搜档网
当前位置:搜档网 › (完整word版)低碳化硅浇注料

(完整word版)低碳化硅浇注料

(完整word版)低碳化硅浇注料
(完整word版)低碳化硅浇注料

四、低SiC、ZrO2含量耐火浇注料

长时期以来,人们普遍认为耐火浇注料内SiC的含量越高,抗碱结皮性能越强,其对应关系大体情况见表4-49

表4-49 SiC含量与抗结皮性的大体对应关系

按照上述要求,烧成系统温度较高且碱等有害元素侵蚀以及熟料磨蚀较重的部位,如篦冷机进料口,所配置的SiC含量高达60%-70%,在生产过程中,除了具备耐磨蚀的优点外,还存在着价格过高和热导率过大等缺陷,此外还发现SiC 的含量与抗碱性并不呈线性关系。如何保持较强的抗碱性而尽量降低SiC的含量成为耐火材料公司研究的课题。通过研究,发现耐火浇注料和耐火砖相比,具有如下特点:首先是孔隙率较高,养护烘干及生产使用后,孔隙率增至18%-25%。另一个特点是孔隙尺寸小,低水泥耐火浇注料的孔隙为0.5-1.5um,而耐火砖的孔隙尺寸为上述数据的3-5倍。也就是说,低水泥SiC耐火浇注料具有孔隙率高和孔隙尺寸小的特点。

分析SiC耐火浇注料抗结皮的主要效应是耐火浇注料内的SiC,在高温的状况下,SiC氧化和水蒸气作用,产生SiO2的抗碱结皮,其反应方程式为:2SiC+3O2→2SiO2+2CO (4-21)

SiC+2H2O→SiO+CO+2H2 (4-22)

反应产生的CO、H2经微细的孔隙逸出,其过程如图4-32所示。所生成的SiO2,若遇到碱性元素K+、Na+与之作用,加快此氧化过程,在此过程中,氧化速率增加10倍以上。

SiO2可将结皮物质硫灰硅钙石中的成分破坏,使其生成C2S,与易结皮的硫灰硅钙石作用,生成K2SO4阻碍了结皮。

砖内的SiC含量越高,则耐火浇注料衬体表面的黏性层越黏,阻止了气体从微细孔径逸出,减缓了抗碱的SiO2的生成,并不有利于抗碱侵蚀。

上述情况表明,SiC含量并不是越高越抗结皮,水泥熟料生产过程中,在满足各部位抗结皮需求的前提下尽量降低SiC的含量。

国外的研究单位为减少SiC的含量,对SiC≤7%和SiC≥30%含量的耐火浇注料在不同含量的Cl2、SO3及不同温度下进行测试,其结果大致为:SiC≤7%和SiC≥30%两种耐火浇注料在1200℃的高温条件下,均具有较好的抗结皮性能,SiC≤7%较SiC≥30%抗Cl2结皮性能强些。

通过上述实验,证实此类耐火浇注料中,SiC含量在5%-15%时具有优良的抗碱结皮和抗磨蚀性能,氧化敏感性低些。

若在SiC耐火浇注料内,增加一些ZrSiO4可使浇注料内的微裂纹增加,有助于增加衬体强度和氧化/微细孔隙效率。

按照上述机理,Calderys耐火材料公司率先开发了SiC<10%及SiC<10%、Zr2O3<10%的两种最大工况温度超过1600℃的耐火浇注料,适用于预热器、分解炉系统的分解炉、上升烟道、进料室部位,以及窑尾进料锥体、窑门罩、冷却机热端等高温部位。与传统的SiC高含量耐火浇注料相比,首先是价格便宜,其次是热导率下降,降低了与硅酸钙板界面的温度,相应减缓了硅酸钙板对工况温度的需求,也减少了筒体散热损失,见表4-50。

表4-50 Calderys耐火材料公司低SiC含量耐火浇注料性能及使用部位

注:×表示断裂模数,×越多则使用量越大。

随着技术的进展,是否会出现类似SiO2浸渍高铝砖性能的抗结皮耐火浇注料产品,有待进一步实践。

浇注料的分类及其特性

耐火材料的分类及其特性

耐火浇注料 特性: 一种由耐火物料加入一定量结合剂制成的粒状和粉状材料。具有较高流动性,适用于以浇注方式成型的不定形耐火材料。同其他不定形耐火材料相比,结合剂和水分含量较高,故流动性较好,但耐磨性较差,适用于各种窑炉,具有耐碱性的水硬性浇注料。 适用方法: 物料及结合剂加水搅拌均匀使用,需要支模,填灌后用振动棒振打消除气泡。 适用区域: 应用范围较广,可根据使用条件对所用材质和结合剂加以选择。既可直接浇注成衬体使用,又可用浇注或震实方法制成预制块使用。适用于产生摩擦量小的高温区域,如锅炉底部风室、一次风道、返料立管(料腿)、尾部烟道炉墙、冷渣机、各炉门的填充等。

耐磨可塑料 特性: 耐磨可塑料是一种高铝、刚玉质颗粒状制品。与传统耐火可塑料相比,其具有施工简易,效率好,成型好,强度高等优良性能,该材料是由胶粘剂、耐火骨料和促硬剂组成,,加一定比例的PA胶后形成一种可塑耐火泥,便于各种复杂部位施工。属于气硬性材料,具有低温硬化性能,保证循环流化床锅炉耐磨性的需要。 耐磨性能较差。 施工工艺: 使用时采用强制搅拌机搅拌,在搅拌时将小袋中的促硬剂均匀加入,干搅1分钟后,再加入4-5%的胶粘剂搅拌3分钟,待料呈一定的塑性时,即可卸出使用。 采用橡皮锤捣打施工或机器捣打施工,可施工时间保证在30分钟以后,初凝时间约1个小时。 施工时,把可塑料铺设一定的厚度,一般不超过60mm厚,用橡皮锤或木锤捣实,捣打炉墙等部位一般不需支模,捣打后的衬体比设计尺寸厚的多,应及时除去多余部分。即或支模,如炉顶等部位施工拆模后,若有多余部分也要除去。修整下来的多余料如未变干可放在非工作面继续使用。修整工作面最好与捣打工序并行开展。如果施工间断时,要用塑料布等物将捣打面盖严,防止迅速干燥。耐磨可塑料搅拌后可施工时间大约为30分钟(随环境温度有所变动),一旦时间过长硬化后,就应扔掉,不可继续使用。 适用区域: 应用范围较广,可根据使用条件对所用材质和结合剂加以选择。既可直接浇注成衬体使用,又可用浇注或震实方法制成预制块使用。

铝碳化硅锆质耐火材料完整

学生毕业论文(设计) 课题名称:铝碳化硅锆质铁水罐不烧砖 的研制与使用 专业班级:材料工程0501 姓名:利鹏 系部:冶金学院 实习单位:莱芜钢铁集团 指导老师:田华孙华云 2008年05月06日 摘要:随着钢铁企业市场竟争的激烈,“优质、高效、低耗、环保”

的发展战略,是企业生存和发展的必经之路。在这种形势下,莱芜市耐火材料厂,本着“优质、高效、低耗、环保”的八字方针,开发研制出了一种新型的铁水罐砖,铝碳化硅锆质铁水罐不烧砖。这种材质的不烧砖,解决了传统的粘土砖粘铁挂渣现象,使用寿命在进行脱硫、脱硅、脱磷的处理时,仍大于1000次,同时它又是一种不烧砖,既节约了能源,又降低了排污污染,是目前较为理想的耐火材料。 关键词:铝碳化硅锆不烧砖铁水罐冷铁抗渗透 铝碳化硅锆质铁水罐不烧砖的研制与使用 1、铁水罐的构造 根据铁水罐内衬大致可分为3个区域,即上部、渣线部和罐底部。

各部位使用条件差异较大,砖的损毁特点也各有不同: 1.1铁水罐上部 在服役期间与铁水的熔渣接触较少,大部分时间暴露在高温氧化气氛中,由于砖中的石墨易被氧化,往往会导致砖体结构疏松,强度下降。对于上部用罐砖,既要提高其抗氧化性,又要提高对铁水,熔渣抗冲刷性。 1.2渣线部位 铁水罐渣线部位的砖在服役期浸泡在熔渣和铁水中,经受熔渣的长期的化学侵蚀,这是渣线部位铁水罐砖损毁的主要原因。 1.3罐底部及冲击区 罐底首先要承受高温铁水的强烈机械冲击,(高炉铁水口到铁水罐底的高度落差一般都在3-5米)。铁水罐罐底部在服役期间被高温铁水反复浸泡,受到铁水的熔损和热冲刷。在进行“三脱”处理时,在铁水底部喷吹强碱性造渣粉状材料,铁水的强烈搅动,加剧了对罐底的侵蚀,高温铁水的熔损、热冲击和机械冲刷是此部位耐火材料损毁的主要原因。 2、铁水罐的主要技术 2.1由烧成砖改为树脂C链结合不烧砖 制品中虽然含有碳、但不烧工艺使产品的热导率比烧成显著降低,保温性能好,铁水在单位时间内温降小,杜绝了罐内冷铁现象。 2.2材质配方的创新使用 原来铁水罐多是以铝Al2O3、SiC为主成分,根据我们研究和罐衬侵蚀机理,在配方中引入了具有熔态渣铁难以浸润的高温材料C成分,增加了ZrO2质增韧材料,提高制品的韧性。 2.3砖型设计的创新 该铁水罐砖型分为两部分设计:桶形罐衬由原来的万能旋转弧衬衬砖改为以圆扇面按角度分割出每个砖型,罐底球面部分利用球体分割法设计每个砖型,砖与砖之间严丝合缝,最大限度的降低了熔态渣铁渗漏机会,提高其全罐的安全性和耐用性。 3、采用的实验方法和技术路线

(完整word版)低碳化硅浇注料

四、低SiC、ZrO2含量耐火浇注料 长时期以来,人们普遍认为耐火浇注料内SiC的含量越高,抗碱结皮性能越强,其对应关系大体情况见表4-49 表4-49 SiC含量与抗结皮性的大体对应关系 按照上述要求,烧成系统温度较高且碱等有害元素侵蚀以及熟料磨蚀较重的部位,如篦冷机进料口,所配置的SiC含量高达60%-70%,在生产过程中,除了具备耐磨蚀的优点外,还存在着价格过高和热导率过大等缺陷,此外还发现SiC 的含量与抗碱性并不呈线性关系。如何保持较强的抗碱性而尽量降低SiC的含量成为耐火材料公司研究的课题。通过研究,发现耐火浇注料和耐火砖相比,具有如下特点:首先是孔隙率较高,养护烘干及生产使用后,孔隙率增至18%-25%。另一个特点是孔隙尺寸小,低水泥耐火浇注料的孔隙为0.5-1.5um,而耐火砖的孔隙尺寸为上述数据的3-5倍。也就是说,低水泥SiC耐火浇注料具有孔隙率高和孔隙尺寸小的特点。 分析SiC耐火浇注料抗结皮的主要效应是耐火浇注料内的SiC,在高温的状况下,SiC氧化和水蒸气作用,产生SiO2的抗碱结皮,其反应方程式为:2SiC+3O2→2SiO2+2CO (4-21) SiC+2H2O→SiO+CO+2H2 (4-22) 反应产生的CO、H2经微细的孔隙逸出,其过程如图4-32所示。所生成的SiO2,若遇到碱性元素K+、Na+与之作用,加快此氧化过程,在此过程中,氧化速率增加10倍以上。 SiO2可将结皮物质硫灰硅钙石中的成分破坏,使其生成C2S,与易结皮的硫灰硅钙石作用,生成K2SO4阻碍了结皮。 砖内的SiC含量越高,则耐火浇注料衬体表面的黏性层越黏,阻止了气体从微细孔径逸出,减缓了抗碱的SiO2的生成,并不有利于抗碱侵蚀。 上述情况表明,SiC含量并不是越高越抗结皮,水泥熟料生产过程中,在满足各部位抗结皮需求的前提下尽量降低SiC的含量。

碳化硅主要用途__碳化硅用于耐火材料时特性

碳化硅主要用途__碳化硅用于耐火材料时特性 碳化硅主要用途是什么呢?碳化硅用于耐火材料时有哪些特性呢?碳化硅又名金刚砂,包括黑碳化硅和绿碳化硅,其中:黑碳化硅是以石英砂,石油焦和硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。绿碳化硅是以石油焦和硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。那么碳化硅的主要用途有哪些? 【碳化硅主要用途】 一、磨料--主要是因为碳化硅具有很高的硬度,化学稳定性和一定的韧性,所以碳化硅能用于制造固结磨具、涂附磨具和自 由研磨,从而来加工玻 璃、陶瓷、石材、铸铁 及某些非铁金属、硬质 合金、钛合金、高速钢 刀具和砂轮等。 二、耐火材料和耐腐蚀 材料---主要是因为碳 化硅具有高熔点(分解 度)、化学惰性和抗热振性,所以碳化硅能用于磨具、陶瓷制品烧成窑炉中用的棚板和匣钵、炼锌工业竖缸蒸馏炉用的碳化硅砖、铝电解槽衬、坩锅、小件炉材等多种碳化硅陶瓷制品。 三、化工--因为碳化硅可在溶融钢水中分解并和钢水中的离氧、金属氧化物反应生成一氧化碳和含硅炉渣。所以它可作为冶炼钢铁的净化剂,即用作炼钢的脱氧剂和铸铁组织改良剂。这一般使用低纯度的碳化硅,以降低成本。同时还可以作为制造四氯化硅的原料。 四、电工--用作加热元件、非线性电阻元件和高半导体材料。加热元件如硅碳棒(适用于1100~1500℃工作的各种电炉),非线性电阻元件,各式的避雷阀片。

五、其它--配制成远红外辐射涂料或制成碳化硅硅板用远红外辐射干燥器中。【碳化硅用于耐火材料时特性】 1、还原气氛下使用温度一般可达1760℃; 2、抗热震性能好,能承受温度急剧变化,防止炉衬出现裂纹或断裂 3、因热态强度高,中高温条件时可承受一定应力,可作为结构材料 4、耐磨性能好,在一定温度下,可作为耐磨衬体 5、能耐受一定熔渣或热态金属,包括碱金属熔液的侵蚀和渗透 6、可承受一些炉气的作用,能用于气氛炉。 其中,碳化硅应用于耐火材料的关键技术有以下四种方式: 1、氧化物结合:以硅酸铝、二氧化硅等为结合剂; 2、氮化物结合:氮化硅、氧氮化硅和赛隆结合; 3、自结合:按碳化硅的当量比例加入石墨和金属硅,高温下反应生成;

KR 搅拌桨用 Al2O3-SiO2-SiC 浇注料的研制及应用

KR搅拌桨用Al2O3-SiO2-SiC浇注料的研制及应用 高仁骧 上海柯瑞冶金炉料有限公司上海201908 摘要:根据KR搅拌桨因浇注料中裂纹的产生和扩展而损坏的机制,利用碳化硅热膨胀系数较小的特性,开发出具有很好的抗热震性能的Al2O3-SiO2-SiC浇注料。用该浇注料制作的KR搅拌桨,应用于宝钢二炼钢300 t的铁水包脱硫作业,在平均每炉脱硫时间达13.5 min,最高转速达120 r·min-1,且较少修补的情况下,使用寿命达310炉以上,最高寿命达到376炉,取得了很好的使用效果。 关键词:铁水脱硫;KR搅拌桨;Al2O3-SiO2-SiC浇注料;裂纹;抗热震性 KR搅拌脱硫技术在20世纪70年代就由武钢从日本新日铁引进[1],但后来发展几乎停滞。2000年后又发展起来,KR搅拌桨与脱硫喷枪相比较,由于搅拌力量大,能使脱硫粉剂在铁水中充分扩散,因而脱硫效率高,脱硫粉剂使用量少,脱硫时间短,脱硫费用低,正在被国内钢厂普遍接受,国内钢厂已有武钢、宝钢、湛江宝钢、马钢、攀钢、柳钢等大小钢厂先后建起了KR搅拌脱硫生产线,并还有许多钢厂计划上马KR搅拌脱硫生产线,或对原有的脱硫喷枪脱硫的生产线进行改造。因此,研制好KR搅拌桨将有广阔的市场前景。 KR搅拌桨的损坏最主要是由于耐火浇注料产生裂纹,随着使用中裂纹的加大加深,引起浇注料产生剥落,若剥落过多会致桨的旋转不平衡或铁水熔损到钢芯而下线,或铁水沿着加大加深的裂纹渗透至钢芯,导致钢芯烧坏而下线。因此,减少裂纹的产生和抑制裂纹的扩展是KR搅拌桨用耐火浇注料的研制方向。搅拌桨用耐火浇注料产生裂纹的原因有下列因素:一是KR搅拌桨冷热交替使用产生的热震裂纹;二是KR 搅拌桨高速旋转搅拌铁水时产生的机械裂纹;三是内部金属桨芯受热膨胀在耐材中产生的拉张裂纹。因此KR搅拌桨用耐火浇注料应有很好的抗热震性和各温区的强度。 KR搅拌桨用耐火浇注料现在普遍采用两种材质,一是Al2O3-SiO2质,二是Al2O3-SiO2-SiC质。由于碳化硅(热膨胀系数 4.7×10-6℃-1)比莫来石(热膨胀系数5.3×10-6℃-1)具有更低的热膨胀系数,所以Al2O3-SiO2-SiC质的耐火浇注料的抗热震性更好。因此,首选Al2O3-SiO2-SiC质作为试验材质。 1 试验 1.1 主要原料及配比 试验所用的主要原料有电熔莫来石颗粒、白刚玉粉、红柱石、α-氧化铝微粉、硅微粉、合成莫来石粉、碳化硅、71铝酸钙水泥等,其化学组成如表1所示。 在脱硫喷枪用低水泥结合莫来石浇注料的基础配方(见表2)中,用碳化硅替代其中的电熔莫来石(1~0 mm)和合成莫来石粉,分别试验了碳化硅的添加量和添加形式对浇注料抗热震性的影响。碳化硅的添加量变化见表3,添加形式的变化见表4。

碳化硅主要的四大应用领域

碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道、叶轮、泵室、旋流器、矿斗内衬的理想材料,具耐磨性能是铸铁,橡胶使用寿命的5-20倍,也是航空飞行跑道的理想材料之一。碳化硅主要有四大应用领域,即:功能陶瓷、耐火材料、磨料及冶金原料。碳化硅粗料已能大量供应,不能算高新技术产品,而技术含量极高的纳米级碳化硅粉体的应用短时间不可能形成规模经济。 (碳化硅-图片) 1、作为磨料,可用来做磨具,如油石、磨头、砂瓦类等。 2、作为冶金脱氧剂和耐高温材料。 3、高纯度的单晶,可用于制造半导体、制造碳化硅纤维。 主要用途:用于3-12英寸单晶硅、多晶硅、砷化钾、石英晶体等线切割。太阳能光伏产业、半导体产业、压电晶体产业工程性加工材料。 用于半导体、避雷针、电路元件、高温应用、紫外光侦检器、结构材料、天文、碟刹、离合器、柴油微粒滤清器、细丝高温计、陶瓷薄膜、裁切工具、加热元件、核燃料、珠宝、钢、护具、触媒担体等领域。 折叠磨料磨具

主要用于制作砂轮、砂纸、砂带、油石、磨块、磨头、研磨膏及光伏产品中单晶硅、多晶硅和电子行业的压电晶体等方面的研磨、抛光等。 折叠化工 折叠"三耐"材料 利用碳化硅具有耐腐蚀、耐高温、强度大、导热性能良好、抗冲击等特性,碳化硅一方面可用于各种冶炼炉衬、高温炉窑构件、碳化硅板、衬板、支撑件、匣钵、碳化硅坩埚等。 另一方面可用于有色金属冶炼工业的高温间接加热材料,如竖罐蒸馏炉、精馏炉塔盘、铝电解槽、铜熔化炉内衬、锌粉炉用弧型板、热电偶保护管等;用于制作耐磨、耐蚀、耐高温等碳化硅陶瓷材料;还可以制做火箭喷管、燃气轮机叶片等。此外,碳化硅也是高速公路、##飞机跑道太阳能热水器等的理想材料之一。 (碳化硅-图片) 折叠有色金属 利用碳化硅具有耐高温,强度大,导热性能良好,抗冲击,作高温间接加热材料,如坚罐蒸馏炉,精

铝碳化硅

铝碳化硅(Al/SiCp)系第三代电子封装材料,这种SiC颗粒增强铝基复合材料具有的高比强度、高比模量、耐磨损及抗腐蚀性等优良的性能使得其在航空、航天、医疗、汽车等领域获得了广泛的应用前景,也使得其制备、加工以及应用成为当今世界科技发展的一个研究热点。 增强体颗粒SiC比常用的刀具如高速钢刀具和硬质合金钢刀具的硬度高, 在机械加工过程中能引起剧烈的刀具磨损, 因此,复合材料的难加工性和昂贵的加工成本限制了铝基碳化硅复合材料的广泛应用。目前, 在进一步扩大铝基碳化硅复合材料的应用方面, 材料的切削加工是最重要的研究课题之一。随着SiCp/Al复合材料在航空、航天等领域应用的不断增加,出现了越来越多的带有直线、曲线形状的深窄沟槽、小尺寸孔、螺纹且需要对它们进行精密加工的零件。如何突破这种难加工材料的加工工艺方法,有效的降低其加工成本,使其得到广泛的应用,对我国国防事业有着重要意义。 基于当前世界的机械制造水平,我国有部分科研院所针对这个课题作了部分研究,人们尝试了多种加工方法:有金刚石刀具高速加工、金刚石砂轮进行高效磨削、电火花加工、激光加工、超声振动切削加工等等。这么多的方法总而言之,各有利弊,铝碳化硅材料的加工工艺方法还处于摸索总结阶段。 我公司于2009年启动该项目,经过不断地摸索实验与总结,已经取得了一系列研究成果,促进了SiCp/Al复合材料加工技术的发展和应用。我们认为采用金刚石刀具高速切削和采用金刚石砂轮进行高效磨削以及结合电火花加工能有效的保证设计尺寸精度要求。但是,要有效的降低其加工成本还有很多的路要走。其加工制造的瓶颈主要有三点: 1.高精度、高转速、高效率的切削机床。这是实现铝碳化硅复合材料高效加工的根 本,是金刚石刀具高速加工及金刚石砂轮高效磨削的前提条件。 2.金刚石刀具及金刚石砂轮的制造。如何提高金刚石刀具及金刚石砂轮的使用寿 命,降低其制造成本,实际上也就决定了铝碳化硅复合材料的加工成本。 3.切削参数。合理的切削参数能有效的保护机床和刀具,提高加工效率。 针对以上三点,在十二五期间,我们计划再用2年时间解决。首先机床在资金允许的前提下,购买国内外满足使用性能的机床;进一步加大对金刚石刀具的制造和再次刃磨研究;进一步改进电镀金刚石砂轮和钎焊金刚石砂轮的研究;加强对切削参数的优化与总结。同时也进一步展开对其他工艺方法的研究。

电子封装中的铝碳化硅及其应用

电子封装中的铝碳化硅及其应用 1 引言 铝碳化硅AlSiC(有的文献英文所略语写为SiCp/Al或Al/SiC、SiC/Al)是一种颗粒增强金属基复合材料,采用Al合金作基体,按设计要求,以一定形式、比例和分布状态,用SiC颗粒作增强体,构成有明显界面的多组相复合材料,兼具单一金属不具备的综合优越性能。AlSiC研发较早,理论描述较为完善,有品种率先实现电子封装材料的规模产业化,满足半导体芯片集成度沿摩尔定律提高导致芯片发热量急剧升高、使用寿命下降以及电子封装的"轻薄微小"的发展需求。尤其在航空航天、微波集成电路、功率模块、军用射频系统芯片等封装分析作用极为凸现,成为封装材料应用开发的重要趋势。 2 封装AlSiC特性 封装金属材料用作支撑和保护半导体芯片的金属底座与外壳,混合集成电路HIC的基片、底板、外壳,构成导热性能最好,总耗散功率提高到数十瓦,全气密封性,坚固牢靠的封装结构,为芯片、HIC提供一个高可靠稳定的工作环境,具体材料性能是个首选关键问题。 在长期使用中,许多封装尺寸、外形都已经标准化、系统化,存在的主要缺陷是无法适应高性能芯片封装要求。例如,Kovar(一种Fe-Co-Vi合金)和Invar(一种Fe-Ni合金)的CTE低,与芯片材料相近,但其K值差、密度高、刚度低,无法全面满足电子封装小型化、高密度、热量易散发的应用需求合金是由两种或两种以上的金属元素或金属与非金属元素所组成的金属材料,具有其综合的优势性能。随之发展的Mo80 Cu20、Cu/Invar/Cu、Cu/Mo/Cu等合金在热传导方面优于Kovar,但期比重大于Kovar,仍不适合用作航空航天所需轻质的器件封装材料。 常用金属封装材料与CaAs的微波器件封装需求存在性能上的差距,使得研发一种新型轻质金属封装材料,满足航空航天用器件封装成为急需,引发相关部门调试重视。经过近些年来的深入研究,AlSiC取得产业化进展,相继推动高硅铝合金Si/Al实用化进程,表2示出其主要性能与常用封装材料的对比。将SiC与Al合金按一定比例和工艺结合成AlSiC后,可克服目前金属封装材料的不足,

浇注料指标

高铝浇注料(钢纤维增强/PA-80胶结合)指标用途特性 水泥窑衬、窑口、下料口、炉门、炉门框等磨损冲击部位浇注与修补 工业炉窑耐火内衬浇注与修补根据需要预制成各种砖型 耐磨抗击---钢纤维增加,抗冲击、抗冲刷、耐磨损,使用寿命长;快硬快烘---浇注后2-3小时硬化,可立即烘炉,烘炉时间5-10 小时或更短; 耐火度高---选料精良,浇注料耐火度高达1790度,高温性能卓越;施工方便---机器搅拌,震动浇注施工; 节约工期---大幅度缩短工期,经济效益显著。

型号 化学成 分 Al 2 O 3 %≥ 抗急 冷急 热性 (次) 最高使 用温度 MST ℃ 耐火 度 ≥℃ 体积 密度 g/cm3 烧后线 变化% 烧后抗压强度≥ Mpa 1000℃ 110℃×24h1000℃×3h1400℃×3h ZYPAf-65 65 50 1350 1700 2.3 ±0.340 50 50 ZYPAf-70 70 50 1400 1750 2.4 ±0.340 50 50 ZYPAf-75 75 50 1450 1790 2.6 ±0.350 60 60 ZYPAf-80 80 50 1550 1790 2.8 ±0.350 60 60 用法:加高温胶搅拌成砂浆即可施工,变可捣打施工,或预制 成型。 关键字:浇注料耐火材料

刚玉= 三氧化二铝 刚玉(CorundumКорунд)名称源于印度,系矿物学名称,宝石学上具备宝石条件的称红宝石(Ruby)、蓝宝石(Sapphire)。刚玉Al2O3的同质异像主要有三种变体,分别为α-Al2O3、β-Al2O3、γ-Al2O3、,根据X衍射分析确还有η-Al2O3(等轴晶系)、ρ-Al2O3(晶系不确定)、χ-Al2O3(六方晶系)、κ-Al2O3(六方晶系)、δ-Al2O3(四方晶系)、θ-Al2O3(单斜晶系[1])。刚玉颜色多种,有无色、白、金黄(色素离子Ni、Cr)、黄(色素离子Ni)、红(色素离子Cr)、蓝(色素离子Ti、Fe)、绿(色素离子Co、Ni、V)、紫(Ti、Fe、Cr)、棕、黑(色素离子Fe、Fe)、白炽灯下蓝紫、日光灯下红紫效应(色素离子V)。刚玉有玻璃光泽,硬度9。比重395-410。在高温富铝贫硅C的条件下形成,主要与岩浆作用、接触变质及区域变质作用有关。刚玉是铝矾土为主要原料经矿业炉炼出的人造材料,可做磨料和耐火材料。纯度较高的为白色叫白刚玉,含有少量杂质的为棕色叫棕刚玉。

关于耐火浇注料的常用知识

耐火浇注料的常用知识 浇注料作为一种新型的耐火材料,其主要特点在于具有较高流动性,适用于以浇注方式成型的不定形耐火材料,同其他不定形耐火材料相比,结合剂和水分含量较高,流动性较好,故而不定型耐火材料应用范围较广,可根据使用条件对所用材质和结合剂加以选择。既可直接浇注成衬体使用,又可用浇注或震实方法制成预制块使用。 1、问:什么是浇注料? 答:浇注料是一种不定性耐火材料采用支模浇注振捣的施工方式可以排出材料中的气泡可以达到致密。 2、问:浇注料应用的领域? 答:建材行业(水泥玻璃陶瓷等)、石化行业、电力行业、冶金行业、有色金属及其使用工况类似的高温窑炉。 3、问:浇注料施工过程中加水量是否严格控制? 答:必须严格控制,严格按照产品施工说明书执行。 4、问:浇注料在夏季施工过程中应注意什么问题? 答:应注意以下问题: a、浇注料严禁暴晒应做遮阳处理 b、搅拌用水温不得超过25度 c、施工部位也应做遮阳处理有条件可在设备外壁做喷水降温处理 5、问:浇注料在冬天施工中应注意什么问题? 答:应注意以下问题: a、最好在有顶棚的车间中施工 b、若无条件可在现场搭棚保温 c、采用温水搅拌水温30度-50度 6淄博宇能窑炉科技有限公司,兴建于1985年,位于耐火原料基地,是专业生产不定型耐火材料及保温材料的厂家,主要产品有高铝砖、粘土砖、磷酸盐结合耐火砖、循环流化床锅炉用配套耐磨砖、高强度耐磨浇注料、保温耐火浇注料、保温砖、高铝骨料、硬质粘土熟料,及各种不定型耐火材料等品种齐全,质量优价格低 7、问:浇注料如何保存? 答:浇注料应保存在有顶棚的库房中并且下面要做防潮层不得淋雨受潮 8、问:浇注料施工完毕如何养护? 答:水硬性浇注料采用保湿养护24小时再自然养护24小时即可对于特殊大水泥量的传统水硬性浇注料保湿养护48小时对于热硬性浇注料养护过程中不得沾水,相对湿度应在85%以下对于水硬性浇注料的自然养护即可,具体按产品说明书执行。 9、问:浇注料如何烘炉? 答:浇注料一般烘烤制度严格按照产品说明书执行,以防不正确烘炉造成的不良后果。

碳化硅颗粒增强铝基复合材料

碳化硅颗粒增强铝基复合材料 碳化硅颗粒增强铝基复合材料, 是目前普遍公认的最有竞争力的金属基复合材料品种之一。尽管其力学性能尤其是强度难与连续纤维复合材料相匹敌, 但它却有着极为显著的低成本优势, 而且相比之下制备难度小、制备方法也最为灵活多样, 并可以采用传统的冶金工艺设备进行二次加工, 因此易于实现批量生产。冷战结束后的20 世纪90 年代, 由于各国对国防工业投资力度的减小, 即使是航空航天等高技术领域, 也越来越难以接受成本居高不下的纤维增强铝基复合材料。于是, 颗粒增强铝基复合材料又重新得到普遍关注。特别是最近几年来, 它作为关键性承载构件终于在先进飞机上找到了出路, 且应用前景日趋看好, 进而使得其研究开发工作也再度升温。碳化硅颗粒增强铝基复合材料主要由机械加工和热处理再结合其的性质采用一定的方法制造。如铸造法、粘晶法和液相和固相重叠法等。 碳化硅颗粒增强铝基复合材料碳化硅和颗粒状的铝复合而成,其中碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成,再和增强颗粒铝复合而成,增强颗粒铝在基体中的分布状态直接影响到铝基复合材料的综合性能,能否使增强颗粒均匀分散在熔液中是能否成功制备铝基复合材料的关键,也是制备颗粒增强铝基复合材料的难点所在。纳米碳化硅颗粒分布的均匀与否与颗粒的大小、颗粒的密度、添加颗粒的体积分数、熔体的粘度、搅拌的方式和搅拌的速度等因素有关。纳米颗粒铝

的分散的物理方法主要有机械搅拌法、超声波分散法和高能处理法。对复合材料铸态组织的金相分析表明,碳化硅复合材料挤压棒实物照片 颗粒在宏观上分布均匀,但在高倍率下观察,可发其余代表不同粒度、含量的复台材料现SiC颗粒主要分布在树枝问和最后凝固的液相区,同时也有部分SiC颗粒存在于初生晶内部,即被初生晶所吞陷。从凝固理论分析,颗粒在固液界面前沿的行为与凝固速度、界面前沿的温度梯度及界面能的大小有很大关系,由于对SiC颗粒的预处理有效地改善了它与基体合金的润湿性,且在加入半固态台金浆料之前的预热温度大大低于此时的合金温度,故而部分SiC颗粒就可能直接作为凝固的核心而存在于部分初生晶的内部,但是太多数SiC在枝晶相汇处或最后凝固的液相中富集,这便形成了上述的组织形貌。金属中弥敷分布的铝对金属中的品界运动,位错组态及位错运动都有响.纳米碳化硅颗粒增强复合材料具有细小而均匀的组织其原因应该是细小而均匀分布的纳米颗粒高教率地占据空间,颗粒间距较小.有效地控制晶粒的长大;微米碳化硅颗粒增强复台材料中.颗粒尺寸较大,它在空间的分布间距也较大,由于基体热膨胀系数的差异而引起的局部应力也越大,造成了颗粒附近与远离颗粒处基体状态的差异.这种差异是造成微米颗粒增强复合材料组织不均匀的原因。 碳化硅颗粒增强铝基复合材料的航空航天工程应用;1、在惯导系统中的潜在应用;在我国自行研制的诸多型号机载、弹载惯性导航系统中, 不同程度地存在着现用的铸造铝合金结构件比刚度不足、热

基质中Al_2O_3_SiO_2对高铝矾土_莫来石_碳化硅质浇注料性能的影响

第28卷第3期 硅 酸 盐 通 报 Vol .28 No .3 2009年6月 BULLETI N OF T HE CH I N ESE CERAM I C S OC I ETY June,2009 基质中A l 2O 3/S iO 2对高铝矾土2莫来石2 碳化硅质浇注料性能的影响 马小斌,高里存,钟黎声,周 婷 (西安建筑科技大学材料科学与工程学院,西安 710055) 摘要:研究了基质中A l 2O 3/Si O 2对高铝矾土2莫来石2碳化硅质浇注料的组成和性能的影响。借助SE M 、E DX 和 XRD 分析了浇注料的显微结构及晶相组成。实验结果说明掺入适当比例的氧化铝微粉(α2A l 2O 3)、亚白刚玉细粉(<0.074mm )和氧化硅微粉,使细粉中A l 2O 3/Si O 2比达到2.74左右,有利于系统中原位合成莫来石的反应生成, 能较好的改善浇注料的性能,尤其是力学性能。关键词:原位合成;莫来石;浇注料中图分类号:T Q174     文献标识码:A     文章编号:100121625(2009)0320594205 Effect of A l 2O 3/S iO 2i n M a tr i x on Properti es of A lu m i n i um Baux ite 2m ullite 2carborundu m Ca stable MA X iao 2bin,GAO L i 2cun,ZHON G L i 2sheng,ZHOU Ting (College ofMaterials Science and Engineering,Xi’an University of A rchitecture and Technol ogy,Xi’an 710055,China ) Abstract:I n this paper,effect of A l 2O 3/Si O 2in matrix on constitutes and p r operties of alum inium bauxite 2mullite 2carborundum castable had been studied .M icr ostructure and phase compositi on were perf or med by SE M ,EDX and XRD.The results revealed that,it can be favorable t o the reacti on of in 2situ synthesize mullite in syste m which can i m p r ove the p r operties of castable,es pecially mechanical p r operty,when the rati o of A l 2O 3/Si O 2up t o 2.74via additi on of α2A l 2O 3,sub 2white corundum fine powder and silica powder in p r oper p r oporti on .Key words:in 2situ synthesize;mullite;castable 基金项目:陕西省重点学科建设专项资金资助项目 作者简介:马小斌(19812),男,硕士研究生.主要从事高温结构陶瓷方面的研究.E 2mail:21585676@qq .com 1 引 言 随着我国水泥工业的结构调整,近几年,大、中型新型干法水泥窑得到了大力发展,同时也对水泥窑用耐火浇注料提出了更高的要求 [1] 。刚玉和碳化硅因强度高、耐磨性好、高温性能优异,而成为水泥窑用耐火浇 注料的优质原料。但由于刚玉和碳化硅烧结性能差,采用普通结合剂会使产品的高温性能降低。如采用铝酸钙水泥作为结合剂时,低温结合强度较好,但中、高温热处理后强度差[2] 。因此本试验采用氧化硅微粉、 亚白刚玉细粉、氧化铝微粉和莫来石微粉作为基质,并掺加高铝水泥作为结合剂,旨在研究基质中A l 2O 3/ Si O 2对浇注料性能的影响,尤其是对中高温热处理后的强度的影响。

铝碳化硅散热材料及散热解决方案

铝碳化硅介绍及产品设计 西安创正新材料公司是一家集研发、生产和销售为一体的高科技企业。主要致力于第三代电子封装材料——铝碳化硅的研发、生产与销售,根据用户需求,开发了多种AlSiC产品,为微波器件、大功率器件、微电子器件等制造商提供专业的热管理材料及技术方案。 公司产品广泛应用于轨道交通、新能源汽车、航空航天、军事等领域,是新一代大功率电子器件最佳选择。 公司将持续加强与用户的交流与合作,不断满足国内外用户的市场需求,力争以先进的工艺技术、严格的质量管控、一流的性能水平、最高的性价比优势服务用户、持续为客户创造价值。 铝碳化硅介绍 铝碳化硅AlSiC(Al/SiC,SiC/Al)是一种颗粒增强铝基复合材料,采用铝合金作为基体,SiC作为增强体,充分结合了陶瓷和金属铝的不同优势,实现了封装了轻便化、高密度化等要求。 AlSiC密度在2.95~3.1g/cm3之间,热膨胀系数(CTE)6.5~9ppm/℃,具有可调的体积分数,提高碳化硅体积分数可以使材料的热膨胀系数显著降低。同时,铝碳化硅还具有高的热导率和比刚度,表面能够镀镍、金、银、铜,具有良好的镀覆性能。 铝碳化硅复合材料的比刚度是所有电子材料中最高的:是铝的3倍,W-Cu 和Kovar的5倍,铜的25倍,另外铝碳化硅的抗震性好,因此是恶劣环境(震动较大,如航天、汽车等领域)下的首选材料。铝碳化硅复合材料已成为航空航

天、国防、功率模块和其他电子元器件所需求的新型封装材料。用于航空航天微波、功率放大模块等电子器件及模块的封装壳体或底座。 与其他材料性能对比:

铝碳化硅产品设计 ◆板类产品 用AlSiC制成各种板类的产品,用于各类电路的热沉、基板、封盖、过渡片等,可替代目前在使用的氧化铍、氮化铝、钼片、钨铜合金及其它金属材料。 板类产品,可分为裸材和表面覆铝。 ◇产品成型尺寸 长度宽度厚度外形加工内部加工 最大24524510可加工各种 形状可打孔、攻丝、台阶 孔等 最小330.5 在特殊要求下,可以制造最大245*350*80mm的材料,但制造成本将会很高。过厚的材料内部致密度会受到影响。 最大尺寸可以是裸材或表面覆铝,也可在裸材或表面铝上加工各种形状(拱面,伞面等);最小尺寸一般为裸材,在特殊条件下,厚度可加工到0.3mm;而 最小尺寸表面覆铝厚度应不小于0.8mm和外形10mm。 可在某些部位镶嵌其他材料(钛合金、不锈钢、可伐合金等或其他难熔的非 金属)。 孔、台阶孔等处为铝合金材料,可以满足螺丝固定设计,孔、台阶孔可以在 铝碳化硅材料上直接加工,但成本比在铝合金上加工成本高。而螺纹孔需在铝合 金上做成,能过保证螺纹牙的完整性。 倒角、倒边、圆角以及各种设计的加工轮廓,均可在材料上加工。 ◇产品加工精度 一般要求可以做到平面度0.01mm/cm、尺寸精度±0.1mm的要求; 关键尺寸精度可以做在0.05mm以内。 ◇产品表面处理 表面可按设计覆盖各种镀层,如:镍、金、银等; ◆管壳类产品 用AlSiC制造的各类封装管壳产品,用于各种电路的外壳、底座、管件等,可替代目前在使用的可伐合金、铝、钼及其它金属材料外壳。 管壳类产品,可分为裸材和表面覆铝。 ◇产品成型尺寸 长度宽度高度壁厚外形加工内部加工 最大24524512010 可加工各种形 状可打孔、攻丝、台阶 孔等 最小8831 在特殊要求下,可以制造最大245*350*80*10mm的材料,但制造成本会比较

浇注料特性参考

浇注料特性参考 镁鉄尖晶石砖:在使用中与水泥熟料生成cao-AL2O3-Fe2O3系化合物,Fe2O3成份扩散,扩大反应部位,可使窑皮稳定。 优点:Fe2O3的作用,砖的结合组织发达,可提高抗剥落性能及挂窑皮时附着性能。 缺点:耐高温性能,抗侵蚀性能,抗氧化还原性能不佳。 水泥窑的上过渡带窑砖由于没有窑皮保护,筒体温度高,损坏较快,影响窑系统运转率。(镁铝尖晶石:导热系数高,煤耗高。硅莫砖:遇火表面爆头现象严重) 喷煤管浇注料:1铝-碳化硅系列:抗热震,耐碱性好。 2刚玉-尖晶石浇注料:高温抗折强度耐碱性好。 3施工及养护:浇注料施工加入过量水,对耐火材料性能产生不利影响。轻则降低强度,造成偏析。严重使浇注料分为颗粒层与料浆层,造成离析,使浇注料体受内应力作用而破坏。前窑口,篦冷机,喷煤管,窑头罩浇注料在强度末得到充分发挥情况下投入使用,抗磨性和抗冲刷性能较差,磨损加快,导致使用寿命不长。 碳化硅(SiC):属于惰性材料,不与碱反应,具有更好抗结皮性能,一级的耐碱性能。耐磨耐腐蚀,掺入的材料制品在高温下表面形成液相层,保护膜,可提高制品耐碱性能及使用寿命。(如硅莫砖,喷煤管的铝—碳化硅系列浇注料) 硅莫砖:以莫来石和碳化硅为主要矿物组成的烧成砖。高强耐磨抗震稳定性好。 石柱石:在高温下产生膨胀性能提高掺入的材料制品的抗蠕变性及高温强度,提高抗热震稳定性能。 硅莫红砖:硅莫砖加入石柱石的制成品。耐磨性能和抗热震稳定性能使用效果好。膨胀均匀,热震稳定性好,荷重软化点高,强度大,抗化学腐蚀性好,低导热系数,≤1.7W/m.k。较低的导热系数降低热损失,降低煤耗。体积密度低,自重轻。

浇注料的种类及其应用

耐火浇注料 特性: 一种由耐火物料加入一定量结合剂制成的粒状和粉状材料。具有较高流动性,适用于以浇注方式成型的不定形耐火材料。同其他不定形耐火材料相比,结合剂和水分含量较高,故流动性较好,但耐磨性较差,适用于各种窑炉,具有耐碱性的水硬性浇注料。 适用方法: 物料及结合剂加水搅拌均匀使用,需要支模,填灌后用振动棒振打消除气泡。 适用区域: 应用范围较广,可根据使用条件对所用材质和结合剂加以选择。既可直接浇注成衬体使用,又可用浇注或震实方法制成预制块使用。适用于产生摩擦量小的高温区域,如锅炉底部风室、一次风道、返料立管(料腿)、尾部烟道炉墙、冷渣机、各炉门的填充等。 淄博宇能窑炉科技,成立于1985,位于耐火原材料基地,是专业不定型耐火材料和保温材料生产厂家,主要产品有高铝砖、粘土砖、磷酸盐结合耐火砖,循环流化床锅炉配套耐磨砖、高强度耐磨保温浇注料、耐火浇注料、保温砖、高铝骨料,硬质粘土熟料、和各种不定型耐火材料,品种齐全,质量优价格低 耐磨可塑料 特性: 耐磨可塑料是一种高铝、刚玉质颗粒状制品。与传统耐火可塑料

相比,其具有施工简易,效率好,成型好,强度高等优良性能,该材料是由胶粘剂、耐火骨料和促硬剂组成,,加一定比例的PA胶后形成一种可塑耐火泥,便于各种复杂部位施工。属于气硬性材料,具有低温硬化性能,保证循环流化床锅炉耐磨性的需要。 耐磨性能较差。 施工工艺: 使用时采用强制搅拌机搅拌,在搅拌时将小袋中的促硬剂均匀加入,干搅1分钟后,再加入4-5%的胶粘剂搅拌3分钟,待料呈一定的塑性时,即可卸出使用。 采用橡皮锤捣打施工或机器捣打施工,可施工时间保证在30分钟以后,初凝时间约1个小时。 施工时,把可塑料铺设一定的厚度,一般不超过60mm厚,用橡皮锤或木锤捣实,捣打炉墙等部位一般不需支模,捣打后的衬体比设计尺寸厚的多,应及时除去多余部分。即或支模,如炉顶等部位施工拆模后,若有多余部分也要除去。修整下来的多余料如未变干可放在非工作面继续使用。修整工作面最好与捣打工序并行开展。如果施工间断时,要用塑料布等物将捣打面盖严,防止迅速干燥。耐磨可塑料搅拌后可施工时间大约为30分钟(随环境温度有所变动),一旦时间过长硬化后,就应扔掉,不可继续使用。 适用区域: 应用范围较广,可根据使用条件对所用材质和结合剂加以选择。既可直接浇注成衬体使用,又可用浇注或震实方法制成预制块使用。适用于产生摩擦量小的高温区域,如锅炉底部风室、一次风道、返料立管(料腿)、返料器、回料管、尾部烟道炉墙、冷渣机、尾部烟道各炉门的填充等。 保存方法:

铝碳化硅材料应用LED

随着LED制造技术的飞跃以及器件更高性能的要求,对封装材料提出了更新、更高的要求,传统材料不再适用于高功率密度器件的封装。过去大量使用的铝、铜、可伐或半导体材料等不能达到良好的导热指标和轻便的要求,而且成本较高,已不能满足这种高功率密度的需要。这使得电子器件热管理问题成为瓶颈。 电子器件热管理问题得不到很好的解决,会导致电子器件的热失效,从而造成封装体与芯片因受热膨胀而开裂,芯片散热性不佳而停止工作。当两种接触材料的热膨胀系数差异达到12ppm/K时,仅100次热循环就会出现热疲劳失效,在大功率LED应用中,高亮度产品的电流量提高(电流由早期0.3A发展到目前约1A)或因其高功率(由早期1W发展到目前约可达5W)致使单位面积高热量产生。目前光电转换效率,每100%的能源只有约20%产生光,而有80%的能源变为热能损耗,因此热量是能源最大的消耗。但同时若不移除多余的热能,则LED 使用寿命及效能将折损。 为了保证此类设备的可靠性,就需要解决热管理这个问题。解决这一瓶颈最好的方法就是通过改变提高封装材料的性能。 一、大功率LED照明光源需要解决的散热问题 大功率LED芯片在工作时就会产生大量的热量。如何将产生的热量散发出去,保证一定环境温度条件下能长期正常工作显得尤为重要,解决好热耗散是大功率器件封装的关键。 大功率LED照明光源需要解决的散热问题涉及以下几个环节: 1、晶片PN结到外延层; 2、外延层到封装基板; 3、封装基板到散热器 4、散热器到空气

为了取得好的导热效果,提高对流散热。LED发出的热量通过导热硅脂/焊锡传递给基板,再通导热硅脂传递给铝散热器再将热量通过辐射和对流的方式带到周围的空气中,将热量排除,形成从LED芯片通过导热硅脂和铝基板到周围空气的散热通路。材料热传导性能的一个很重要的指标是热阻,热阻是指热量传递通道上两个参点之间的温度差与两点间热量传递速率的比值。 越短的热传导距离、越大的截面积、越高的热传导系数对热阻的降低越有利,这就要求设计合理的封装结构和选择合适的材料。 大功率LED 所产生的热量主要通过基板材料传导到外壳而散发出去,不同的基板材料,其导热性能各异。高导热的基板可以满足自然冷却的要求,要解决这一问题,基板的选择是关键。提高基板的综合性能,使得LED在范围内温度下工作已成为一个亟待解决的问题。一些传统的材料综合其性能、环保、成本等因素,难以满足大功率器件封装的要求,我们必须不断去发掘新的材料,使其更加符合大功率LED散热的要求。 二、铝碳化硅(Alsic)的材料特性 产品的性能优势是由材料的技术特点决定的,在微电子封装中使用何种封装材料主要取决于三种技术参数,即热导率、热膨胀系数和密度。热导率高的材料导热性能好,是优先考虑的封装材料;而热膨胀系数则需要与芯片的膨胀系数相匹配,这样才不会在热循环后使封装体与芯片开裂;对于材料密度而言,追求越轻越好的,即低密度材料。下表表现了目前使用较多的几种封装材料在三个主要性能指标上的比较。 不同材料性能指标比

相关主题