搜档网
当前位置:搜档网 › 第10讲函数图像及其变换(教案)

第10讲函数图像及其变换(教案)

第10讲函数图像及其变换(教案)
第10讲函数图像及其变换(教案)

函数图像与变换

教学目标:掌握常见函数图像及其性质(高考要求B ),熟悉常见的函数图像(平移、对称、翻折)变换(高考要求B ).

教学重难点:掌握常见函数图像及其性质,会用“平移、对称、翻折”等手段进行函数图像变换。 教学过程:

一.知识要点:

1.常见函数图像及其性质: (1)平移变换:

①y =f (x ) →y =f (x ±a )(a >0)图象 横向 平移a 个单位,(左+右—). ②y =f (x ) →y =f (x )±b (b >0)图象 纵向 平移b 个单位,(上+下—)

③若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; ④若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象. (2)对称变换:

①y =f (x ) →y =f (-x )图象关于 y 轴 对称; 若f (-x )=f (x ),则函数自身的图象关于y 轴对称.

②y =f (x ) →y =-f (x )图象关于x 轴 对称.

③y =f (x ) →y =-f (-x )图象关于原点 对称; 若f (-x )=-f (x ),则函数自身的图象关于原点对称.

④y =f (x ) →y =f -1(x )图象关于直线y =x 对称.

⑤y =f (x ) →y =-f -1(-x )图象关于直线y =-x 对称. ⑥y =f (x ) →y =f (2a -x )图象关于直线x =a 对称; ⑦y =f (x ) →y =2b -f (x )图象关于直线y =b 对称. ⑧y =f (x ) →y =2b -f (2a -x )图象关于点(a ,b ) 对称.

若f (x )=f (2a -x )(或f (a +x )=f (a -x ))则函数自身的图象关于直线x =a 对称.

若函数()y f x =的图象关于直线2

a b

x +=对称()()f a mx f b mx ?+=-

()()f a b mx f mx ?+-=

(3)翻折变换主要有

①y =f (x ) →y =f (|x |)的图象在y 轴右侧(x >0)的部分与y =f (x )的图象相同,在y 轴左侧部分与其右侧部分关于y 轴对称.

②y =f (x ) →y =|f (x )|的图象在x 轴上方部分与y =f (x )的图象相同,其他部分图象为y =f (x )图象下方部分关于x 轴的对称图形. 二.基础练习:

1.若把函数f (x )的图象作平移变换,使图象上的点P (1,0)变换成点Q (2,-1), 则函数y =f (x )的图象经此变换后所得图象的函数解析式为 ( A )

A.y =f (x -1)-1

B.y =f (x +1)-1

C.y =f (x -1)+1

D.y =f (x +1)+1 2.已知函数y =f (x )的图象如图2—3,则下列函数所对应的图象中,不正确的是( B ) A.y =|f (x )| B.y =f (|x |) C.y =f (-x ) D.y =-f (x )

解: y =f (|x |)是偶函数,图象关于y 轴对称.

图2—3

3.设函数y=2x的图象为C,某函数的图象C′与C关于直线x=2对称,那么这个函数是y=24-x

解∵y=f(x)

的图象与y

=f

(4-x)的图象关于直线x=2对称,设f(x)=2x,则f(4-x)=24-x

4.设函数y=f(x)的定义域是R,且f(x-1)=f(1-x),那么f(x)的图象有对称轴直线x=0 解:设x-1=t,则f(t)=f(-t),函数为偶函数,关于y轴对称.

5.函数y=

1

2

-

-

x

x

的图象关于点(1,-1)_对称.

解:y=

1

2

-

-

x

x

=-1+

1

1

-

x

,y=

1

2

-

-

x

x

的图象是由y=

x

1

的图象先右移1个单位,再下移1个单位

而得到,故对称点为(1,-1).

三.例题精讲:

例1.(1)函数y=|

|x

xa x

(0<a<1)的图象的大致形状是( D )

(2).(2009·郑州模拟)定义运算,

)

(

)

(

?

?

?

>

=

?

b

a

b

b

a

a

b

a则函数f(x)=x

2

1?的图象是 ( A )

(3).已知函数y=f(x)的图象如图①所示,y=g(x)的图象如图②所示,则函数y=f(x)·g(x)

的图象可能是图中的( C )

例2. 作出下列函数的图象.

(1).f(x)=x2-2|x|+1 (2)f(x)=x2-2|x|+1(3)f(x)=|x2-1|(4)f(x)=x2+2x+1

(5)y=

1

1

2

-

-

x

x;(6)y=)

2

1

(|x|.(7)(2)y=|log

2

1

(1-x)|; (8)y=

2

1(lgx+|lgx|);

例3.(1)定义在R上的函数y=f(x)、y=f(-x)、y=-f(x)、y=-f(-x)的图象重合,它们

的值域为__{0}.

【解析】函数y=f(x)与y=f(-x)的图象重合,说明函数y=f(x)的图象关于y轴对称;y=f(x)

与y=-f(x)图象重合,说明y=f(x)的图象关于x轴对称;y=f(x)与y=-f(-x)的图象重合,

说明y=f(x)的图象关于原点对称.即若y=f(x)上任一点(x,y),则也有点(-x,y)、(x,-y)、(-x,-y);根据函数的定义,对于任一x∈R,只能有惟一的y与之对应,从而y=-y,即y=0,

故函数的值域为{0}.

(2)已知函数f(x)定义域为R,则下列命题中

①y=f(x)为偶函数,则y=f(x+2)的图象关于y轴对称.

②y=f(x+2)为偶函数,则y=f(x)关于直线x=2对称.

③若f(x-2)=f(2-x),则y=f(x)关于直线x=2对称.

④y=f(x—2)和y=f(2-x)的图象关于x=2对称.

其中正确命题序号有_②④_(填上所有正确命题序号).

【解析】 ①y =f (x )是偶函数,而f (x +2)是将f (x )的图象向左平移2个单位得到的,

则对称轴左移2个单位为x =-2,所以f (x +2)图象关于直线x =-2对称.

②y =f (x +2)为偶函数,则f (x +2)=f (2-x ),所以y =f (x )图象关于直线x =2对称. ③令x -2=t ,则2-x =-t ,得f (t )=f (-t ),y =f (x )的图象关于y 轴对称.

④f (x )与f (-x )的图象关于y 轴对称,将f (x )与f (-x )的图象分别向右平移2个单位, 分别得到f (x -2)与f (2-x )的图象,对称轴右移2个单位为直线x =2. 例4.设f (x )是定义在R 上的奇函数,且f (x +2)=-f (x ),又当-1≤x ≤1时,f(x)=x 3

. (1)证明直线x =1是函数f (x )的图象的一条对称轴;(2)当x ∈[1,5]时,求f (x )的解析式. 【解】 (1)设(x 0,y 0)是f (x )的图象上任意一点,它关于x =1对称的点为(x 1,y 1),

则y 0=y 1,x 0=2-x 1,∴y 1=f (2-x 1)=-f (-x 1)=f (x 1)∴(x 1,y 1)也在y =f (x )的图象上,命题成立.

(2)∵f (x )的图象关于x =1对称,故当1≤x ≤3时,f (x )=(2-x )3又当3

-1

∴f (x )=?????≤<-≤≤-)

53(,)4()

31(,)2(3

3

x x x x 例5.设函数f(x)=x 2-2|x|-1 (-3≤x ≤3).

(1)证明:f(x)是偶函数; (2)画出函数的图象; (3)指出函数f(x)的单调区间; (4)求函数的值域. (1)证明 f(-x)=(-x)2-2|-x|-1=x 2-2|x|-1=f(x),即f(-x)=f(x),∴f(x)是偶函数. (2)解 当x ≥0时,f(x)=x 2-2x-1=(x-1)2-2,

当x <0时,f(x)=x 2

+2x-1=(x+1)2

-2,

f(x)=,)

03(2

)1()

30(2

)1(2

2???<≤--+≤≤--x x x x

根据二次函数的作图方法,可得函数图象如图所示. (3)解 函数f(x)的单调区间为[-3,-1),[-1,0),[0,1),[1,3]. f (x )在区间[-3,-1)和[0,1)上为减函数,在[-1,0),[1,3]上为增函数.

(4)解 当x ≥0时,函数f(x)=(x-1)2

-2的最小值为-2,最大值为f(3)=2; 当x <0时,函数f(x)=(x+1)2-2的最小值为-2,最大值为f(-3)=2; 故函数f(x)的值域为[-2,2].

例6.作函数y =x + 1x 的图象. 扩展:y =a x + b

x

(a >0,b >0)的图像.

例7.(1)已知函数y=f(x)的定义域为R ,且当x ∈R 时f(m+x)=f(m-x)恒成立. 求证:y=f(x)的图象关于直线x=m 对称;

(2)若函数y=log 2|ax-1|的图象的对称轴是x=2,求非零实数a 的值. (1)证明 设P (x 0,y 0)是y=f(x)图象上任意一点,则y 0=f(x 0).

又设P 点关于x=m 的对称点为P ′,则P ′的坐标为(2m-x 0,y 0).由已知f(m+x)=f(m-x), 得f(2m-x 0)=f [m+(m-x 0)]=f [m-(m-x 0)]

=f(x 0)=y 0.即),-(200y x m P '在y=f(x)图象上,

∴y=f (x )的图象关于直线x=m 对称.

(2)解 ∵对定义域内的任意x,有f(2-x)=f(2+x)恒成立.

∴|a (2-x )-1|=|a (2+x )-1|恒成立,即|-ax+(2a-1)|=|ax+(2a-1)|恒成立.

又a ≠0,∴2a-1=0,得a=2

1.

自我检测

1.(2008·全国Ⅱ理,3)函数f(x)=x

1-x 的图象关于 坐标原点对称

2.作出下列函数的图象. (1)y=2-2x

;(2)y=1

1

2+-x x . (3)y =??

?

??x +1 x ≤112 (5-x ) 1<x ≤3

4-x x >3

3.已知f(x)=[][],1,0,10,1,12

?

?

?∈+-∈+x x x x 则f(x-1)的图象是 4.若函数f(x)=3+log 2x 的图象与g(x)的图象关于 y=x 对称,则函数g(x)= 2

x-3

5. 函数y=f(x)与函数y=g(x)的图象如图,则函数y=f(x)·g(x)的图象可能是 ( A )

6.设a >1,实数x,y 满足|x|-log a y

1=0,则y 关于x 的函数的图象形状大致是 ( B )

7.使log 2(-x)<x+1成立的x 的取值范围是 .

答案 (-1,0)

8.设f(x)是定义在R 上奇函数,在(0,2

1)上单调递减,且f(x)=f(-x-1).给出下列四个结论:①函数f(x)的图象关于直线x=2

1对称;②f(x)在(2

1,1)上单调递增;

③对任意的x ∈Z ,都有f(x)=0;④函数y=f )2

(x -π

的图象是中心对称图形,且对称中心为(

)0,2

π

.其中正确命题的序号是 .答案 ①②③④

9.当x ∈(1,2)时,不等式(x-1)2<log a x 恒成立,则a 的取值范围为 .

答案 (1,2]

10.要得到)3lg(x y -=的图像,只需作x y lg =关于_y __轴对称的图像,再向__右__平移3个单位而得到

11.函数()lg(2)1f x x x =?+-的图象与x 轴的交点个数有__2__个

12.如若函数(21)y f x =-是偶函数,则函数(2)y f x =的对称轴方程是_1

2

x =-__

高中数学第10讲 函数图像及其变换(教案)新人教版必修1

函数图像与变换 教学目标:掌握常见函数图像及其性质(高考要求B ),熟悉常见的函数图像(平移、对称、翻折)变换(高考要求B ). 教学重难点:掌握常见函数图像及其性质,会用“平移、对称、翻折”等手段进行函数图像变换。 教学过程: 一.知识要点: 1.常见函数图像及其性质: (1)平移变换: ①y =f (x ) →y =f (x ±a )(a >0)图象 横向 平移a 个单位,(左+右—). ②y =f (x ) →y =f (x )±b (b >0)图象 纵向 平移b 个单位,(上+下—) ③若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; ④若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象. (2)对称变换: ①y =f (x ) →y =f (-x )图象关于 y 轴 对称; 若f (-x )=f (x ),则函数自身的图象关于y 轴对称. ②y =f (x ) →y =-f (x )图象关于x 轴 对称. ③y =f (x ) →y =-f (-x )图象关于原点 对称; 若f (-x )=-f (x ),则函数自身的图象关于原点对称. ④y =f (x ) →y =f -1(x )图象关于直线y =x 对称. ⑤y =f (x ) →y =-f -1(-x )图象关于直线y =-x 对称. ⑥y =f (x ) →y =f (2a -x )图象关于直线x =a 对称; ⑦y =f (x ) →y =2b -f (x )图象关于直线y =b 对称. ⑧y =f (x ) →y =2b -f (2a -x )图象关于点(a ,b ) 对称. 若f (x )=f (2a -x )(或f (a +x )=f (a -x ))则函数自身的图象关于直线x =a 对称. 若函数()y f x =的图象关于直线2 a b x +=对称()()f a mx f b mx ?+=- ()()f a b mx f mx ?+-= (3)翻折变换主要有 ①y =f (x ) →y =f (|x |)的图象在y 轴右侧(x >0)的部分与y =f (x )的图象相同,在y 轴左侧部分与其右侧部分关于y 轴对称. ②y =f (x ) →y =|f (x )|的图象在x 轴上方部分与y =f (x )的图象相同,其他部分图象为y =f (x )图象下方部分关于x 轴的对称图形. 二.基础练习: 1.若把函数f (x )的图象作平移变换,使图象上的点P (1,0)变换成点Q (2,-1), 则函数y =f (x )的图象经此变换后所得图象的函数解析式为 ( A ) A.y =f (x -1)-1 B.y =f (x +1)-1 C.y =f (x -1)+1 D.y =f (x +1)+1 2.已知函数y =f (x )的图象如图2—3,则下列函数所对应的图象中,不正确的是( B ) A.y =|f (x )| B.y =f (|x |) C.y =f (-x ) D.y =-f (x ) 解: y =f (|x |)是偶函数,图象关于y 轴对称. 图2—3

函数的图象教学设计教案设计

函数()0,0)sin(>>+=ω?ωA x A y 的图象教学设计 教学目标 1.知识与技能 (1)结合物理中的简谐振动,了解()0,0)sin(>>+=ω?ωA x A y 的实际意义; (2)用“五点法”作出()0,0)sin(>>+=ω?ωA x A y 的图象, 并借助图形计算器 动态演示三角函数图象,研究参数?ω,,A 对函数图象变化的影响,让学 生进一步了解三角函数图象各种变换的实质和内在规律. (3)考察参数A 、?、ω对()0,0)sin(>>+=ω?ωA x A y 图象影响的过程中认识 到函数x y sin =与()0,0)sin(>>+=ω?ωA x A y 的联系. 2.过程与方法 (1)经历x y sin =到()0,0)sin(>>+=ω?ωA x A y 图象变换探究的过程,培养学生 的数学发现能力和概括总结能力. (2)让学生经历三角函数图象各种变换的探求和运用,体验各种变换的内在联系, 提高学生的推理能力、分析问题和解决问题的能力. (3)在研究各种变换的过程中,让学生体验由简单到复杂、由特殊到一般的化归 思想,渗透数形结合的思想. 3.情感、态度、价值观 (1)通过三角函数图象各种变换的探求,培养学生的探索能力、钻研精神和科学 态度. (2)通过合作学习,探求三角函数图象各种变换,培养学生团结协作的精神. 教学重点与难点 教学重点:函数()0,0)sin(>>+=ω?ωA x A y 的图象以及参数?ω,,A 对图象变换的影响.函数x y sin =的图象与函数()0,0)sin(>>+=ω?ωA x A y 的图象之间的变换关系. 教学难点:函数()0,0)sin(>>+=ω?ωA x A y 的图象与函数x y sin =的图象与之间的变

高中函数的图像变换

函数图象变换 一.平移变换(0,0>>k h ) 1.左右平移:“左+右-” (1)将函数()y f x =的图象 ,即可得()y f x h =+的图象; (2)将函数()y f x =的图象 ,即可得)(h x f y -=的图象; 2.上下平移:“上+下-” (1)将函数()y f x =的图象 ,即可得()y f x k =+的图象 (2)将函数()y f x =的图象 ,即可得k x f y -=)(的图象 例如:将函数x y 2log =的图象 即可得)2(log 2+=x y 的图象 将函数x y 2log =的图象 即可得2log 2+=x y 的图象 变式1:将函数x y 2log 2=的图象向右平移1个单位,得到函数________________的图象. 变式2:将函数x y 3=的图象__________________________得到函数23-=x y 的图象. 二.翻折变换 1.要得到函数|()|y f x =的图象,可将函数()y f x =的图象位于x 轴下方的关于x 轴对称翻折到 x 轴上方,其余部分不变(不保留x 轴下方的部分). 2.要得到函数(||)y f x =的图象,先作出()y f x =)0(≥x 的图象,再利用偶函数关于y 轴对称, 作出0>a A ) 1.将函数()y f x =的图象上所有点的横坐标不变,纵坐标变为原来的A 倍,即可得)(x Af y = 的图象.(1>A 时伸长,10<a 时缩短,10<

函数图象的几何变换教案

函数图象的几何变换教案 【教学目标】1.让学生熟练掌握各种图象变换,能迅速作出给定的函数图象; 2.让学生了解用数形结合法解决方程、不等式、含参问题的讨论; 3.培养学生主动运用数形结合方法解题的意识. 【教学重点】函数图象的几何变换 【教学难点】1.各种图象变换之间的区别及灵活应用; 2.运用数形结合方法解题. 【例题设置】例1(平移易错点剖析),例2、4(函数作图),例3(找中心),例5(图 象法解不等式) 【教学过程】 第一课时 一、复习九种基本函数及圆锥曲线的图象. ⑴ 正比例函数 kx y =,)0,(≠∈k R k ⑵ 反比例函数 k y = , )0,(≠∈k R k ☆ 其图象是以原点为中心,以直线y x =和y x =-为对称轴的双曲线. ⑶ 一次函数 b kx y +=,)0,(≠∈k R k ⑷ 一元二次函数 )0(2 ≠++=a c bx ax y ⑸ 指数函数 ,0x y a a =>且1≠a (特征线:1=x ) ⑹ 对数函数 0, log >=a x y a 且1≠a (特征线:1=y ) ⑺ 正弦函数 R x x y ∈=,sin ,周期π2=T ⑻ 余弦函数 x y cos =,R x ∈,周期π2=T ⑼ 正切函数 ),2 (,tan Z k k x x y ∈+ ≠=π π 周期π=T ☆一个小结论:在区间)2 , 0(π 上恒有x x x sin tan >>(证明文科留至《三角函数》一节

再给出,理科用导数证明如下) 证明:① 记()tan f x x x =-,则2 1 ()10cos f x x '= ->在)2 ,0(π上恒成立,故()f x 在)2 ,0(π上为增函数,所以()(0)0f x f >=,即当(0,)2x π ∈时,恒有tan x x > ② 记()sin g x x x =-,则()1cos 0g x x '=->在)2, 0(π 上恒成立,故()g x 在)2 ,0(π 上为增函数,所以()(0)0g x g >=,即当(0,)2 x π ∈时,恒有sin x x > 综上所述,在区间)2 ,0(π 上恒有x x x sin tan >> ⑽ 椭圆 X 型:12222=+b y a x ; Y 型: 122 22=+b x a y ⑾ 双曲线 X 型:12222=-b y a x ; Y 型: 122 22=-b x a y ⑿ 抛物线 px y 22=)0(>p ;px y 22-= )0(>p ; py x 22=)0(>p ;py x 22-= )0(>p . ★注意:1.牢记九种基本函数及圆锥曲线图象是进行函数图象变换的基础,也是提高用数形结合方法解题速度的关键. 2.理解各种曲线图象的较为精确的画法,这在用数形结合法解题,涉及两个图象之间关系时,才不至于造成误解. 二、图象的初等变换 A 、平移变换 1.要作出函数)(a x f y +=的图象,只需将函数)(x f y =的图象向左)0(>a 或向右 )0(h 或向下 )0(

函数的图象教案

课题:14.1.3函数的图象 教学目标 ①知识与技能:了解函数图象的一般意义,初步学会用列表、描点、连线画函数图象.提高识图能力、分析函数图象信息能力. ②过程与方法:通过对实际问题的分析、对比,学会观察、分析函数图象信息.体会数形结合思想,并利用它解决问题,提高解决问题能力. ③情感、态度与价值观:学生通过对问题的分析,感受现实生活中函数的普遍性,体会事物之间的相互联系与制约.体会数学方法的多样性,提高学习兴趣.认识数学在解决问题中的重要作用从而加深对数学的认识. 教学重点 ①函数图象的画法. ②函数图象的应用,观察图象得到相关信息,并提高画图、识图的能力.教学难点 ①函数图象的概念的理解,关键要理解它是如何与上一节知识联系起来. ②把实际问题转化为函数图象,再根据图象来研究实际问题. 教学准备多媒体电脑、教学课件、学案 教学过程(师生活动)设计理念 提出问题创设情景活动一:整装待发 在前面一节课,我们已学习了什么是函数.请大家告诉我函 数的概念. 一般地,在一个变化过程中,如果有两个变量x与y ,并且 对于x的每一个确定的值,y都有唯一确定的值与其对应,那么 我们就说x是自变量,y是x的函数. 引题:龟兔赛跑” 寓言故事 由于本课 知识的教 学是建立 在上一节 内容的基 础之上,所 以安排了

活动探究激发动机 想一想: 龟兔赛跑的过程能用数学上的图象描述出来吗? 乌鸦喝水的故事也能用数学上的图象来描述吗? 活动二:扬帆起航: 生活中有许许多多的图形与图象,比如体检时的心电图, 心 电图直观地反映了心脏生物电流与时间的关系.电流波随时间的 变化而变化. 再比如气温曲线图,?它反映了江西省的春季某天气温T如 何随时间t变化而变化的情况,有些问题中的函数关系很难列 式子表示,但我们可以通过图象来直观反映,比如心电图直观地 反映心脏生物电流与时间的关系;气温的折线图反映温度的变化 等, 即使对于能列式表示的函数关系,如果也能画图表示,则会 使函数关系更清晰。 今天我们就来学习如何画函数图象的问题及解读函数图象 信息. 一个概念 回顾 “新课标” 强调数学 与现实的 联系,借此 引导学生 挖掘现实 生活中的 相关素材, 体会数学 与现实的 密切联系 及其应用 价值,激发 学生的数 学学习兴 趣. t(小时) T(°C) 69 31215182124 12 10 11 13

函数图像变换与旋转

函数图像变换与旋转 一.平移变换: 1.y=f (x )→y=f(x±a )(a>0) 原图像横向平移a 个单位(左+右-) 2.y=f (x )→y=f(x)±b(b>0) 原图像纵向平移b 个单位(上+下-) 3.若将函数y=f (x )的图像右移a ,上移b 个单位,得到函数y=f (x-a )+b 二.对称变换: 1.y=f (x )→y=f(-x) 原图像与新图像关于y 轴对称; 对比:若f=(-x )=f (x ) 则函数自身的图像关于y 轴对称; 2.y=f (x )→y=-f(x) 原图像与新图像关于x 轴对称; 3.y=f (x )→y=-f(-x) 原图像与新图像关于原点对称; 对比:若f (-x )=-f (x )则函数自身的图像关于原点对称; 4.y=f (x )→y=f -1 (x )原图像与新图像关于直线y=x 对称; 5.y=f (x )→y=f -1(-x )原图像与新图像关于直线y=-x 对称; 6.y=f (x )→y=f(2a-x )原图像与新图像关于直线x=a 对称; 7.y=f (x )→y=2b-f (x )原图像与新图像关于直线y=b 对称; 8.y=f (x )→y=2b-f (2a-x )原图像与新图像关于点(a ,b )对称; 三.翻折变换: 1.y=f (x )→y=f(|x|)的图像在y 轴右侧(x>0)的部分与y=f (x )的图像相同,在y 轴的左侧部分与其右侧部分关于y 轴对称; 2.y=f (x )→y=|f(x)|的图像在x 轴上方部分与y=f (x )的图像相同,其他部分图像为y=f (x )图像下方部分关于x 轴的对称图像; 3.y=f (x )→y=f(|x+a|)变换步骤: 法1:先平移|a|个单位(左+右-)保留直线x=a 右边图像,后去掉直线x=a 左边图像并作关于直线x=a 对称图像y=f (x )→y=f(x+a )→y=f(|x+a|) 法2:先保留y 轴右边图像,去掉y 轴左边图像,并作关于y 轴对称图像,后平移|a|个单位(左+右-)y=f (x )→y=f(|x|)→y=f(|x+a|) 四.伸缩变换: 1.y=f (x )→y=af(x)(a>0)原图像上所有点的纵坐标变为原来的a 倍,横坐标不变; 2.y=f (x )→y=f(ax)(a>0)原图像上所有的横坐标变为原来的1a ,纵坐标不变;

教案正弦型函数的图像和性质

教案 正弦型函数的图像和性质 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T π ω = 称为这个振动的周期,单位时间内往复振动的次数12f T ω π = = ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =,先画出它在长度为一个周期内的闭区间上的简图,再 函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上;②再把 图象上所点的横坐标缩短到原来的12,得到sin(2)3 y x π =+的图象;③再把图象上所有点 的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 x y O π 3 π- 6 π- 53 π 2π sin(3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(23 y x π =+

一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还可看作 由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移6 π 个单位,得到函数sin 2()6y x π=+的 图象; ③再把函数sin2()6y x π =+的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2() 6 y x π=+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,如下图 所示,求函数的一个解析式。 又∵0A > ,∴A = 由图知 52632 T πππ=-= ∴2T π πω ==,∴2ω=, 又∵157()23612 πππ+=, ∴图象上最高点为7( 12 π , ∴7)12π?=?+,即7sin()16π?+=,可取23 π?=-, 所以,函数的一个解析式为2)3 y x π =-. 2.由已知条件求解析式 例2: 已知函数cos()y A x ω?=+(0A >,0ω>,0?π<<) 的最小值是5-, 图x 3 3 π 56 π 3 O

函数图象的变换教学设计

“函数B x A y ++=)sin(?ω的图像”教学设计 教材分析 本节选自《普通高中课程标准实验教科书》(人教A 版)必修4 “函数B x A y ++=)sin(?ω的图像”这一节作为示范课课题。它是在前面学习了正弦函数和余弦函数的图象和性质的基础上对正弦函数图象的深化和拓展。根据学生实际情况,为了更好地化解难点,本节分三个课时进行教学,这里是针对第一个课时的教学设计,主要是通过实践探究、归纳总结等方式让学生掌握sin y A x =、sin()y x ω=、sin()y x ?=+、sin y x B =+的图像变化规律,明确常数A 、ω、?、B 对图像变化的影响,进而是学生对函数sin()y A x B ω?=++的图像变化有个感性认识,为继续学习函数sin()y A x B ω?=++与sin y x =的图象间的变换关系打下坚实的基础,同时有助于学生进一步理解正弦函数的图象和性质,加深学生对其他函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识,使学生领会由简单到复杂,特殊到一般的化归思想,同时也为相关学科的学习打下扎实的基础。 由于本节知识是学习函数图象变换综合应用的基础,在教材地位上显得十分重要,因此这节课的内容是本章的重点、难点之一。 教学分析 一.设计理念 根据“诱思探究教学”中提出的教学模式,设计的教学过程,遵循“探索—研究—运用”亦即“观察—思维—迁移”的三个层次要素,侧重学生的“思”“探”“究”的自主学习,由旧知识类比得新知识,自主探究图象与图象之间的变换关系,让学生动脑思,动手探,教师的“诱”要在点上,在精不用多。整个教学过程始终贯穿“体验为主线,思维为主攻”,学生的学习目的要达到“探索找核心,研究获本质”。 二.教学目标 1.知识与技能: (1)熟练掌握五点法作图; (2)掌握sin y A x =、sin()y x ω=、sin()y x ?=+、sin y x B =+的图像变化规律, 明确常数A 、ω、?、B 对图像变化的影响; (3)对函数sin()y A x B ω?=++的图象变化有个感性认识。 2.过程与方法: 通过学生自己动手画图,使学生知道列表、描点、连线是作图的基本要求;通过在同一个坐标平面内对比相关的几个函数图象,发现规律、总结提炼、加以应用;通过用《几何画板》软件进行验证,加深学生对自己探究的成果的理解和认可,进而鼓励学生积极思考、勤于动手进行实践探索的良好学习品质。 3.情感态度与价值观 通过本节的学习,渗透数形结合思想;培养学生发现问题、研究问题、解决问题的能力和总结、归纳的能力;让学生在实践中领会由简单到复杂、由特殊到一般的化归思想;让学生体会实践与探索带来的成功与喜悦。 三.教学重点和难点 1.教学重点:考察参数A 、ω、?、B 对函数图象变化的影响,理解函数sin y x =图象到 sin y A x =、sin()y x ω=、sin()y x ?=+、sin y x B =+的图象的变化过程。 2.教学难点:ω对sin()y A x ω?=+的图象的影响规律的概括。

函数图像变换(整理)

函数的图象变换 函数图象的基本变换:(1)平移;(2)对称;(3)伸缩。 由函数y = f (x)可得到如下函数的图象 1. 平移: (1)y = f (x + m) (m>0):把函数y =f (x)的图象向左平移m 的单位(如m<0则向右平移-m 个单位)。 (2)y = f (x) + m (m>0):把函数y =f (x)的图象向上平移m 的单位(如m<0则向下平移-m 个单位)。 2. 对称: ? 关于直线对称 (Ⅰ) (1)函数y = f (-x)与y = f (x)的图象关于y 轴对称。 (2)函数y = -f (x)与y = f (x)的图象关于x 轴对称。 (3)函数y = f (2a -x)与y = f (x)的图象关于直线x = a 对称。 (4)函数y = 2b -f (x)与y = f (x)的图象关于直线y = b 对称。 (5)函数)x (f y 1-=与y = f (x)的图象关于直线y = x 对称。 (6)函数)x (f y 1--=-与y = f (x)的图象关于直线y = -x 对称。 (Ⅱ)(7)函数y = f (|x|)的图象则是将y = f (x)的y 轴右侧的图象保留,并将y =f (x) 右侧的图象沿y 轴翻折至左侧。(留正去负,正左翻(关于y 轴对称)); (8)函数y = |f (x)|的图象则是将y = f (x)在x 轴上侧的图象保留,并将y = f (x) 在x 轴下侧的图象沿x 轴翻折至上侧。(留正去负,负上翻;) 一般地:函数y = f (a+mx)与y = f (b -mx)的图象关于直线m 2a b x -=对称。 ? 关于点对称 (1) 函数y = - f (-x)与y = f (x)的图象关于原点对称。 (2) 函数y = 2b -f (2a -x)与y = f (x)的图象关于点(a,b)对称。 3. 伸缩 (1) 函数y = f (mx) (m>0)的图象可将y = f (x)图象上各点的纵坐标不变,横坐标缩小到原来的 m 1倍得到。(如果00)的图象可将y = f (x)图象上各点的横坐标不变,纵坐标缩小到原来的m 1倍得到。(如果0

高中数学高一上册函数图像的变换教案

高中数学高一上册函数图像的变换教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 函数图象的变换及图象的应用 学习目标: 1. 使学生通过一些特殊函数的图象归纳出图象平移、对称变换的方法和规律。 2. 会利用一些基本函数的图象通过平移、对称变换做出一些常见函数的图象。 3. 会利用函数的图象解决有关函数的问题。 教学重点: 图象的平移和对称关系 探究过程: 问题1:如何由2()f x x =的图象得到下列各函 数的图象 并在同一坐标系内画出它们的草图。 2(1)(1)(1)f x x -=- 2(2)(1)(1)f x x +=+ 2(3)()11f x x -=- 2(4)()11f x x +=+ 规律:平移变换 ()()y f x y f x a =?=+左右平移{ 0,0a a ><向___平移a 个单位。,向___平移|a|个单位,即:“左加,右减” ()()y f x y f x k =?=+上下平移{0,0k k ><向___平移a 个单位。,向___平移|a|个单位 “上加,下减” 问题2:说出下列函数的图象与指数函数2x y =的图象的关系,并画出它们的示意图

3 . 规律总结: 对称变换:(1)函数()()y f x y f x ==-与的图象关于____________________对称; (2)函数()()y f x y f x ==-与的图象关于____________________ 对称 (3)函数()()y f x y f x ==--与的图象关于 ____________________对称; (4)函数1()()y f x y f x -==与的图象关于____________________ 对称; 问题3:分别在同一坐标系中作出下列各组函数的图象,并说明它们之间有什么关系? 规律总结:对称变换

高中数学_正弦型函数图象变换第二课时教学设计学情分析教材分析课后反思

教学设计

【学情分析】

从知识方面看: ①学生已经具备的:(1)正弦函数图象的三种变换规律(2)上学期已经学习了函数 图象 的平移,有“左加右减”这样一些粗略的关于图象平移的认识,对函数图像的对称性已具备了初步认识,具备将“数”与“形”相结合及转化的意识。但对于本节内容,学生需要理解并掌握三个参数变化对正弦型函数图像的影响,还要研究正弦型函数图像变换规律以及变形应用,知识密度较大,理解掌握起来难度较大。 ②学生所缺乏的:(1)应用数学知识解决问题的能力还不强;(2)数形结合的思想还有 待提 高。 从学习情感方面看: 高一的学生具有一定的知识基础,有强烈的求知欲,喜欢探求真理,自主学习与合作学习意识较强,具有积极的情感态度,。 从学习能力上看: 这一阶段的学生正处在由抽象思维到逻辑思维的过渡期,对图形的观察、分析、总结可能会感到比较困难。尤其是我所任教班级的学生,尽管思维活跃、敏捷,却缺乏冷静、深刻,因而片面,不够严谨,系统地分析问题和解决问题的能力有待提高。 由于三角函数图象变换是高中数学的难点,学生的数学思维能力与思想方法有待继续培养、提高、完善,要结合学生的实际情况,分解难点,逐一突破。针对上述情况,在教学中,我注意面向全体,发挥学生的主动性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。利用几 何画板进行动画演示,让学生体会 sin() y A x ω? =+中的,ω?均是针对x而言的,其他因 素暂时不考虑,帮助学生从形的角度更好的理解变换规律。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。 【效果分析】 这是一节新授课,从课前准备、课堂气氛、课后调查反馈的情况看,学生基本上能掌握

函数的图象 公开课教案

19.1.2函数的图象 第1课时函数的图象 1.理解函数图象的意义;(重点) 2.能够结合实际情境,从函数图象中 获取信息并处理信息.(难点) 一、情境导入 在太阳和月球引力的影响下,海水定时 涨落的现象称为潮汐.如图是我国某港某天 0时到24时的实时潮汐图. 图中的平滑曲线,如实记录了当天每一 时刻的潮位,揭示了这一天里潮位y(m)与时 间t(h)之间的函数关系.本节课我们就研究 函数图象. 二、合作探究 探究点一:函数的图象 【类型一】函数图象的意义 下列各图给出了变量x与y之间 的对应关系,其中y是x的函数的是( ) 解析:∵对于x的每一个取值,y都有 唯一确定的值,选项A对于x的每一个取值, y都有两个值,故A错误;选项B对于x的 每一个取值,y都有两个值,故B错误;选 项C对于x的每一个取值,y都有两个值, 故C错误;选项D对于x的每一个取值,y 都有唯一确定的值,故D正确.故选D. 方法总结:对于函数概念的理解:①有 两个变量;②一个变量的数值随着另一个变 量的数值的变化而发生变化;③对于自变量 的每一个确定的值,函数值有且只有一个值 与之对应. 【类型二】判断函数的大致图象 3月20日,小彬全家开车前往铜 梁看油菜花,车刚离开家时,由于车流量大, 行进非常缓慢,十几分钟后,汽车终于行驶 在高速公路上,大约三十分钟后,汽车顺利 到达铜梁收费站,停车交费后,汽车驶入通 畅的城市道路,二十多分钟后顺利到达了油 菜花基地,在以上描述中,汽车行驶的路程 s(千米)与所经历的时间t(分钟)之间的大致 函数图象是( ) 解析:行进缓慢,路程增加较慢;在高 速路上行驶,路程迅速增加;停车交费,路 程不变;驶入通畅的城市道路,路程增加但 增加的比高速路上慢,故B符合题意.故选 B. 方法总结:此类题目,理解题意是解题 关键,根据题干中提供的信息,及生活实际 判断图象各阶段的变化情况和特征. 【类型三】由函数图象判断容器的形 状

函数图像变换及应用

上节课知识检测 一、基本内容 1.利用描点法作函数图像 其基本步骤是列表、描点、连线,具体为: 2、会画基本函数图像(一次(两点想x 取0,,y 取0(或X 取1))、反比例(三点(x 取1/2、1,2)对称轴、对称中心)、二次(对称轴\顶点\开口)、幂(四点x 取0,1/2,1,2对称)、指数(三点x 取-1,0,1)、对数(三点Y-1,0,1)、对勾(两部分相等时X 值点)、三角(x 取五点;对称轴、对称中心)) 3.掌握画图像的基本方法:(1)描点法(2)图像变换法.平移、伸缩、翻折 (3)讨论分段法 (1)平移变换: y =f (x ) ――――――――――→a >0,右移a 个单位a <0,左移|a |个单位 y =f (x -a ); y =f (x ) ―――――――――→b >0,上移b 个单位b <0,下移|b |个单位 y =f (x )+b . (2)伸缩变换: y =f (x ) 1 011 1ωωωω <<>????????→,伸原的倍 ,短原的 长为来缩为来 y =f (ωx ); y =f (x ) ――――――――――――→A >1,伸为原来的A 倍0

三角函数图像变换教学设计

§5 创新课堂教学设计模式 在情境教学设计中,创立了课堂教学八步骤: (1)创设情境(2)提出问题(3)学生探究(4)构建知识 (5)变式练习(6)归纳概括(7)能力训练(8)评估学习 数学情境设计实验案例 《函数y=Asin的图象》教学设计 模块名称:数学新课程必修4 (苏教版) 一课时 一、设计思想: 按照新课程理念,通过计算机辅助教学创设情境,实施信息技术与学科课程整合教学设计。引发学生学习兴趣,从而较好地完成教学任务。动画效果的展示形成对视觉的强刺激,把通常惯用的语言描述生动形象地刻画出来,促进学生对重点难点的知识理解掌握。 本课教学设计重点是学习环境的设计,通过几何画板创设动态直观情境,引导学生主动参与、乐于探究、培养学生处理信息的能力。

二、教学内容分析 本课教学内容是能通过变换和五点法作出函数y=Asin的图像,理解函数y=Asin(A>0, ω>0)的性质及它与y=sinx的图象的关系。本节内容是在三种基本变换的基础上进行的,进一步深入研究正弦函数的性质,y=Asin的图像变换是函数图像变换的综合,充分体现利用数形结合研究函数解决问题的思想,对前面的基础和知识有很好的小结作用,这种函数在物理学和工程学中应用比较广泛,有实际生活背景,它能为实际问题的解决提供良好的理论保证。同时,本课的教材也是培养学生逻辑思维能力、观察、分析、归纳等数学能力的重要素材。 教学重点:掌握函数y=Asin的图像和变换 教学难点:学生能通过自主探究掌握对函数图象的影响。 三、教学目标分析 1认知目标: (1)结合具体实例,理解y=Asin的实际意义,会用“五点法”画出函数y=Asin的简图。会用计算机画图,观察并研究参数,进一步明确 对函数图象的影响。 (2)能由正弦曲线通过平移、伸缩变换得到y=Asin的图象。 (3)教学过程中体现由简单到复杂、特殊到一般的化归的数学思想。 2 能力目标: (1)为学生创设学习数学的情境氛围,培养学生的数学应用意识和创新意识。 (2)在问题解决过程中,培养学生的自主学习能力。 (3)让学生经历列表、描点、连线成图的作图过程,体会数形结合、整体与局部的数学思想,培养学生的科学探索精神,归纳、发现的能力。 3 情感目标:

(人教版八年级上)函数图像教案

八年级上学期第十四章《函数的图象》教案 嵩明县第三中学史学文 14.1.3 函数的图象 教学目标 (一)教学知识点 1、学会用列表、描点、连线画函数图象. 2、学会观察、分析函数图象信息. (二)能力训练要求 1、提高识图能力、分析函数图象信息能力. 2、体会数形结合思想,并利用它解决问题,提高解决问题的能力. (三)情感与价值观要求 1、体会数学方法的多样性,提高学习兴趣. 2、认识数学在解决问题中的重要作用,从而加深对数学的认识. 教学重点 1、用描点法画函数图象. 2、观察分析图象信息. 教学难点 分析、概括图象中的信息. 教学方法 自主探究、归纳总结. 教具准备 多媒体演示. 教学过程 Ⅰ.提出问题,创设情境 我们在前面学习了函数意义,并掌握了函数关系式的确立.但有些函数问题很难用函数关系式表示出来,然而可以通过图来直观反映.例如用心电图表示心脏生物电流与时间的关系.即使对于能列式表示的函数关系,如果也能画图表示,

则会使函数关系更清晰. 我们这节课就来解决解读函数图象信息及如何画函数图象的问题. Ⅱ.新课讲授 [活动一] 内容设计: 下图是自动测温仪记录的图象,?它反映了北京的春季某天气温T如何随时间t 的变化而变化.你从图象中得到了哪些信息? 设计意图: 1、通过图象进一步认识和理解函数的意义. 2、体会图象的直观性、优越性. 3、提高对图象的观察、分析能力、认识水平. 4、掌握函数变化规律. 教师活动: 引导学生从两个变量的对应关系上认识函数,体会函数意义;可以指导学生找出一天内最高、最低气温及时间;在某些时间段的变化趋势;认识图象的直观性及优缺点;总结变化规律……. 学生活动: 在教师引导下,积极探寻,合作探究,归纳总结. 活动结论: 1、一天中每时刻t都有唯一的气温T与之对应.可以认为,气温T是时间t 的函数. 2、这天中凌晨4时气温最低为-3℃,14时气温最高为8℃. 3、从0时至4时气温呈下降状态,即温度随时间的增加而下降.从4时至14?时气温呈上升状态,从14时至24时气温又呈下降状态.

函数图像的四种变换形式

函数图像的四种变换 1.平移变换 左加右减,上加下减 ) ( ) (a x f y x f y+ = ?→ ? =沿x轴左移a个单位; ) ( ) (a x f y x f y- = ?→ ? =沿x轴右移a个单位; a x f y x f y+ = ?→ ? =) ( ) (沿y轴上移a个单位; a x f y x f y- = ?→ ? =) ( ) (沿y轴下移a个单位。 2.对称变换 同一个函数求对称轴或对称中心,则求中点或中心。 两个函数求对称轴或对称中心,则求交点。 (1)对称变换 ①函数) (x f y=与函数) (x f y- =的图像关于直线x=0(y轴)对称。 ②函数) (x f y=与函数) (x f y- =的图像关于直线y=0(x轴)对称。 ③函数) (a x f y+ =与) (x b f y- =的图像关于直线 2a b x - =对称 (2)中心对称 ①函数) (x f y=与函数) (x f y- - =的图像关于坐标原点对称 ②函数) (x f y=与函数) 2( 2x a f y b- = -的图像关于点(a,b)对称。 3伸缩变换 (1)) (x af y=的图像,可以将) (x f y=的图像纵坐标伸长(a>1)或缩短(a<1)到原来的a倍,横坐标不变。 (2)) (ax f y=(a>0)的图像,可以将) (x f y=的横坐标伸长(01)到原来的1/a倍,纵坐标不变。

4.翻折变换 (1)形如)(x f y =,将函数)(x f 的图像在x 轴下方的部分翻到x 轴上方,去掉原来x 轴下方的部分,保留原来在x 轴上方的部分。 (2)形如)(y x f =,将函数)(x f 在y 轴右边的部分沿y 轴翻到y 轴左边并替代原来y 轴左边部分,并保留)(x f y 轴左边部分,为)(y x f =的图像。 习题:①做出32y 2++=)(x 的图像 ②做出3+=x y 的图像

高一数学《函数图象的翻折变换》微课教学设计方案

高一数学《函数图象的翻折变换》微课教学设计方案 高一数学《函数图象的翻折变换》微教学设计方案 微名称 函数图象的翻折变换 教师姓名 唐颖鸿 教师单位 西安市第八十三中学 知识点 □学科:数学□年级:高一、高二、高三 □教材版本:北师大版 □所属节:《必修1》函数专题 录制工具和方法 电脑录制 设计思路 函数是高中数学的核心内容,几乎贯穿于整个高中数学的始终,特别是函数思想,是分析问题和解决问题的重要思想和方法之一;同时,函数也是进一步学好高等数学的基础,因此,学好《函数》这一,具

有举足轻重的意义。 函数图象是函数关系的一种重要表示,它是对函数变化规律的最直观的刻画,能更深刻地揭示函数之间的内在联系,使我们更全面地掌握函数的性质,是探求解题途径、获得问题结果的重要工具。本节是在高一年级学完《函数》一后的一节复习。函数图像的变换主要有三种,本节主要讲函数图象的翻折变换。 教学设计 内容 教学目的 (一)知识目标 1、使学生准确掌握函数图象的翻折变换规律; 2、使学生能准确利用函数图象的翻折变换规律解决相关问题。(二)能力目标 1、通过学生自己画函数图象,培养学生的动手实践能力;通过观察函数图象,寻找图象的变换规律,培养学生的观察能力; 2、通过学生自己总结、归纳、概括函数图象的一般变换规律,培养学生的归纳、概括能力; 3、通过学生利用函数图象的变换规律解决相关问题,培养学生分析问题和解决问题 的能力。 (三)德育目标

1、通过对具体函数图象的翻折变换规律的探讨,揭示出函数图象变换的一般规律,掌握函数图象翻折变换的本质特性,体现了从特殊到一般,从感性到理性的辩证唯物主义观点; 2、通过让学生自己探讨函数图象的几何变换规律,培养学生自己发现问题、解决问题的优良思维品质和勇于探索的精神。 教学重点难点 教学重点:函数图象的翻折变换规律 教学难点:利用函数图象的翻折变换规律解决相关问题。 教学过程 函数图象的翻折变换 ———左折变换与上折变换 1、动一动——动手实践 【例1】请分别在同一坐标系内画出下列每组函数的大致图象: 1、(1)=(x-1)2 ; 2、(1)= x2–1; (2)=(|x|-1)2 。(2)= |x2-1|。 (请两位学生上黑板画,其他学生在练习本上画) 2、看一看——观察特征 【问题1】请观察所画第1组函数图象: 图象(1)与图象(2)分别有什么关系? 答:函数=(x-1)2 的图象保留轴右边图象,作其关于轴对称图象,去掉轴左边部分即得到函数=(|x|-1)2的图象。 【问题2】请观察所画第2组函数图象:

函数的图象教案(20201012105441)

§14.1.3函数的图象(一) 知识目标:学会用图表描述变量的变化规律,会准确地画岀函数图象能力目标:结合函数图象,能体会出函数的变化情况 情感目标:增强动手意识和合作精神 重点:函数的图象 难点:函数图象的画法 教学说明:在画图象中体会函数的规律 教学设计: 一、复习引入 前而学习了函数的意义,并已经学会用数学式子表示简单的实际问题中两个变疑之间的函数关系。但在实际生活中,有些函数关系很难列式子表示。如果天气温度随时间的变化关系,心脏生物电流与时间的关系,股市行情随开盘时间的变化关系等。那么怎样用苴它方法表示这些变量之间的函数关系呢? 即使对于能列式子表示的函数关系,如也能画图表示,则会使函数关系更淸晰。 二、新授 例1正方形的边长X与而积S的函数关系为s = x,,在坐标系中用画图的方法来表示 S与X的关系。 分析与注意:(I)自变量X的一个确定的值与它所对应的值一函数值S,确左了一个点(X,S) (2)表示%与£的对应关系的点有无数个,但是实际上我们只能描述英中有限个点,其他 点的位置需要根据描出的点来联想而得出,即描点法画出函数的图象是近似的。 (3)由于尸0不在x的取值范围之内,所以点(0, 0)不在函数图象上,故用空心圈来表 示它。 (4)通过图象可以数形结合地研究函数。 函数图象的意义: 一般地,对于一个函数,如果把自变量与函数的每对对应值分别记下为点的横、纵坐 标,那么坐标平而内这些点组成的图形,就是这个函数的图象°这种画法称为描点法。 例2 (P102)在下列式子中,对于x的每一确左的值,y有唯一的对应值,即y是x的函数, 画出这些函数的图象: (1)y = x + O?5 ——取值时易只取正数,列表不完整

相关主题