

Schmutz,W.,Leitherer,C.,&Gruenwald,R.1992,PASP,104, 1164

Stasi′n ska G.,Schaerer D.,A&A,351,72

Stasi′n ska G.,Schaerer D.,Leitherer C.,2001,A&A,370,1 Steidel C.,Adelberger K.,Shapley A.,Pettini M.,Dickinson M.,

Giavalisco M.,2000,ApJ,532,170

Terlevich R.,Melnick J.,Masegosa J.,Moles M.,Copetti M., 1991,A&AS,91,285

Terlevich R.,Silich S.,Rosa-Gonz′a lez D.,Terlevich E.,2004,MN-RAS,348,1191

Tumlinson J.,Shull J.M.,2000,ApJ,528,L65

Vacca W.D.,Conti P.S.,1992,ApJ,401,543

van den Heuvel,Bhattacharya D.,Nomoto K.,Rappaport S.A., 1992,A&A,262,97

Viegas S.M.,Contini M.,Contini T.,1999,A&A,347,112

V′ilchez J.M.&Iglesias-P′a ramo J.,1999,ApJ,508,248 Weidner C.,Kroupa P.,2004,MNRAS,348,187

c 2001RAS,MNRAS000,1–??

从实践的角度探讨在日语教学中多媒体课件的应用

从实践的角度探讨在日语教学中多媒体课件的应用 在今天中国的许多大学,为适应现代化,信息化的要求,建立了设备完善的适应多媒体教学的教室。许多学科的研究者及现场教员也积极致力于多媒体软件的开发和利用。在大学日语专业的教学工作中,教科书、磁带、粉笔为主流的传统教学方式差不多悄然向先进的教学手段而进展。 一、多媒体课件和精品课程的进展现状 然而,目前在专业日语教学中能够利用的教学软件并不多见。比如在中国大学日语的专业、第二外語用教科书常见的有《新编日语》(上海外语教育出版社)、《中日交流标准日本語》(初级、中级)(人民教育出版社)、《新编基础日语(初級、高級)》(上海译文出版社)、《大学日本语》(四川大学出版社)、《初级日语》《中级日语》(北京大学出版社)、《新世纪大学日语》(外语教学与研究出版社)、《综合日语》(北京大学出版社)、《新编日语教程》(华东理工大学出版社)《新编初级(中级)日本语》(吉林教育出版社)、《新大学日本语》(大连理工大学出版社)、《新大学日语》(高等教育出版社)、《现代日本语》(上海外语教育出版社)、《基础日语》(复旦大学出版社)等等。配套教材以录音磁带、教学参考、习题集为主。只有《中日交流標準日本語(初級上)》、《初級日语》、《新编日语教程》等少数教科书配备了多媒体DVD视听教材。 然而这些试听教材,有的内容为日语普及读物,并不适合专业外语课堂教学。比如《新版中日交流标准日本语(初级上)》,有的尽管DVD视听教材中有丰富的动画画面和语音练习。然而,课堂操作则花费时刻长,不利于教师重点指导,更加适合学生的课余练习。比如北京大学的《初级日语》等。在这种情形下,许多大学的日语专业致力于教材的自主开发。 其中,有些大学的还推出精品课程,取得了专门大成绩。比如天津外国语学院的《新编日语》多媒体精品课程为2007年被评为“国家级精品课”。目前已被南开大学外国语学院、成都理工大学日语系等全国40余所大学推广使用。

新视野大学英语全部课文原文

Unit1 Americans believe no one stands still. If you are not moving ahead, you are falling behind. This attitude results in a nation of people committed to researching, experimenting and exploring. Time is one of the two elements that Americans save carefully, the other being labor. "We are slaves to nothing but the clock,” it has been said. Time is treated as if it were something almost real. We budget it, save it, waste it, steal it, kill it, cut it, account for it; we also charge for it. It is a precious resource. Many people have a rather acute sense of the shortness of each lifetime. Once the sands have run out of a person’s hourglass, they cannot be replaced. We want every minute to count. A foreigner’s first impression of the U.S. is li kely to be that everyone is in a rush -- often under pressure. City people always appear to be hurrying to get where they are going, restlessly seeking attention in a store, or elbowing others as they try to complete their shopping. Racing through daytime meals is part of the pace

新视野大学英语第三版第二册课文语法讲解 Unit4

新视野三版读写B2U4Text A College sweethearts 1I smile at my two lovely daughters and they seem so much more mature than we,their parents,when we were college sweethearts.Linda,who's21,had a boyfriend in her freshman year she thought she would marry,but they're not together anymore.Melissa,who's19,hasn't had a steady boyfriend yet.My daughters wonder when they will meet"The One",their great love.They think their father and I had a classic fairy-tale romance heading for marriage from the outset.Perhaps,they're right but it didn't seem so at the time.In a way, love just happens when you least expect it.Who would have thought that Butch and I would end up getting married to each other?He became my boyfriend because of my shallow agenda:I wanted a cute boyfriend! 2We met through my college roommate at the university cafeteria.That fateful night,I was merely curious,but for him I think it was love at first sight."You have beautiful eyes",he said as he gazed at my face.He kept staring at me all night long.I really wasn't that interested for two reasons.First,he looked like he was a really wild boy,maybe even dangerous.Second,although he was very cute,he seemed a little weird. 3Riding on his bicycle,he'd ride past my dorm as if"by accident"and pretend to be surprised to see me.I liked the attention but was cautious about his wild,dynamic personality.He had a charming way with words which would charm any girl.Fear came over me when I started to fall in love.His exciting"bad boy image"was just too tempting to resist.What was it that attracted me?I always had an excellent reputation.My concentration was solely on my studies to get superior grades.But for what?College is supposed to be a time of great learning and also some fun.I had nearly achieved a great education,and graduation was just one semester away.But I hadn't had any fun;my life was stale with no component of fun!I needed a boyfriend.Not just any boyfriend.He had to be cute.My goal that semester became: Be ambitious and grab the cutest boyfriend I can find. 4I worried what he'd think of me.True,we lived in a time when a dramatic shift in sexual attitudes was taking place,but I was a traditional girl who wasn't ready for the new ways that seemed common on campus.Butch looked superb!I was not immune to his personality,but I was scared.The night when he announced to the world that I was his girlfriend,I went along

操作系统文件管理_答案

第六部分文件管理 1、文件系统的主要目的就是( )。 A、实现对文件的按名存取 B、实现虚拟存储 C、提供外存的读写速度 D、用于存储系统文件 2、文件系统就是指( )。 A、文件的集合 B、文件的目录集合 C、实现文件管理的一组软件 D、文件、管理文件的软件及数据结构的总体 3、文件管理实际上就是管理( )。 A、主存空间 B、辅助存储空间 C、逻辑地址空间 D、物理地址空间 4、下列文件的物理结构中,不利于文件长度动态增长的文件物理结构就是( )。 A、顺序文件 B、链接文件 C、索引文件 D、系统文件 5、下列描述不就是文件系统功能的就是( )。 A、建立文件目录 B、提供一组文件操作 C、实现对磁盘的驱动调度 D、实现从逻辑文件到物理文件间的转换 6、文件系统在创建一个文件时,为它建立一个( )。 A、文件目录 B、目录文件 C、逻辑结构 D、逻辑空间 7、索引式(随机)文件组织的一个主要优点就是( )。 A、不需要链接指针 B、能实现物理块的动态分配 C、回收实现比较简单 D、用户存取方便 8、面向用户的文件组织机构属于( )。 A、虚拟结构 B、实际结构 C、逻辑结构 D、物理结构 9、按文件用途来分,编译程序就是( )。 A、用户文件 B、档案文件 C、系统文件 D、库文件 10、将信息加工形成具有保留价值的文件就是( )。 A、库文件 B、档案文件 C、系统文件 D、临时文件 11、文件目录的主要作用就是( )。 A、按名存取 B、提高速度 C、节省空间 D、提高外存利用率 12、如果文件系统中有两个文件重名,不应采用( )。 A、一级目录结构 B、树型目录结构 C、二级目录结构 D、A与C 13、文件系统采用树型目录结构后,对于不同用户的文件,其文件名( )。 A、应该相同 B、应该不同 C、可以不同,也可以相同 D、受系统约束 14、文件系统采用二级文件目录可以( )。 A、缩短访问存储器的时间 B、实现文件共享 C、节省内存空间 D、解决不同用户间的文件命名冲突

新视野大学英语读写教程第一册课文翻译及课后答案

Unit 1 1学习外语是我一生中最艰苦也是最有意义的经历之一。虽然时常遭遇挫折,但却非常有价值。 2我学外语的经历始于初中的第一堂英语课。老师很慈祥耐心,时常表扬学生。由于这种积极的教学方法,我踊跃回答各种问题,从不怕答错。两年中,我的成绩一直名列前茅。 3到了高中后,我渴望继续学习英语。然而,高中时的经历与以前大不相同。以前,老师对所有的学生都很耐心,而新老师则总是惩罚答错的学生。每当有谁回答错了,她就会用长教鞭指着我们,上下挥舞大喊:“错!错!错!”没有多久,我便不再渴望回答问题了。我不仅失去了回答问题的乐趣,而且根本就不想再用英语说半个字。 4好在这种情况没持续多久。到了大学,我了解到所有学生必须上英语课。与高中老师不。大学英语老师非常耐心和蔼,而且从来不带教鞭!不过情况却远不尽如人意。由于班大,每堂课能轮到我回答的问题寥寥无几。上了几周课后,我还发现许多同学的英语说得比我要好得多。我开始产生一种畏惧感。虽然原因与高中时不同,但我却又一次不敢开口了。看来我的英语水平要永远停步不前了。 5直到几年后我有机会参加远程英语课程,情况才有所改善。这种课程的媒介是一台电脑、一条电话线和一个调制解调器。我很快配齐了必要的设备并跟一个朋友学会了电脑操作技术,于是我每周用5到7天在网上的虚拟课堂里学习英语。 6网上学习并不比普通的课堂学习容易。它需要花许多的时间,需要学习者专心自律,以跟上课程进度。我尽力达到课程的最低要求,并按时完成作业。 7我随时随地都在学习。不管去哪里,我都随身携带一本袖珍字典和笔记本,笔记本上记着我遇到的生词。我学习中出过许多错,有时是令人尴尬的错误。有时我会因挫折而哭泣,有时甚至想放弃。但我从未因别的同学英语说得比我快而感到畏惧,因为在电脑屏幕上作出回答之前,我可以根据自己的需要花时间去琢磨自己的想法。突然有一天我发现自己什么都懂了,更重要的是,我说起英语来灵活自如。尽管我还是常常出错,还有很多东西要学,但我已尝到了刻苦学习的甜头。 8学习外语对我来说是非常艰辛的经历,但它又无比珍贵。它不仅使我懂得了艰苦努力的意义,而且让我了解了不同的文化,让我以一种全新的思维去看待事物。学习一门外语最令人兴奋的收获是我能与更多的人交流。与人交谈是我最喜欢的一项活动,新的语言使我能与陌生人交往,参与他们的谈话,并建立新的难以忘怀的友谊。由于我已能说英语,别人讲英语时我不再茫然不解了。我能够参与其中,并结交朋友。我能与人交流,并能够弥合我所说的语言和所处的文化与他们的语言和文化之间的鸿沟。 III. 1. rewarding 2. communicate 3. access 4. embarrassing 5. positive 6. commitment 7. virtual 8. benefits 9. minimum 10. opportunities IV. 1. up 2. into 3. from 4. with 5. to 6. up 7. of 8. in 9. for 10.with V. 1.G 2.B 3.E 4.I 5.H 6.K 7.M 8.O 9.F 10.C Sentence Structure VI. 1. Universities in the east are better equipped, while those in the west are relatively poor. 2. Allan Clark kept talking the price up, while Wilkinson kept knocking it down. 3. The husband spent all his money drinking, while his wife saved all hers for the family. 4. Some guests spoke pleasantly and behaved politely, while others wee insulting and impolite. 5. Outwardly Sara was friendly towards all those concerned, while inwardly she was angry. VII. 1. Not only did Mr. Smith learn the Chinese language, but he also bridged the gap between his culture and ours. 2. Not only did we learn the technology through the online course, but we also learned to communicate with friends in English. 3. Not only did we lose all our money, but we also came close to losing our lives.

linux下各目录作用和功能

/bin:是binary的缩写,这个目录是对Unix系统习惯的沿袭,存放着使用者最经常使用的命令。如:ls,cp,cat等。 /boot:这里存放的是启动Linux时使用的一些核心文档。 /dev:是device的缩写.这个目录下是任何Linux的外部设备,其功能类似Dos下的.sys 和Win下的.vxd。在Linux中设备和文档是用同种方法访问的。例如:/dev/hda代表第一个物理IDE硬盘。 /etc:这个目录用来存放任何的系统管理所需要的配置文档和子目录。 /home:用户主目录,比如说有个用户叫sina,那他的主目录就是/home/sina,说到这里打个岔.您现在应该明白,在我们访问一些个人网页。如:https://www.sodocs.net/doc/0d16225337.html,/sina的时候,sina就是表示访问 https://www.sodocs.net/doc/0d16225337.html, 站点中的用户sina的用户主目录.假如这个网站的操作系统是Linux,那就是表示/home/sina。 /lib:这个目录里存放着系统最基本的动态链接共享库,其作用类似于Windows里的.dll文档。几乎任何的应用程式都需要用到这些共享库。 /lost+found:这个目录平时是空的,当系统不正常关机后,这里就成了一些无家可归的文档的避难所。对了,有点类似于Dos下的.chk文档。 /mnt:这个目录是空的,系统提供这个目录是让用户临时挂载别的文档系统。 /proc:这个目录是个虚拟的目录,他是系统内存的映射,我们能够通过直接访问这个目录来获取系统信息。也就是说,这个目录的内容不在硬盘上而是在内存里啊。 /root:系统管理员,也叫终极权限者的用户主目录。当然系统的拥有者,总要有些特权啊。/sbin:s就是Super User的意思,也就是说这里存放的是一些系统管理员使用的系统管理程式。 /tmp:这个目录不用说,一定是用来存放一些临时文档的地方了。 /usr:这是个最庞大的目录,我们要用到的很多应用程式和文档几乎都存放在这个目录了。具体来说: /usr/X11R6:存放X-Windows的目录。 /usr/bin:存放着许多应用程式. /usr/sbin:给终极用户使用的一些管理程式就放在这. /usr/doc:这就是Linux文档的大本营. /usr/include:Linux下研发和编译应用程式需要的头文档在这里找. /usr/lib:存放一些常用的动态链接共享库和静态档案库. /usr/local:这是提供给一般用户的/usr目录,在这安装软件最适合. /usr/man:是帮助文档目录. /usr/src:Linux开放的源代码,就存在这个目录,爱好者们别放过哦! /var:这个目录中存放着那些不断在扩充着的东西,为了保持/usr的相对稳定,那些经常被修改的目录能够放在这个目录下,实际上许多系统管理员都是这样干的.顺便说一下,系统的日志文档就在/var/log目录中. /usr/local/bin 本地增加的命令 /usr/local/lib 本地增加的库根文件系统 通常情况下,根文件系统所占空间一般应该比较小,因为其中的绝大部分文件都不需要, 经常改动,而且包括严格的文件和一个小的不经常改变的文件系统不容易损坏。 除了可能的一个叫/ v m l i n u z标准的系统引导映像之外,根目录一般不含任何文件。所有其他文件在根文件系统的子目录中。

新大学日语简明教程课文翻译

新大学日语简明教程课文翻译 第21课 一、我的留学生活 我从去年12月开始学习日语。已经3个月了。每天大约学30个新单词。每天学15个左右的新汉字,但总记不住。假名已经基本记住了。 简单的会话还可以,但较难的还说不了。还不能用日语发表自己的意见。既不能很好地回答老师的提问,也看不懂日语的文章。短小、简单的信写得了,但长的信写不了。 来日本不久就迎来了新年。新年时,日本的少女们穿着美丽的和服,看上去就像新娘。非常冷的时候,还是有女孩子穿着裙子和袜子走在大街上。 我在日本的第一个新年过得很愉快,因此很开心。 现在学习忙,没什么时间玩,但周末常常运动,或骑车去公园玩。有时也邀朋友一起去。虽然我有国际驾照,但没钱,买不起车。没办法,需要的时候就向朋友借车。有几个朋友愿意借车给我。 二、一个房间变成三个 从前一直认为睡在褥子上的是日本人,美国人都睡床铺,可是听说近来纽约等大都市的年轻人不睡床铺,而是睡在褥子上,是不是突然讨厌起床铺了? 日本人自古以来就睡在褥子上,那自有它的原因。人们都说日本人的房子小,从前,很少有人在自己的房间,一家人住在一个小房间里是常有的是,今天仍然有人过着这样的生活。 在仅有的一个房间哩,如果要摆下全家人的床铺,就不能在那里吃饭了。这一点,褥子很方便。早晨,不需要褥子的时候,可以收起来。在没有了褥子的房间放上桌子,当作饭厅吃早饭。来客人的话,就在那里喝茶;孩子放学回到家里,那房间就成了书房。而后,傍晚又成为饭厅。然后收起桌子,铺上褥子,又成为了全家人睡觉的地方。 如果是床铺的话,除了睡觉的房间,还需要吃饭的房间和书房等,但如果使用褥子,一个房间就可以有各种用途。 据说从前,在纽约等大都市的大学学习的学生也租得起很大的房间。但现在房租太贵,租不起了。只能住更便宜、更小的房间。因此,似乎开始使用睡觉时作床,白天折小能成为椅子的、方便的褥子。

新视野大学英语第一册Unit 1课文翻译

新视野大学英语第一册Unit 1课文翻译 学习外语是我一生中最艰苦也是最有意义的经历之一。 虽然时常遭遇挫折,但却非常有价值。 我学外语的经历始于初中的第一堂英语课。 老师很慈祥耐心,时常表扬学生。 由于这种积极的教学方法,我踊跃回答各种问题,从不怕答错。 两年中,我的成绩一直名列前茅。 到了高中后,我渴望继续学习英语。然而,高中时的经历与以前大不相同。 以前,老师对所有的学生都很耐心,而新老师则总是惩罚答错的学生。 每当有谁回答错了,她就会用长教鞭指着我们,上下挥舞大喊:“错!错!错!” 没有多久,我便不再渴望回答问题了。 我不仅失去了回答问题的乐趣,而且根本就不想再用英语说半个字。 好在这种情况没持续多久。 到了大学,我了解到所有学生必须上英语课。 与高中老师不同,大学英语老师非常耐心和蔼,而且从来不带教鞭! 不过情况却远不尽如人意。 由于班大,每堂课能轮到我回答的问题寥寥无几。 上了几周课后,我还发现许多同学的英语说得比我要好得多。 我开始产生一种畏惧感。 虽然原因与高中时不同,但我却又一次不敢开口了。 看来我的英语水平要永远停步不前了。 直到几年后我有机会参加远程英语课程,情况才有所改善。 这种课程的媒介是一台电脑、一条电话线和一个调制解调器。 我很快配齐了必要的设备并跟一个朋友学会了电脑操作技术,于是我每周用5到7天在网上的虚拟课堂里学习英语。 网上学习并不比普通的课堂学习容易。 它需要花许多的时间,需要学习者专心自律,以跟上课程进度。 我尽力达到课程的最低要求,并按时完成作业。 我随时随地都在学习。 不管去哪里,我都随身携带一本袖珍字典和笔记本,笔记本上记着我遇到的生词。 我学习中出过许多错,有时是令人尴尬的错误。 有时我会因挫折而哭泣,有时甚至想放弃。 但我从未因别的同学英语说得比我快而感到畏惧,因为在电脑屏幕上作出回答之前,我可以根据自己的需要花时间去琢磨自己的想法。 突然有一天我发现自己什么都懂了,更重要的是,我说起英语来灵活自如。 尽管我还是常常出错,还有很多东西要学,但我已尝到了刻苦学习的甜头。 学习外语对我来说是非常艰辛的经历,但它又无比珍贵。 它不仅使我懂得了艰苦努力的意义,而且让我了解了不同的文化,让我以一种全新的思维去看待事物。 学习一门外语最令人兴奋的收获是我能与更多的人交流。 与人交谈是我最喜欢的一项活动,新的语言使我能与陌生人交往,参与他们的谈话,并建立新的难以忘怀的友谊。 由于我已能说英语,别人讲英语时我不再茫然不解了。 我能够参与其中,并结交朋友。

告诉你C盘里面每个文件夹是什么作用

Documents and Settings是什么文件? 答案: 是系统用户设置文件夹,包括各个用户的文档、收藏夹、上网浏览信息、配置文件等。补:这里面的东西不要随便删除,这保存着所有用户的文档和账户设置,如果删除就会重新启动不能登陆的情况,尤其是里面的default user、all users、administrator和以你当前登陆用户名的文件夹。 Favorites是什么文件? 答案: 是收藏夹,存放你喜欢的网址。可以在其中放网址快捷方式和文件夹快捷方式,可以新建类别(文件夹)。 Program Files是什么文件? 答案: 应用软件文件夹装软件的默认路径一般是这里!当然里面也有些系统自身的一些应用程序Common Files是什么文件? 答案: Common Files. 这个文件夹中包含了应用程序用来共享的文件,很重要,不能乱删除Co mmon Files这个文件是操作系统包扩系统程序和应用程序Common Files是应用程序运行库文件数据库覆盖了大约1000多个最流行的应用程序的插件,补丁等等文件夹com mon files里很多都是系统文件,不能随意删除,除非确定知道是干什么用的,没用的可以删掉。不过就算删掉了有用的东西,也没大的关系,顶多是某些软件用不了,不会造成系统崩溃。 ComPlus Applications是什么文件? 答案: ComPlus Applications:微软COM+ 组件使用的文件夹,删除后可能引起COM+ 组件不能运行 DIFX是什么文件? 答案: 不可以删除,已有的XML数据索引方法从实现思想上可分为两类:结构归纳法和节点定位法.这两种方法都存在一定的问题,结构归纳法的缺点是索引规模较大而且难以有效支持较复杂的查询,而节点定位法的主要缺点是容易形成过多的连接操作.针对这些问题,提出了一种新的动态的XML索引体系DifX,它扩展了已有的动态索引方法,采用一种动态的Bisimil arity的概念,可以根据实际查询需求以及最优化的要求动态决定索引中保存的结构信息,以实现对各种形式的查询最有效的支持.实验结果证明DifX是一种有效而且高效的XML索引方法,其可以获得比已有的XML索引方法更高的查询执行效率. Internet Explorer是什么文件? 答案: 不用说了,肯定不能删除,IE,浏览网页的! Kaspersky Lab是什么文件? 答案:卡巴斯基的文件包,这个是卡巴的报告,在C:\Documents and Settings\All Users\Application Data\Kaspersky Lab\AVP6\Report 的更新文件中有很多repor t文件很占地

新大学日语阅读与写作1 第3课译文

习惯与礼仪 我是个漫画家,对旁人细微的动作、不起眼的举止等抱有好奇。所以,我在国外只要做错一点什么,立刻会比旁人更为敏锐地感觉到那个国家的人们对此作出的反应。 譬如我多次看到过,欧美人和中国人见到我们日本人吸溜吸溜地出声喝汤而面露厌恶之色。过去,日本人坐在塌塌米上,在一张低矮的食案上用餐,餐具离嘴较远。所以,养成了把碗端至嘴边吸食的习惯。喝羹匙里的东西也象吸似的,声声作响。这并非哪一方文化高或低,只是各国的习惯、礼仪不同而已。 日本人坐在椅子上围桌用餐是1960年之后的事情。当时,还没有礼仪规矩,甚至有人盘着腿吃饭。外国人看见此景大概会一脸厌恶吧。 韩国女性就座时,单腿翘起。我认为这种姿势很美,但习惯于双膝跪坐的日本女性大概不以为然,而韩国女性恐怕也不认为跪坐为好。 日本等多数亚洲国家,常有人习惯在路上蹲着。欧美人会联想起狗排便的姿势而一脸厌恶。 日本人常常把手放在小孩的头上说“好可爱啊!”,而大部分外国人会不愿意。 如果向回教国家的人们劝食猪肉和酒,或用左手握手、递东西,会不受欢迎的。当然,饭菜也用右手抓着吃。只有从公用大盘往自己的小盘里分食用的公勺是用左手拿。一旦搞错,用黏糊糊的右手去拿,

会遭人厌恶。 在欧美,对不受欢迎的客人不说“请脱下外套”,所以电视剧中的侦探哥隆波总是穿着外套。访问日本家庭时,要在门厅外脱掉外套后进屋。穿到屋里会不受欢迎的。 这些习惯只要了解就不会出问题,如果因为不知道而遭厌恶、憎恨,实在心里难受。 过去,我曾用色彩图画和简短的文字画了一本《关键时刻的礼仪》(新潮文库)。如今越发希望用各国语言翻译这本书。以便能对在日本的外国人有所帮助。同时希望有朝一日以漫画的形式画一本“世界各国的习惯与礼仪”。 练习答案 5、 (1)止める並んでいる見ているなる着色した (2)拾った入っていた行ったしまった始まっていた

新视野大学英语(第三版)读写教程第二册课文翻译(全册)

新视野大学英语第三版第二册读写课文翻译 Unit 1 Text A 一堂难忘的英语课 1 如果我是唯一一个还在纠正小孩英语的家长,那么我儿子也许是对的。对他而言,我是一个乏味的怪物:一个他不得不听其教诲的父亲,一个还沉湎于语法规则的人,对此我儿子似乎颇为反感。 2 我觉得我是在最近偶遇我以前的一位学生时,才开始对这个问题认真起来的。这个学生刚从欧洲旅游回来。我满怀着诚挚期待问她:“欧洲之行如何?” 3 她点了三四下头,绞尽脑汁,苦苦寻找恰当的词语,然后惊呼:“真是,哇!” 4 没了。所有希腊文明和罗马建筑的辉煌居然囊括于一个浓缩的、不完整的语句之中!我的学生以“哇!”来表示她的惊叹,我只能以摇头表达比之更强烈的忧虑。 5 关于正确使用英语能力下降的问题,有许多不同的故事。学生的确本应该能够区分诸如their/there/they're之间的不同,或区别complimentary 跟complementary之间显而易见的差异。由于这些知识缺陷,他们承受着大部分不该承受的批评和指责,因为舆论认为他们应该学得更好。 6 学生并不笨,他们只是被周围所看到和听到的语言误导了。举例来说,杂货店的指示牌会把他们引向stationary(静止处),虽然便笺本、相册、和笔记本等真正的stationery(文具用品)并没有被钉在那儿。朋友和亲人常宣称They've just ate。实际上,他们应该说They've just eaten。因此,批评学生不合乎情理。 7 对这种缺乏语言功底而引起的负面指责应归咎于我们的学校。学校应对英语熟练程度制定出更高的标准。可相反,学校只教零星的语法,高级词汇更是少之又少。还有就是,学校的年轻教师显然缺乏这些重要的语言结构方面的知识,因为他们过去也没接触过。学校有责任教会年轻人进行有效的语言沟通,可他们并没把语言的基本框架——准确的语法和恰当的词汇——充分地传授给学生。

文件夹的作用

All Users文件夹: 『Win9x/ME』所有用户文件夹,里面里面包括系统缺省登录时的桌面文件和开始菜单的内容。『Win2000』在Win2000的系统目录中没有这个文件夹,Win2000将用户的信息放在根目录下的Documents and Settings文件夹中,每个用户对应一个目录,包括开始菜单、桌面、收藏夹、我的文档等等。 Application Data文件夹: 『Win9x/ME』应用程序数据任务栏中的快捷方式,输入法的一些文件等等。根据你系统中使用不同的软件,该目录中的内容也有所不同。 『Win2000』在Documents and Settings文件夹中,每个用户都对应一个Application Data 文件夹,同样每个用户由于使用的软件不同,目录内容也相同。 Applog文件夹: 『Win9x/ME』应用程序逻辑文件目录。逻辑文件是用来记录应用软件在运行时,需要调用的文件、使用的地址等信息的文件。要查看这些文件,用记事本打开即可。 Catroot文件夹: 『Win9x』计算机启动测试信息目录,目录中包括的文件大多是关于计算机启动时检测的硬软件信息。 『WinME』该文件夹位于系统目录的system目录中。 『Win2000』该文件夹位于系统目录的system32目录中。 Command文件夹: 『Win9x/ME』DOS命令目录。包括很多DOS下的外部命令,虽说都是些小工具,但真的很好用,特别是对于系统崩溃时。 『Win2000』这些DOS命令位于系统目录的system32目录中。 Config文件夹: 『Win9x/ME/2000』配置文件夹,目录中包括一些MIDI乐器的定义文件。 Cookies文件夹: 『Win9x/ME』Cookies又叫小甜饼,是你在浏览某些网站时,留在你硬盘上的一些资料,包括用户名、用户资料、网址等等。 『Win2000』每个用户都有一个Cookies文件夹,位于Documents and Settings文件夹的每个用户目录中。 Cursors文件夹: 『Win9x/ME/2000』鼠标动画文件夹。目录中包括鼠标在不同状态下的动画文件。 Desktop文件夹: 『Win9x/ME』桌面文件夹。包括桌面上的一些图标。 『Win2000』这个文件夹在系统目录中也存在,同时在Documents and Settings文件夹的每个用户目录中还有“桌面”文件夹。

新视野大学英语1课文翻译

新视野大学英语1课文翻译 1下午好!作为校长,我非常自豪地欢迎你们来到这所大学。你们所取得的成就是你们自己多年努力的结果,也是你们的父母和老师们多年努力的结果。在这所大学里,我们承诺将使你们学有所成。 2在欢迎你们到来的这一刻,我想起自己高中毕业时的情景,还有妈妈为我和爸爸拍的合影。妈妈吩咐我们:“姿势自然点。”“等一等,”爸爸说,“把我递给他闹钟的情景拍下来。”在大学期间,那个闹钟每天早晨叫醒我。至今它还放在我办公室的桌子上。 3让我来告诉你们一些你们未必预料得到的事情。你们将会怀念以前的生活习惯,怀念父母曾经提醒你们要刻苦学习、取得佳绩。你们可能因为高中生活终于结束而喜极而泣,你们的父母也可能因为终于不用再给你们洗衣服而喜极而泣!但是要记住:未来是建立在过去扎实的基础上的。 4对你们而言,接下来的四年将会是无与伦比的一段时光。在这里,你们拥有丰富的资源:有来自全国各地的有趣的学生,有学识渊博又充满爱心的老师,有综合性图书馆,有完备的运动设施,还有针对不同兴趣的学生社团——从文科社团到理科社团、到社区服务等等。你们将自由地探索、学习新科目。你们要学着习惯点灯熬油,学着结交充满魅力的人,学着去追求新的爱好。我想鼓励你们充分利用这一特殊的经历,并用你们的干劲和热情去收获这一机会所带来的丰硕成果。 5有这么多课程可供选择,你可能会不知所措。你不可能选修所有的课程,但是要尽可能体验更多的课程!大学里有很多事情可做可学,每件事情都会为你提供不同视角来审视世界。如果我只能给你们一条选课建议的话,那就是:挑战自己!不要认为你早就了解自己对什么样的领域最感兴趣。选择一些你从未接触过的领域的课程。这样,你不仅会变得更加博学,而且更有可能发现一个你未曾想到的、能成就你未来的爱好。一个绝佳的例子就是时装设计师王薇薇,她最初学的是艺术史。随着时间的推移,王薇薇把艺术史研究和对时装的热爱结合起来,并将其转化为对设计的热情,从而使她成为全球闻名的设计师。 6在大学里,一下子拥有这么多新鲜体验可能不会总是令人愉快的。在你的宿舍楼里,住在你隔壁寝室的同学可能会反复播放同一首歌,令你头痛欲裂!你可能喜欢早起,而你的室友却是个夜猫子!尽管如此,你和你的室友仍然可能成

linux下各文件夹的结构说明及用途详细介绍解析

linux下各文件夹的结构说明及用途介绍: /bin:二进制可执行命令。 /dev:设备特殊文件。 /etc:系统管理和配置文件。 /etc/rc.d:启动的配置文件和脚本。 /home:用户主目录的基点,比如用户user的主目录就是/home/user,可以用~user 表示。 /lib:标准程序设计库,又叫动态链接共享库,作用类似windows里的.dll文件。 /sbin:系统管理命令,这里存放的是系统管理员使用的管理程序。 /tmp:公用的临时文件存储点。 /root:系统管理员的主目录。 /mnt:系统提供这个目录是让用户临时挂载其他的文件系统。 /lost+found:这个目录平时是空的,系统非正常关机而留下“无家可归”的文件就在这里。 /proc:虚拟的目录,是系统内存的映射。可直接访问这个目录来获取系统信息。 /var:某些大文件的溢出区,比方说各种服务的日志文件。 /usr:最庞大的目录,要用到的应用程序和文件几乎都在这个目录。其中包含: /usr/x11r6:存放x window的目录。 /usr/bin:众多的应用程序。

/usr/sbin:超级用户的一些管理程序。 /usr/doc:linux文档。 /usr/include:linux下开发和编译应用程序所需要的头文件。 /usr/lib:常用的动态链接库和软件包的配置文件。 /usr/man:帮助文档。 /usr/src:源代码,linux内核的源代码就放在/usr/src/linux 里。 /usr/local/bin:本地增加的命令。 /usr/local/lib:本地增加的库根文件系统。 通常情况下,根文件系统所占空间一般应该比较小,因为其中的绝大部分文件都不需要经常改动,而且包括严格的文件和一个小的不经常改变的文件系统不容易损坏。除了可能的一个叫/vmlinuz标准的系统引导映像之外,根目录一般不含任何文件。所有其他文件在根文件系统的子目录中。 1. /bin目录 /bin目录包含了引导启动所需的命令或普通用户可能用的命令(可能在引导启动后。这些命令都是二进制文件的可执行程序(bin是binary的简称,多是系统中重要的系统文件。 2. /sbin目录 /sbin目录类似/bin,也用于存储二进制文件。因为其中的大部分文件多是系统管理员使用的基本的系统程序,所以虽然普通用户必要且允许时可以使用,但一般不给普通用户使用。 3. /etc目录

新视野大学英语2课文翻译

新视野大学英语2课文翻译(Unit1-Unit7) Unit 1 Section A 时间观念强的美国人 Para. 1 美国人认为没有人能停止不前。如果你不求进取,你就会落伍。这种态度造就了一个投身于研究、实验和探索的民族。时间是美国人注意节约的两个要素之一,另一个是劳力。 Para. 2 人们一直说:“只有时间才能支配我们。”人们似乎是把时间当作一个差不多是实实在在的东西来对待的。我们安排时间、节约时间、浪费时间、挤抢时间、消磨时间、缩减时间、对时间的利用作出解释;我们还要因付出时间而收取费用。时间是一种宝贵的资源,许多人都深感人生的短暂。时光一去不复返。我们应当让每一分钟都过得有意义。 Para. 3 外国人对美国的第一印象很可能是:每个人都匆匆忙忙——常常处于压力之下。城里人看上去总是在匆匆地赶往他们要去的地方,在商店里他们焦躁不安地指望店员能马上来为他们服务,或者为了赶快买完东西,用肘来推搡他人。白天吃饭时人们也都匆匆忙忙,这部分地反映出这个国家的生活节奏。工作时间被认为是宝贵的。Para. 3b 在公共用餐场所,人们都等着别人吃完后用餐,以便按时赶回去工作。你还会发现司机开车很鲁莽,人们推搡着在你身边过去。你会怀念微笑、简短的交谈以及与陌生人的随意闲聊。不要觉得这是针对你个人的,这是因为人们非常珍惜时间,而且也不喜欢他人“浪费”时间到不恰当的地步。 Para. 4 许多刚到美国的人会怀念诸如商务拜访等场合开始时的寒暄。他们也会怀念那种一边喝茶或咖啡一边进行的礼节性交流,这也许是他们自己国家的一种习俗。他们也许还会怀念在饭店或咖啡馆里谈生意时的那种轻松悠闲的交谈。一般说来,美国人是不会在如此轻松的环境里通过长时间的闲聊来评价他们的客人的,更不用说会在增进相互间信任的过程中带他们出去吃饭,或带他们去打高尔夫球。既然我们通常是通过工作而不是社交来评估和了解他人,我们就开门见山地谈正事。因此,时间老是在我们心中的耳朵里滴滴答答地响着。 Para. 5 因此,我们千方百计地节约时间。我们发明了一系列节省劳力的装置;我们通过发传真、打电话或发电子邮件与他人迅速地进行交流,而不是通过直接接触。虽然面对面接触令人愉快,但却要花更多的时间, 尤其是在马路上交通拥挤的时候。因此,我们把大多数个人拜访安排在下班以后的时间里或周末的社交聚会上。 Para. 6 就我们而言,电子交流的缺乏人情味与我们手头上事情的重要性之间很少有或完全没有关系。在有些国家, 如果没有目光接触,就做不成大生意,这需要面对面的交谈。在美国,最后协议通常也需要本人签字。然而现在人们越来越多地在电视屏幕上见面,开远程会议不仅能解决本国的问题,而且还能通过卫星解决国际问题。

让你知道C盘的每个文件夹代表什么,其作用是什么

让你知道C盘的每个文件夹代表什么,其作用是什么 C:\Program Files文件夹介绍 列出常见的几个文件夹: 1、C:\Program Files\common files Common Files (存放软件会用到的公用库文件) 安装一些软件会在里面产生文件夹 比如visual studio symentec antivirus gtk lib 等 他是一些共享资源,这里的共享是指,一个公司所出的一系列软件都需要用这里的文件 比如:vb vc 要用里面visual studio 文件夹下的文件 norton fire wall norton antivirus 等要用里面symentec shared文件夹下的文件acrobat reader photoshop 要用里面adobe 文件夹下的文件 公有文件不能删除 正常的话会有: Microsoft Shared MSSoap ODBC SpeechEngines System Direct X Common Files这个文件是操作系统包扩系统程序和应用程序 Common Files是应用程序运行库文件 数据库覆盖了大约1000多个最流行的应用程序的插件,补丁等等 文件夹common files里很多都是系统文件,不能随意删除,除非确定知道是干什么用的,没用的可以删掉。不过就算删掉了有用的东西,也没大的关系,顶多是某些软件用不了,不会造成系统崩溃。 另外也有说各种软件的注册信息也在里面。 2、C:\Program Files\ComPlus Applications ComPlus Applications:微软COM+ 组件使用的文件夹,删除后可能引起COM+ 组件不能运行 显示名称:COM+ System Application ◎微软描述:管理基于COM+ 组件的配置和跟踪。如果服务停止,大多数基于 COM+ 组件将不能正常工作。如果本服务被禁用,任何明确依赖它的服务都将不能启动。 ◎补充描述:如果 COM+ Event System 是一台车,那么 COM+ System Application 就是司机,如事件检视器内显示的 DCOM 没有启用。一些 COM+软件需要,检查你的C:\Program Files\ComPlus 3、C:\Program Files\InstallShield Installation Information 发现这个网上一些解释的很含糊,说是用来存放部分软件安装信息的文件夹。比较准确的说

相关主题