搜档网
当前位置:搜档网 › 地下管线空间数据模型及三维可视化

地下管线空间数据模型及三维可视化

地下管线空间数据模型及三维可视化
地下管线空间数据模型及三维可视化

地下管线空间数据模型及

三维可视化

Prepared on 22 November 2020

地下管线空间数据模型及三维可视化

摘要:伴随新城镇建设,地下管线规模日益庞大,种类日益繁多,对其进行科学高效的信息化管理尤为重要。为更好表现各类管线的地下空间分布关系,在二维地下管线信息化的基础上,探索管线信息的三维建模及可视化管理。通过构建地下管线三维数据模型,利用空间数据库引擎技术,结合ArcGIS Engine组件技术,搭建专业应用系统开发框架,生成地下管线三维模型,并实现三维可视化的信息查询与动态管理功能。

关键词关键词:地下管线;空间数据模型;三维可视化;ArcGIS

DOIDOI:

中图分类号:TP319

0引言

地下管线信息是城镇现代化建设过程中不可或缺的基础资料,也是城市决策的重要基础资源之一。地下管线的隐蔽性、多变性和不确定性使地下管线信息成为城镇建设、安全、应急、防灾减灾面临的挑战。因此,地下管线信息的即时获取和科学高效的管理受到社会持续关注。近年来,地下管线信息化建设工作从逐渐进入人们视线过渡到了需求紧迫的阶段。

城镇地下管线包括给水、排水、电力、电信、燃气等多种管线及其附属设施,是城市的血脉和神经。地下管线信息化是

充分利用地理信息技术,采集、管理、更新、维护地下管线数据,开发利用地下管线信息资源,促进地下管线信息交流与资源共享,并推动地下管线信息在城市运维中发挥重要作用的过程,它是推动城市现代化建设与管理的重要技术手段之一\[12\]。

随着城市管线建设快速发展,二维地下管线信息已经不能够很好地满足需求。特别是在城市大规模建设并利用城市地下空间的背景下,建设了大量与地下管线相关的地下建筑物,这些地下建筑物中出现了管线共沟、多空管道、一井多盖,以及垂直管道等大量地下管线设备交叠的空间投影信息重叠现象,这些现象二维地下管线信息难以完整表达\[12\]。此外,二维地下管线图具有很强的专业技术特征,不能满足城市发展进程中普通人员对地下管线数据直观显示日益强烈的需求。因此,有必要将地下管线数据的表示方法在二维的基础上扩展到三维。三维地下管线信息能够更加直观地展示隐蔽于地面之下的、不可见的管线要素的空间分布、空间结构及空间关系,并与周围地面建筑物匹配显示,使城市管理者及非专业用户都能够更好地浏览、查询并使用地下管线信息,是未来城市地下管线信息化工作的发展方向之一。

目前,针对地下管线三维可视化的研究与应用还比较少,本文构建了地下管线空间数据模型,实现了地下管线三维可视化,并在此基础上搭建管线专用系统开发框架。

1地下管线空间数据结构

地下管线概念层数据模型

为表达地下管线实体及其相互间的联系,在对地下管线特征充分认识、完整抽象的基础上\[3\],依照业内普遍使用的地下管线数据标准,构建地下管线概念层数据模型,如图1所示。地下管线数据模型是描述数据概念的集合,包括空间数据、属性数据、数据关系及完整性约束条件等概念。

地下管线组织层数据模型

将城市地下管线分为给水、排水、电力、电信、热力、燃气、工业、地下空间设施八大类。每个大类还可分为小类,如给水管线包括上水、循环水、消防、绿化。电信管线包括市话、长途、有线电视、宽带等小类\[12\]。地下管线空间信息的几何特征简单,连通性强。地下管线空间信息几何特征只有呈点状分布的管井和呈线状分布的管线。地下管线虽然种类较多,但其空间结构基本一致,一般都由管线点、管线段及其附属设施构成,在GIS中均可用点和线进行描述。从几何角度可以把这些对象分为点、线对象两类,按空间维数分为零维对象(如三通、四通、阀门等),一维对象(如给水管线、燃气管线),可以将上述实体分别设计为不同的对象类。

管井点位信息主要包括管井平面位置、高程、各种构筑物等。管线线段信息主要包括管径、起止管点号、起止高程、管材、结构类型等。

图1地下管线ER模型

与城市地下管线的八大类相对应,地下管线数据库也可分为8个子库:给水、排水、燃气、热力、电力、电信、工业、地下空间设施。每个子库包括多个数据层:管井点、管线线段、小室、管线辅助线等。其中主要数据层为管井点和管线线段,数据结构如表1和表2所示。

2地下管线数据建库及可视化

空间数据库引擎

配置ArcSDE空间数据库引擎,可将复杂的空间数据作为对象放在RDBMS中\[4\],并提供管理和检索数据的方法,以实现对海量数据进行松散存储,并支持多用户并发操作\[5\]。

ArcSDE空间数据库引擎\[6\]在关系数据库(如IBM

DB2、Oracle、SQL Server等)的基础上增加了处理空间数据的能力。ArcSDE空间数据库引擎为RDBMS提供了GIS数据类型(如点、线、多边形、以及这些feature之间的拓扑关系和投影坐标等相关信息),并提供了对这些基础类型的操作。

管线数据建库及可视化

本文采用Xian_1980_GK_Zone_20作为投影坐标系,WGS 1984作为高程坐标系在ArcGIS中构建要素数据集,每个要素数据集对应一类地下管线。再在要素数据集中创建要素类\[7\],如要素类water_supply_pipe_line对应给水管线线段,

fuel_gas_famen对应燃气阀门,fuel_gas_tiaoyaqi对应燃气调压器。这些要素类会映射为RDBMS数据库中的关系表。

依据各类地下管网的拓扑规则,为各要素类添加数据。如下为添加一行燃气管线线段对象的sql语句。

INSERT INTO fuel_gas_pipe_line(OBJECTID,SHAPE,PipeLineType,PipeRadius,Pressure)VALUES(1,geometry::STGeomFromText('LINESTRING(-140 60 -10,-160 40 -10)',2334),'供电',80,'高');

对RDBMS数据库中关系表进行的所有操作,都将映射在其空间图形上。地下管线三维可视化如图2所示。

图2地下管线三维可视化

3系统应用开发及可视化

系统功能设计

地下管线专用系统以实现城市地下管线数据动态管理和信息应用为目标,科学分析具有空间内涵的地理数据,以提供对规划、管理、决策和研究所需的信息。该系统主要功能包括管线信息录入、编辑更新、管线信息可视化选择与查询、图形与属性双向查询、统计分析、空间分析、辅助规划、数据输出等,如图3所示。

系统开发环境

采用SQL Server数据库管理系统,结合ArcSDE,统一管理空间数据和属性数据,实现数据高效管理和存储优化\[8\]。

在Visual Studio .NET 开发环境中嵌入ArcGIS Engine组件\[910\],采用C#作为系统开发语言,利用COM技术构建地下管线专用系统。

应用功能实现

交互式录入管线数据,其中管线种类应选择管线小类,如上水、循环水、消防、绿化等;坐标范围应作限定,若输入坐标超限,系统应提示错误,必须重新录入。

图3地下管线专用系统功能结构

地下管线数据具有很强的现势性,伴随时间的推移,必然有管线的变更、新增、废除等事件不断发生,这些事件会引起管线实体空间或属性数据的变化。

可对已有管线的属性和空间数据进行编辑更新(见图4),可利用鼠标在相应管线图层中手工绘制新的要素并精确定位,也可删除、移动选中的图形对象,所做的编辑更新会在数据库中同步更新(见图5)。

4结语

本文构建了地下管线空间数据模型,利用空间数据库引擎技术基于ArcGIS实现了管线数据建库及三维可视化,实现了地下管线专用系统基础功能,为后期空间分析、开挖计算、干涉检测、决策支持等高级功能的扩展奠定了基础。由于尚处于研究阶段,一方面还没有一个较为完善的地下管线专用系统,需结合前期实践,进一步研究针对管线数据的空间分析和数据挖

掘,这将是本系统进一步研究的重点;另一方面地下管线三维数据集包括地上基础数据和地下专题数据两部分数据,为增强可视化效果,应在专题数据的基本上添加基础数据,如地面建筑物模型、道路及其附属设施等模型。

参考文献参考文献:

\[1\]解智强,王贵武.城市地下管线信息化方法与实践\[M\].北京:测绘出版社,2012.

\[2\]杨伯钢,张保钢,等.城市地下管线数据建库与共享应用\[M\].北京:测绘出版社,2011.

\[4\]徐立,陈晓慧,赵斌彬,等.空间数据模型发展综述\[J\].信息工程大学学报,2012,13(3):370374.

\[5\]李崇贵,陈峥,丰德恩,等.ArcGIS Engine组件式开发及应用\[M\].北京:科学出版社,2012.

\[6\]李黎,李剑.基于空间数据库引擎的综合地下管线数据组织\[J\].测绘科学,2007,32(2):133134.

\[7\]牟乃夏,刘文宝.ArcGIS10地理信息系统教程:从初学到精通.\[M\].北京:测绘出版社,2012.

\[8\]李忠武,任平,王振兴,等.基于ArcGIS Engine的水稻生产潜力预测系统的设计与实现\[J\].湖南大学学报:自然科学版,2011,38(11):7681.

\[9\]寇卫利,甘淑,王丹丹.基于ArcGIS Engine/ArcSDE 的农用地定级模型设计与实现\[J\].计算机工程与应用,2012,48(6):238242.

\[10\]吴楠,高佳.基于ArcEngine的信息管理系统关键技术研究\[J\].现代电子技术,2013,36(12):7477.

责任编辑(责任编辑:孙娟)

城市三维地下管线管理系统方案

城市三维地下管线管理系统

年系统运行良好,网上报批、网上发布功能也逐步实现。 市地下管线信息管理系统的海量地下管线数据能在系统中稳定正确地进行二维和三维操作,系统具有网上Web发布和网上报批自动化管理功能,功能齐全;系统针对不同用户具有良好的适用性,人机界面友好;系统软件具有多种建模能力和方便的二次开发能力,可扩展性强;系统的软硬件配置合理,运行稳定,满足当前和未来的发展需要。 市石景山区三维城市 地下管线信息系统基于三维地学信息系统GeoView软件平台开发的三维城市地下管线信息系统 市滨海高新区城市地 下管线信息系统基于三维地学信息系统GeoView软件平台开发的三维城市地下管线信息系统 二、三维管网系统的特点及建设的意义(1)系统框架结构 (2)系统技术的特点 ①管网建模自动化

管线的竣工资料或者探测的结果大多是二维矢量线数据,系统根据二维数据的平面坐标、埋深、管径等数据批量生成三维管线模型、关联属性数据库,并且提取管线之间的拓扑关系,自动生成弯头。 ②三维管网模型的编辑与维护 在三维场景中编辑管线模型(添加、移动、废弃),编辑管线模型的节点坐标,维护管线属性数据(类型、覆土深度、埋深、管径、材质等),为管网的数据更新提供了便捷的方法。 ③三维管网模型上的拓扑分析 完全摆脱对二维管网数据的依赖,直接在三维管网模型上进行拓扑分析,彻底解决三维数据模型无法进行拓扑分析的技术难题。为爆管分析、开挖分析、覆土深度分析等提供技术支撑。 ④丰富、规的管件模型库 系统提供标准尺寸和规格的模型库(例如法兰、流量计、弯头、蝶阀、止水阀等),方便用户在指定位置添加管件,节省建模时间。 ⑤整合业务数据更便捷 管网业务数据包括:属性信息、实时监测数据和历史数据等,主要以关系型数据库的形式存储。该管网系统能够迅速的自动关联三维管线模型和业务数据库,大幅度降低数据处理的时间成本,使得项目实施更方便、快捷,成本更低。

医学影像工作原理及图像获取方式

医学影像工作原理及图像获取方式 2.2医学超声影像工作原理 超声是指高于人耳听觉范围的声波,通常是指频率高于20 kHz的高频振动机检波,应用于医学诊断的超声频率一般在1MHz至几十MHz之间。自1958年商用超声成像产品问世以来,超声医学设备以其实时性、对人体无损伤、无痛苦、显示方法多样,尤其对人体软组织的探测和心血管脏器的血流动力学观察有其独到之处而成为在医学中应用最为广泛的成像设备之一。 超声在医学中的重要作用在于它不但可以穿透人体,而且可以与身体组织相互作用。超声波穿过人体时要经过折射和反射,这可发生在超声波经过的任何交界面上,其作用就如同光束经过一个非均匀物质一样。超声波的波长很短,从而易于窄脉冲波束的实现,因此超声换能器可以做得小而紧凑。 超声在临床应用中主要分为诊断与治疗两个方面:超声诊断采用的是较高频率(多在2MHz以上)与较低声强的超声波,高频可提高对组织的分辨率,用以获得清晰、细致的声像图,而低声强则可降低对组织损伤的副作用。超声治疗采用的是较低频率(通常<1MHz)与较高声强的超声波,低频超声增大对组织的穿透率,而高声强(特别是聚焦后)超声可对组织产生生物效应,用于选择性破坏局灶性病变。 2.2.1超声设备与种类 超声诊断主要应用超声良好的指向性和与光相似的反射、散射、衰减及多普勒(Doppler)效应等物理特性,采用不同的扫查方法,将超声发射到人体内,并在组织中传播,当正常组织或病理组织的声阻抗有一定差异时,它们组成的界面就会发生反射和散射,再将此回波信号接收,加以检波等处理后,显示为波形、曲线或图像等。由于各种组织的界面形态、组织器官的运动状况和对超声的吸收程度等不同,其回波有一定的共性和某些特性,结合生理、病理解剖知识与临床医学,观察、分析、总结这些不同的规律,可对患病的部位、性质或功能障碍程度做出概括性以至肯定性的判断。 超声诊断仪由主机和探头构成,均包括发射、扫查、接收、信号处理和显示等五个部分。超声诊断仪的种类很多,而且互有交叉,按照显示回波方式和空间的不同,主要包括以下几种: 1.A型(Amplitude Mode)超声 A型超声是最早出现的一维超声诊断技术,它将声束传播位置上的组织按距离分布的回波信息在显示器上以幅度调制的形式显示,并从回波的幅度大小、形状及位置进行诊断,回波强则波幅高,回波弱则波幅低。常用A型法测量界面距离、脏器径值以及鉴别病变的物理性质,它是现代各种超声成像的物理基础。 2.B型(Brightness Mode)超声 B超是把组织的一个断层面上的超声回波信息以二维分布形式显示出来,组织内的散射、反射回波信息以辉度调制方式显示,回波强则光点亮,回波弱则光点暗。光点随探头的移动或晶片的交替轮换而移动扫查,由于扫查连续,可以由点、线而扫描出脏器的解剖切面,它是二维空间显示,又称二维超声。 按其成像速度的不同,可分为慢速成像和快速成像,慢速成像只能显示脏器的静态解剖图像,由于每帧图像线数甚多,图像清晰,扫查的空间范围较大。快速成像能显示脏器的活动状态,也称为实时(ReaITime)显像诊断法,但所显示的面积较小,每幅图像线数与每秒显示的帧数相互约制,互为反比。按照扫描方式的不同,又可分为电子线性扫描、电子凸阵扫描、机械扇形扫描和相控阵扫描等。 3.M(Motion Mode)型超声

校园安全管理及可视化解决方案

校园安全管理及可视化解决方案

目录 1 应用需求 (4) 2 GIS在行业中的典型应用 (8) 2.1 校园三维场景展示 (8) 2.2 多样化定位调图功能 (12) 2.3 校园室内数据展示与管理 (12) 2.4 校园管线三维模型展示 (12) 3 基于GIS的数字校园解决方案 (5) 3.1 GIS产品配置与总体架构 .............................................................................................. 错误!未定义书签。 3.1.1 总体架构 ............................................................................................................ 错误!未定义书签。 3.1.2 平台逻辑结构 .................................................................................................... 错误!未定义书签。 3.1.3 平台开发架构 .................................................................................................... 错误!未定义书签。 3.1.4 平台部署架构 .................................................................................................... 错误!未定义书签。 3.1.5 软件配置 ............................................................................................................ 错误!未定义书签。 3.1.6 数据库平台 ........................................................................................................ 错误!未定义书签。 3.1.7 平台运行环境 .................................................................................................... 错误!未定义书签。 3.2 校园地面设施管理 ....................................................................................................... 错误!未定义书签。 3.2.1 建立校园地面三维仿真环境 ............................................................................ 错误!未定义书签。 3.2.2 校园建筑属性展示 ............................................................................................ 错误!未定义书签。 3.2.3 地下管线三维管线查询 .................................................................................... 错误!未定义书签。 3.2.4 自动飞行浏览 .................................................................................................... 错误!未定义书签。 3.3 校园地下管线管理 ....................................................................................................... 错误!未定义书签。 3.3.1 地下管线敷设数据入库 (13) 3.3.2 管线属性数据查询 (13) 3.3.3 管线综合分析 (14) 3.3.4 管线三维浏览展示 ............................................................................................ 错误!未定义书签。 3.3.5 管线三维查询 .................................................................................................... 错误!未定义书签。 3.4 学校房产资源管理 (19) 3.4.1 查看三维建筑的每层房间图形 ........................................................................ 错误!未定义书签。 3.4.2 房产资源专业权属管理功能 (19) 3.4.3 校园教室分配审批发布 (19) 3.4.4 房产信息查询功能 (20) 3.5 三维仿真设施报修管理 (21) 3.5.1 故障点管理及综合分析统计 (21) 3.5.2 实时故障报修 (21) 3.6 绿色校园 (22) 3.6.1 建筑房间照明节能分析管理 (22) 3.6.2 供热数据统计与管理 (22) 3.7 数字校园生活 (22) 3.7.1 公共活动位置定向 (22) 3.7.2 图书馆查询 (22) 3.7.3 应急演练 (22) 3.8 校园安全 ....................................................................................................................... 错误!未定义书签。

三维地矿模型可视化控件研究

收稿日期:2011-10-25;修回日期:2012-01-29基金项目:国家自然科学基金项目(70971059) 作者简介:王彦彬(1977-),男,河北保定人,博士研究生,研究方向为网络数字矿山系统。 三维地矿模型可视化控件研究 王彦彬,车德福,郭甲腾,张维国 (东北大学资源与土木工程学院,辽宁沈阳110004) 摘 要:三维建模与可视化是网络数字矿山系统的一个重要组成部分,在网络环境下实现地矿模型的三维可视化,需要在 客户端对原始数据或者模型数据进行三维再现。为了便于与前期工作相结合,同时为了提高系统的运行效率,文中在分析ActiveX 控件的基础上,采用ActiveX 控件结合OpenGL 图形库的方法实现地矿模型在网络环境下的显示与交互。结果表明,使用控件将业务逻辑进行封装实现三维地矿模型可视化,有利于软件复用,提高软件开发效率,并能有效解决客户端与服务端负载平衡问题。 关键词:数字矿山;控件;ActiveX ;OpenGL ;地矿模型中图分类号:TP31 文献标识码:A 文章编号:1673-629X (2012)06-0061-03 Research on Visual Control of 3D Geological Model WANG Yan -bin ,CHE De -fu ,GUO Jia -teng ,ZHANG Wei -guo (School of Resources &Civil Engineering ,Northeastern University ,Shenyang 110004,China ) Abstract :3D modeling and visualization is important parts of web digital mine system.It needs to reconstruct the raw or model data to re-alize 3D visualization of geological model.In order to combine with the early works and to improve the working efficiency ,analyzed the realization of ActiveX controls ,realized the visualization and interaction under the internet environment by ActiveX and Open GL.The re-sults showed that using controls could benefit to software reusing ,help to improve programming efficiency and could efficiently solve the load balance between client and server. Key words :data mine ;controls ;ActiveX ;OpenGL ;geological model 0引 言 随着计算模式和网络的发展,B /S 模式得到广泛应用 [1] ,数字矿山系统的建设也逐渐与网络结合。数 字矿山系统建设中,三维地矿模型的建模与可视化是一个重要的组成部分,通过三维地矿模型工作人员可以直观地观察地质体内部结构和特征,同时也利于对模型进行空间分析,帮助地学工作者在动态场景中分析、推理,深入了解相关的变化特征以及规律。 网络数字矿山系统建设的重点之一就是在网络环境下再现三维地矿模型,当前网络三维可视化技术主要有VRML (X3D )、 Java3D (JOGL )以及采用控件结合DirectX3D 或者OpenGL 的方法进行实现 [2] 。其中 VRML (X3D )的运行需要相关插件的支持,虽然开发过程比较容易,比如现在的3D MAX 等建模软件均提供了对它的支持,可以直接将建模结果输出为VRML (X3D )文件,但是它很难与数据库结合,同时它的运 行效率也待进一步提高;Java3D (JOGL )是在Java 环境下进行三维模型开发的主要技术手段, 本身具有很多的优点,比如便于和数据库连接,具有跨平台性等,但是它也有一些缺点,如执行速度的问题、显示效果的问题等;采用控件结合DirectX3D 或者OpenGL 的方法可以提高渲染速度,并且可以方便地与前期开发的C ++成果进行结合,目前也有很多的软件和相关工作采用控件的方法进行实现,因此在网络数字矿山系统建设中可以采用控件结合OpenGL 的方式实现客户端模型的可视化。 1 ActiveX 控件 ActiveX 技术是微软公司提供的一种基于COM 的 综合技术,它与Windows 系列操作系统紧密结合,在很多领域得到广泛应用 [3 6] 。ActiveX 控件是ActiveX 技 术的重要组成部分,一个ActiveX 控件基本上是一个 支持IUnknown 接口的OLE Object [7] ,需要在ActiveX 容器中才能运行,容器通过控件中定义的方法、属性、事件等与控件进行通信。 ActiveX 控件具有如下的优点:容量小能通过IE 第22卷第6期2012年6月 计算机技术与发展 COMPUTER TECHNOLOGY AND DEVELOPMENT Vol.22No.6June 2012

地下管线空间数据模型及三维可视化

地下管线空间数据模型及 三维可视化 Prepared on 22 November 2020

地下管线空间数据模型及三维可视化 摘要:伴随新城镇建设,地下管线规模日益庞大,种类日益繁多,对其进行科学高效的信息化管理尤为重要。为更好表现各类管线的地下空间分布关系,在二维地下管线信息化的基础上,探索管线信息的三维建模及可视化管理。通过构建地下管线三维数据模型,利用空间数据库引擎技术,结合ArcGIS Engine组件技术,搭建专业应用系统开发框架,生成地下管线三维模型,并实现三维可视化的信息查询与动态管理功能。 关键词关键词:地下管线;空间数据模型;三维可视化;ArcGIS DOIDOI: 中图分类号:TP319 0引言 地下管线信息是城镇现代化建设过程中不可或缺的基础资料,也是城市决策的重要基础资源之一。地下管线的隐蔽性、多变性和不确定性使地下管线信息成为城镇建设、安全、应急、防灾减灾面临的挑战。因此,地下管线信息的即时获取和科学高效的管理受到社会持续关注。近年来,地下管线信息化建设工作从逐渐进入人们视线过渡到了需求紧迫的阶段。 城镇地下管线包括给水、排水、电力、电信、燃气等多种管线及其附属设施,是城市的血脉和神经。地下管线信息化是

充分利用地理信息技术,采集、管理、更新、维护地下管线数据,开发利用地下管线信息资源,促进地下管线信息交流与资源共享,并推动地下管线信息在城市运维中发挥重要作用的过程,它是推动城市现代化建设与管理的重要技术手段之一\[12\]。 随着城市管线建设快速发展,二维地下管线信息已经不能够很好地满足需求。特别是在城市大规模建设并利用城市地下空间的背景下,建设了大量与地下管线相关的地下建筑物,这些地下建筑物中出现了管线共沟、多空管道、一井多盖,以及垂直管道等大量地下管线设备交叠的空间投影信息重叠现象,这些现象二维地下管线信息难以完整表达\[12\]。此外,二维地下管线图具有很强的专业技术特征,不能满足城市发展进程中普通人员对地下管线数据直观显示日益强烈的需求。因此,有必要将地下管线数据的表示方法在二维的基础上扩展到三维。三维地下管线信息能够更加直观地展示隐蔽于地面之下的、不可见的管线要素的空间分布、空间结构及空间关系,并与周围地面建筑物匹配显示,使城市管理者及非专业用户都能够更好地浏览、查询并使用地下管线信息,是未来城市地下管线信息化工作的发展方向之一。 目前,针对地下管线三维可视化的研究与应用还比较少,本文构建了地下管线空间数据模型,实现了地下管线三维可视化,并在此基础上搭建管线专用系统开发框架。

矿井三维模型可视化系统的设计与实现教学提纲

矿井三维模型可视化系统的设计与实现

矿井三维模型可视化系统的设计与实现 摘要:巷道包含了复杂的拓扑信息和空间信息,是矿井其他信息的空间载体,其建模尤为重要。本文针对矿井三维模型可视化的需要,设计并实现了一套基于Java语言的矿井三维可视化模型。系统主要包括不同断面巷道模型的分类和参数化构建、矿井液压支架模型的实现、巷道纹理材质库的选择、光照选择,巷道漫游等。 关键词:矿井三维可视化,JOGL,Java,巷道 1引言 数字矿山作为一种复杂的三维空间信息系统,不仅能够存储、分析和表达真实矿山中各种空间实体对象的属性信息,而且涉及大量复杂的空间定位特征及可能拓扑关系的组织和管理。因而,数字矿山的三维空间数据模型是联结真实矿山世界和计算机中抽象的矿山世界的桥梁[1]。 本研究就是对矿井三维模型可视化系统进行设计与实现。 通过数字矿山建设至少可以在以下几个方面给矿山企业带来好处: 1、提高矿山企业的生产效率和资源优化; _________________________________________________ _

2、加强矿山的安全管理,积极的预防矿难事故; 3、降低决策的风险性,提高企业快速反应能力。 本文针对煤矿井下环境抽象出各类图元,在空间上模拟真实井下系统,实现了矿井三维模型可视化系统[2-3]。 2 JOGL图形库 JOGL是Java对OpenGL API绑定的开源项目并设计为采用Java开发的应用程序提供2D/3D图形硬件支持。JOGL 对OpenGL 2.0[4-5]规范中的API和几乎所有第三方开发商的扩展提供完整访问,而且集成了AWT和Swing界面组件。JOGL函数库的简单抽象要比高度抽象如Java 3D函数库执行起来高效的多,因为其大部分代码是自动生成的,所以JOGL的升级可以迅速的与OpenGL升级相统一[6-8]。 3矿井三维模型可视化的设计 3.1巷道图元三维模型分析 巷道由于存在于地下,其数据提取不像地表实体一样简单。巷道图元与巷道图元间采用非直线形式,以实际角度进行弧形连接。根据巷道的不同用途,其断面形状, _________________________________________________ _

城市地下空间规划复习大纲

城市地下空间规划设计 总复习知识点 1.城市的形成与发展 本章首先通过国内外城市发展过程所表现出来的城市空间发展规律,介绍了全世界城市经过四个阶段实现了城市化,丰富和发展着城市规划理论和城市功能。 城市的发展过程实质是一个城市化过程。全世界城市化的过程中按照发展方式的不同划分为四个阶段。城市初期吸纳劳动力的聚集效应,使城市容量外延扩大,完成城市化的第一阶段。城市通过再开发市中心,内涵式扩展完成了城市化第二阶段。城市郊区化和再城市化发展了,外延式和内涵式并存过程完成了城市化第三阶段。目前的泛城市化现象,使世界进入城市化过程的第四阶段。 全世界城市发展过程都面临“城市化病”现象。但是不同的发展历史呈现不同的现状。发达国家的城市化面临逆城市化现象,表现为城市郊区化和泛城市化。发展中国家面临的是滞后城市化和超前城市化。前者表现为城市人口负增长和出现城市群;后者表现为城市工业化程度与城市化水平不协调。 工业化是城市化的发展动力;聚集效应和规模效益是城市化的关键;现代化的技术、信息及环境要求带动其他城市的发展。 城市容量又称城市空间容量或城市环境容量,是指城市空间在一定时间内,对城市人口、静态物质(建筑物和各种城市设施)和各种城市活动的综合容纳能力。理论容量是一个城市在一定发展阶段,根据城市性质、自然条件和经济地位、发展远景等因素综合确定的。实际容量是一个城市某个阶段实际存在的城市空间容量。城市容量包括人口容量,一般以人口密度衡量;土地容量,表现为各种用地指标。城市容量的计算方法。 理论容量与实际容量间的关系:理论容量大于实际容量,城市发展不充分、有发展潜力或空间。理论容量等于实际容量,城市处于发挥其机能的最佳状态,具有良好的发展活力。理论容量小于实际容量,城市出现恶性膨胀,城市病出现。 城市规划要解决城市的四大功能布局和协调:居住、工作、游憩、交通。城市规划的期限:总体规划期限一般为20年,近期规划期限一般为5-10年。 城市人口规模是城市规划中的重要基数。城市人口规模的预测方法有产值推算法(劳动平衡法),职工带眷系数法,统计分析递推法,数理统计法,城市性质类比法。一般都要以一种方法为主,其他方法辅助校核,再根据城市环境、最佳经济效益规模决定。 城市空间结构是指城市各物质要素在某一时段的空间分布效应、外在形态和演化过程。城市空间结构层次上分为内部空间(城市各功能区)、外部空间(卫星城、郊区、飞地)、群体空间(城市间、城乡间)。城市空间结构内涵用密度、布局和形态评价。 城市密度表现城市内部不同地段土地利用的强度,反映城市不同地段经济活动聚集程

基于GE_GIS技术的三维可视化校园地理信息系统设计与实现

基于GE &GIS 技术的三维可视化校园地理信息系统设计与实现 郭正鑫,张祖陆,赵 璐 (山东师范大学人口#资源与环境学院,山东济南250014) 摘要:目前,校园地理信息系统多采用二维地图显示。基于Google Earth 展示平台和GIS 技术的校园地理信息系统,探讨了以动态、三维的方式来显示和管理校园信息的新方法。实践证明,与传统的校园GIS 相比,该系统可更加直观地反映校园信息,有效提高校园信息交互检索的效率,并为在其它领域的应用提供了借鉴。 关键词:三维仿真模型;地理信息系统;校园地理信息系统 中图分类号:P208;G47 文献标志码:A 文章编号:1005-8141(2008)11-0961-04 Design and Implementation of 3D Campus Geographic Information System Based on Google Earth and GIS GUO Zheng-xin,ZHANG Zu-lu,ZHAO Lu (College of Population,Resources and Envi ronmen t,Shandong Normal University ,Jinan 250014,Chi na) Abstract:Nowadays,the spatial data in campus GIS were displayed by planar map s.This paper discussed a new method to display and manage the diversiform campus information in a dynamic 3D mode and constructed the campus geographic information system based on Google Earth and GIS.The resul t showed that this system could recur the campus information much more vividly and could interactively search the campus information much more efficien tly than traditional campus GIS.In addition,this study could provide reference for the application of 3D visualization technology in other field. Key words:3D artificial model;Geographic Information System;campus geographic i nformation system 收稿日期:2008-09-10;修订日期:2008-10-19 基金项目:国家自然科学基金项目(编号:40471122);山东省自然科学基金项目(编号:Y2004E01)资助。 第一作者简介:郭正鑫(1983-),男,硕士研究生,主要从事GIS 开发和应用。 1 3D )C GIS 的提出 GIS 是用来存储、管理空间数据的信息系统,几乎所有使用空间数据和空间信息的部门都可以应用,如导航、土地、水资源利用以及辅助决策服务等[1]。在对校园GI S 的研究中,如曲巨宝对分布式WebGIS 技术的校园地理信息系统的研究[2] ,李明峰、朱振宇等对建立基于MapX 校园地理信息系统的研究[3],杨武年等关于数字成都理工大学校园空间信息系统构建与实现的研究[4] 等。这些研究有的侧重专业研究,有的侧重对具体问题的分析,有的侧重技术开发。但上述大部分校园GI S 研究多采用二维地图显示,并且着重突出某一方面的功能。因此,本研究提出了另一个新的思路,即构建一个三维可视化校园地理信息系统(3D Campus Geographic Information System,3D )CGIS)来增强校园GIS 的可视化程度。 GE(Google Earth)采用的3D 地图定位技术能够把Google Map 上的最新卫星图片推向一个新水平,使其最近几年的应用范围越来越广,如汽车导航、交通服务、城市定位搜索、监控系统等。刘冰、石奉华对GE 在旅游、导航的问题进行了探讨 [5] ;陈锐祥、何兆成等 主要研究了GE 在交通信息服务系统中的应用[6];孙 玉龙、茅志兵等阐述了GE 在航标监控系统中的应用等[7]。基于Visual Basic 6.0平台,本文借助GE 和GIS 技术,构建了基于GE &GIS 平台的校园三维仿真模型,并在模型中实现空间数据和属性数据的集成和交互,实现/图数0同步查询和管理,从而为管理者提供决策依据。本系统采用GE &GIS 技术作为开发平台,结合VB6.0集成开发环境进行了模型的构建。考虑到数据范围,本文采用ACCESS 数据库。 2 系统需求分析 目前,大部分高校的校园信息是相互独立的,这主要是由于其管理模式造成的。该管理模式现状是:学生信息由学生工作处管理,校园建筑信息由学校总务处管理,因此未进行有效的集成管理。这种管理模式不利于实现学生档案信息与校园地图实体的关联及动态查询更新。为了提高学校整体管理效率,校园地理信息系统应该寻找一种有效的方式,能集中管理多种信息,并能进行扩充。 我们通过用户访谈和问卷调查的形式[8,9]了解到,用户对该系统的功能需求主要有以下方面:1三维可视化展示校园信息,能详细直观地表达校园的各项空间信息和属性信息;o实现属性信息和地图上图元的定位互查;?实现出发地和目的地两点间的路径分析,从而得出最优路径;?实现学生信息的定位管理和 # 961#

论述可视化三维模型的建模实例

论述可视化三维模型的建模实例 1、技术路线 由于部队“直线加方块”的生活特殊性,部队营房建设相对居民生活小区来说,要规则很多。由于部队保密的规定,不能实地完成数据采集任务,住宿楼、办公楼、训练场地的基本数据以我校北区海军楼为主体。在纹理制作过程中,结合使用了photoshop8.0等相应软件。 2、建模过程 对于一个全新的模型数据库来说,用户需要确定一些关于数据库的基本参数来决定它的大小和范围。 (1)用File/New命令创建一个新的文档aaaa.flt; (2)将窗口边缘向上拉伸使视图分割为模型视图和层级视图; (3)打开Info/Preferences面板,点击Flight tab按钮。将默认的单位设置为“Meters”,点击“OK”按钮并关闭面板,所有单位都变为“米”; (4)打开View panel并为网格设置合适的参数。参数大小可根据需要自行调整; (5)在层级视图中,按下Alt键同时单击g2节点,将g2设置为父节点,选择g2,按Ctrl+J键将其改名为“aaaa”,则所有新建立的模型都将附属于这一父节点或它的子节点; (6)这时视图如下图所示。将view视图拖到一边以备用。 2.1 地形建模 由于受视角范围限制,场景的可视范围比较小,所以地面仿真对地形模型的精度要求就比较高,同时也需要更加精细、更加逼真的地物模型和特征模型。标准的数字地面高程模型DEM,或者其他类型的地形数据必须转换成DED格式才能被Creator读取,继而为创建地形模型数据库所使用。另外,Creator还提供了功能强大的DED数据文件生成器,以用于灵活创建数字高程数据。对于原始地形数据损坏导致DED无法获取的情况,还可以通过地形模型数据库生成相应的DED数据文件。 由于本论文所建造的可视化军营模型以生活区为主,考虑到生活区域地表起伏变化不大,故将地形设置为平面。

三维可视化建模技术在地质勘查中的应用

三维可视化建模技术在地质勘查中的应用 摘要:根据地质勘查的数据特点,利用三维可视化建模技术。实现了以真三维模型来恢复地表以下地质体的结构、形态特征以及空间展布,能对其进行旋转、漫游、切片分析、虚拟钻探等操作,动态地研究其内部细节,了解目标对象与周围地质环境之间的关系,为地质信息的进一步定量分析、探索与利用提供了强有力的支持。 关键字:地质勘查三维可视化建模技术虚拟钻探 引言 在地质勘查工作中,地质工作者越来越迫切地希望建立一套完善的地质体三维可视化与分析系统,实现对地质体信息的三维可视化仿真,丰富地质勘查成果的表现形式,为地质信息的进一步定量分析、探索与利用提供强有力的支持。随着计算机软件和硬件的飞速发展,针对地质体的三维建模与可视化,综合运用三维仿真、数学地质、计算机图形学、虚拟现实、科学计算可视化、计算机软件开发等成熟的理论方法与技术,实现复杂地质条件下的三维地质建模。 二.三维地质建模数据来源与特点分析 在三维地质建模中,用来反映地质体特征的数据来源多种多样,包括地质勘探数据、地球物理勘探数据、地球化学勘探数据、工程地质数据等等。 由于地质原始数据的多源性、离散性和定性特征在很大程度上阻碍了三维地质建模研究的发展。因此,在三维地质建模工作中需要耦合多源信息,对场区地质构造进行分析、解译,将定性描述的数据定量化,尽量以数值型数据和图形数据来进行表达,将离散不确定的数据通过各种插值拟合的手段转化为连续确定的数据,为三维地质建模提供合适的数据源。 三.三维地质建模的难点与关键技术问题分析 通过对三维地质建模数据来源与特点的分析可知,建立一个客观准确的三维地质模型必须满足三个条件:足够多的原始地质采样数据、能够真实反映复杂地下空间关系的地质解译分析、合适的数据结构。就目前复杂地质体的三维建模主要面临的困难可归纳为以下3点: (1)原始地质数据获取艰难。地质体通常位于地表以下,人们无法直接全面地观察到地质体的各种特征,往往只能通过物探、化探等手段获得地质体的部分特征信息,并通过对这些信息的分析、解释、推断来获得地质体的基本信息。 (2)地下地质体及其空间关系极其复杂。地质条件和地质作用复杂多变,在其影响下,地层被切割成不连续的空间分布,岩体内复杂的岩性变化,以及地

城市三维地下管线管理系统

城市三维地下管线 管理系统

城市三维地下管线管理系统 一、城市地下管线 城市管网是城市最重要的公共基础设施之一,与城市的发展和居民的日常生活息息相关。根据不同的市政建设,管网分为供水、排水、通信、电力等多种类别,其分布也遍及地下、空中、水下等。城市地下管线是城市建设的重要内容和城市生存和发展的生命线。具有规模大、范围广、管线种类繁多、空间分布复杂、变化大、增长速度快、形成时间长等特点。触及城市的各个角落,与人民生活息息相关。 当今的城市中布满了各种各样的管线,类似于以前手工的管理模式和管理手段已无法满足“合理规划、科学管理、优质服务”的要求。对于突发事故的应变能力和处理效率难以适应企业集团高速发展的需求,各级管线管理单位需要一种更为方便、及时的方式,来管理自来水、供暖、排污、燃气、电信信号等管线资源——管线系统,要求科学管理管网资源及相关的管网信息,实现整个管网的协调与统一。同时各种综合信息,如工程报表、维修维护信息等也需要以管网信息为依据,要做到科学化管理。 传统的二维GIS方式管理管网,总是受到平面显示范围的限制,无法从纵深上直观反映管网间真实的空间位置,难以对大量的管线信息进行有效的描述和表示。管线三维模型能直观地描述管线的三维特征及管线间的空间关系,能真实地反映地下管线的空间分布状况。

城市三维地下管线管理系统是以计算机网络为载体,GIS软件为平台的应用型技术系统,整合城市地下综合管线数据资源,实现了地下管线的三维可视化管理、存储、查询、分析、定位等功能,形成了一套完善的城市地下综合管线数据资源管理数字化、可视化的三维管线系统。管线采用二三维一体化的设计方式,平面视图管线表现为二维方式,转换视角,管线表现为三维方式,能够直观查看管线与周围地形、地物、建构筑物的关系。由于其精确性、真实性和无限的可操作性,能够大大提高对管线信息的理解、认识、定位、判断、利用。能够提供包含基本的空间查询、属性查询、空间统计服务,基于管线数据的空间分析服务。三维管线是普通管线系统平台的高端形式,更直观、更立体地展现管线现状。可快速导入三维模型数据,包括基础底图的三维模型和管线三维模型,显示叠加后的效果;导入二维矢量图层,系统可自动将二维渲染成三维模型。三维效果让管线显示更加直观,实现对地下管线不同角度的查看。 当前,许多科技型企业着力研究最新的三维GIS技术,拓展其在管网行业中应用。不但实现了将三维可视化技术应用到管网的展示中,更以创新的思维和手段实现了二维与三维联动展示与编辑的应用,真正满足了对管网真实高效地管理和直观便捷地维护的要求。三维GIS技术已在自来水、通信行业中应用到具体的业务部门中,为管网的管理应用提供了很好的案例。 表.1国内应用城市三维地下管线管理系统的城市信息表

3DGIS在城市地下空间规划中的应用

第31卷 第5期 岩 土 工 程 学 报 Vol.31 No.5 2009年 5月 Chinese Journal of Geotechnical Engineering May 2009 3D GIS在城市地下空间规划中的应用 丛威青1,潘 懋1,庄莉莉2 (1.北京大学地球与空间科学学院,北京 100871;2.天津大学建筑学院,天津 300072) 摘 要:我国城市地下空间开发迅猛发展,由于地下空间利用具有难恢复、难预算等特点,地下空间规划日益受到重视。但是传统二维规划技术很难用以描述地下复杂地质环境等三维空间信息,而三维GIS技术可以较好地解决这一问题。在分析城市地下空间规划内容的基础上,对三维GIS技术及其在地下空间规划中可发挥的作用加以阐述,提出了基于三维GIS的地下空间规划三维辅助信息系统总体设计,重点探讨其体系结构和子系统集成方案。 关键词:三维;GIS;地下空间;城市规划 中图分类号:TU473;TP391 文献标识码:A 文章编号:1000–4548(2009)05–0789–04 作者简介:丛威青(1980–),男,山东日照人,博士,从事3D GIS及其应用方面的研究。E-mail: wqcong@https://www.sodocs.net/doc/1514054499.html,。 Application of 3D GIS in urban underground space planning CONG Wei-qing1, PAN Mao1, ZHUANG Li-li2 (1. School of Earth and Space Sciences, Peking University, Beijing 100871, China; 2. School of Architecture, Tianjin University, Tianjin 300072, China) Abstract: The urban underground space has rapidly developed. Because of the difficult recovery and estimation, the underground space planning has received increasing attention. However, the traditional 2D planning techniques are difficult to describe the complex underground geological and environmental information. 3D GIS technology provides a better method to solve this issue. Based on the analysis of urban underground space planning, the three-dimensional GIS technology and its conceivable role in the underground space planning are analyzed. A design of 3D supporting information system is put forward for the underground space planning, focusing on its architecture and subsystems integrated solutions. Key words: 3D; GIS; underground space; urban planning 0 引 言 自1863年伦敦首条地铁开通以来,世界各国地下空间开发获得了迅猛发展。特别是1950年以后,以美国、加拿大、日本、法国等发达国家为代表,已经形成较为完善的地下空间开发体系和地上、地下一体化规划理念[1]。我国现代地下空间的开发利用在改革开放后逐渐进入快车道。北京地下空间建成面积已在3000万m2以上,平均每年增加建筑面积约300万m2,占总建筑面积的10%左右[2]。此外,上海、南京、天津、深圳、青岛等城市都在大力拓展城市地下空间。 由于地下空间开发具有难恢复、难预算等特点,如果希望地下空间资源在城市发展中发挥最大的长期效益,就必须对地下空间资源进行有效规划。然而,不管是地下空间总体规划还是详细规划,都需要在提供文字说明的同时,形成辅助说明图件,如地下空间资源评估图、地下空间开发利用现状图、地下空间开发利用总体布局与结构规划图、地下工程系统规划图等,传统的规划技术主要关注于研究区域的二维表达,这对于地表规划已经足够了,但是地下地质环境极大地影响着可建造设施的类型、规模和费用,直接决定了地下构建筑物建设状况,这就需要一种更为有效的方式来描述地下三维复杂地质环境,三维GIS(3D GIS)技术为解决这一问题提供了可能。 1 3D GIS技术 经过几十年的发展,二维GIS已深入到社会的各行各业,但其存在着自身难以克服的缺陷,虽然一些二维GIS和图象处理系统也能处理第三维的高程信息(2.5维GIS),但并未将高程变量作为独立的变量加以处理,只将其作为附属变量,虽能表达地表的起伏,但对地下信息的描述能力十分有限[3]。3D GIS是布满整个三维空间的GIS,通过对人类从某点观察视觉效 ─────── 基金项目:中国博士后科学基金项目(2007042044);“十一五”国家科技支撑计划重大项目子课题(2006BAC04B01) 收稿日期:2008–03–17

三维可视化与物联网技术在数字校园建设中的应用

三维可视化与物联网技术在数字校园建设中的应用 ——以滨海新区三维可视化数字校园系统建设研究为例 天津市滨海新区塘沽教育中心马连成贺秀芳 摘要: 天津市滨海新区三维可视化数字校园信息管理系统的建设,首次将物联网、三维可视化技术在校园中进行集成应用,通过各类传感器的对接,实现了校园内资产与设备管理、多媒体教室和实验室使用监管、地下管网管理、安全监督管理、应急管理等系统的集成应用和联动管理,并借助三维场景和动态模型表现管理对象的空间位置、属性及其状态信息,为校园各部门管理人员提供可视化管理方式,极大的丰富了数字校园信息管理的内涵,提升了校园管理信息化水平,为校园全方位管理提供决策支撑。 关键字:物联网三维可视化数字校园 三维可视化数字校园信息管理系统主要是通过物联网、数据通信与传感网络、三维可视化与虚拟仿真、智能分析与多维联动、三维GIS 空间信息等最新技术的联合应用,依托于三维可视化综合管理平台,集成各种感知识别设备、现有业务系统和各类数据,完成了对校园校产、校园人员、设备与设施的属性和位置管理,实现了对以上对象的状态进行实时监测、数据分析和报警联动,最后通过三维可视化的方式对便于展示的部分进行位置、属性和状态的综合直观显示。 该系统集成校园现有固定资产、校园OA、校园教务管理系统等业务的接口,真正建立起包括校园环境及建筑监管、校园设备监管、校园运营管理、校园决策辅助等功能在内的全方位、网络化、可视化信息管理系统,最终实现校园管理信息系统的数据交互与共享,为数字校园安全、精细化管理、绿色校园建设提供重要的辅助支撑。本系统建设完成后,还可以与教育局等主管部门进行基于GIS的教育布局分析系统进行对接,不断完善同空间位置相关联的各类管理信息的集成、联动与分析,并形成适合教育系统应用的多层次管理结构。 一、系统结构设计

相关主题