搜档网
当前位置:搜档网 › 土壤碳排放

土壤碳排放

土壤碳排放
土壤碳排放

土壤碳排放

土壤中已被捕获的碳将会再次释放到大气层中,从而成为碳排放的一个来源。这一发现有助于更全面地理解过去和未来全球气候变化的成因。

土壤侵蚀是指土壤或成土母质在外力作用下被破坏剥蚀、搬运和沉积的过程。尽管早先的研究发现,在土壤侵蚀过程中可以将碳埋藏于土壤中,其作用类似于碳汇或碳存储。这些碳汇中的一部分仅是暂时性的。

在土壤侵蚀过程中被埋藏的碳,大约有50%在500年之内会重新释放到大气层中。气候变化还可能导致这一过程加快,因为气候变化能够加速土壤分解的速度,进而加速碳的释放。

利用放射性碳和激光断代技术,计算出过去6000年间,比利时某河沿岸土壤所捕获的碳量,以及由土壤再次释放到大气层中的碳量。如此长时间跨度使研究人员能够发现被土壤捕获的碳再次进入到大气层的渐进过程。自工业革命以来的150年间所发生的农业耕地流转,是历史上造成全球土壤侵蚀的最主要原因,研究人员所设计的6000年时间框架将这段重要时期完全囊括。研究人员认为,过去150年间由于农业的发展而被捕获于土壤中的大部分碳,目前依然没有被释放到大气层中,但这将是未来碳排放的一个主要来源。

由于农业土地的流转,早期存储于土壤和植物中的碳已有大约一半释放到大气层中。采用免耕或少耕的方法可以使土壤侵蚀最小化,而利用覆盖作物栽培则可以确保土壤不处于裸露状态。

我们需要弄清楚碳来自哪里、它以何种方式释放或者被捕获,以便确定合理的、成本合算的措施来减缓气候变化的进程。

土壤有机碳分类及其研究进展1

土壤有机碳( SOC)是土壤学和环境科学研究的热点问题之一,土壤有机碳库的动态平衡直接影响着土壤肥力的保持与提高,进而影响土壤质量的优劣和作物产量的高低,因而土壤有机碳的变化最终会影响土壤乃至整个陆地生态系统的可持续性。土壤有机碳包括活性有机碳和非活性有机碳。土壤活性有机碳是指在一定的时空条件下,受环境条件影响强烈的、易氧化分解的、对植物和微生物活性影响比较高的那一部分土壤碳素。根据测定方法和有机碳组分不同,土壤活性有机碳又表述为溶解性有机碳(DOC:dissolved organic carbon)、水溶性有机碳(water-soluble organic carbon)、微生物生物量碳(MBC:Microbial biomass carbon)、轻组有机碳和易氧化有机碳,可在不同程度上反映土壤有机碳的有效性和土壤质量。 国外研究进展 国外对土壤有机碳的研究开始较早, 在20世纪60年代, 就有学者开始进行全球土壤有机碳总库存量研究。但早期对土壤有机碳库存量的估算大都是根据少数土壤剖面资料进行的。如1951年Rubey根据不同研究者发表的关于美国9个土壤剖面的有机碳含量, 推算出全球土壤有机碳库存量为710 Pg。1976年Bohn利用土壤分布图及相关土组( soil association)的有机碳含量, 估计出全球土壤有机碳库存量为2946Pg。这两个估计值成为当前对全球土壤有机碳库存量的上下限值。20世纪80年代,由于研究全球碳循环与气候、植被及人类活动等因素之间相互关系的需要,统计方法开始被应用于土壤有机碳库存量

的估算。如Post等在Holdridge生命带模型基础上,估算了全球土壤碳密度的地理分布与植被及气候因子之间的相互关系,提出全球1m 厚度土壤有机碳库存量为1 395 Pg。 20世纪90年代以来, 随着遥感(RS)、地理信息系统(GIS) 和全球定位系统(GPS) 技术的发展, 为土壤有机碳研究提供了新的方法和手段。3S技术被应用于区域或全球土壤有机碳库存量大小、有机碳密度的空间分布差异等方面的研究。发达国家已在区域尺度上开展了相关研究工作。如俄罗斯在1B250万土壤分布图上建立了土壤碳空间数据库,计算出俄罗斯0~ 20 cm、0~ 50 cm和0~100 cm等不同土层有机碳库存量,估计出俄罗斯土壤有机碳库存总量为34211 Pg,无机碳库存总量为11113 Pg,土壤总碳库存量为45314 Pg,并绘制了俄罗斯0~ 100 cm土层无机碳库存量分布图。加拿大建立了1B100万的数字化土壤分布图及土壤碳数据库,并计算出加拿大0 ~ 30 cm 土层和0 ~100 cm土层土壤有机碳库存量分别为7011 Pg和249 Pg。 世界各国不同研究者对全球土壤有机碳库存量的估算方法并无本质区别,但由于所用资料来源与土壤分类方式不同,土壤有机碳库存量的估计值有较大差异。全球土壤1 m内土壤有机碳库大约是植被碳库的115~ 3倍,如此巨大的土壤有机碳库,即使其发生很轻微变动,都会引起大气中CO2浓度变化,进而影响全球气候变化。因此,土壤有机碳库存量研究成为全球变化的研究热点之一。 国内研究进展 我国学者非常关注土壤碳循环研究,并在土壤有机碳库存量研究

土壤溶解性有机碳

约旦水资源部秘书长:海水淡化是一个解决方案 2012-03-18 约旦水资源部秘书长认为,海水淡化是约旦必须采取的解决方案,采用这一方案可以补充水资源缺口,解决复杂的跨界水资源、缺少资金、政策的和能力建设等问题。 约旦是全球第四个最为缺水的国家,人均占有水资源量最低。 来源:中国水利网站 2012年3月18日 】

1.1真空冷冻原理 海水三相点是使海水汽、液、固三相共存并达到平衡的一个特殊点。若压力或温度偏离该三相点,平衡被破坏,三相会自动趋于一相或两相。真空冷冻法海水淡化正是利用海水的三相点原理,以水自身为制冷剂,使海水同时蒸发与结冰,冰晶再经分离、洗涤而得到淡化水的一种低成本的淡化方法。与蒸馏法、膜法相比,能耗低,腐蚀、结垢轻,预处理简单,设备投资小,并可处理高含盐量的海水,是一种较理想的海水淡化法[!]。国外早在20世纪60年代就已开始研究,但目前为止尚没有商业化,主要原因在于过程中产生的三相点蒸汽难以去除和冰晶的输送、洗涤较难。华东理工大学研究开发的真空冻-汽相冷凝海水淡化技术采用低温金属表面,使三相点蒸汽直接冷凝成冰的方法,成功的解决了蒸汽的去除问题,并在实验室完成了小型试验装置。真空冷冻-汽相冷凝海水淡化技术工艺包括脱气、预冷、蒸发结晶、冰晶洗涤、蒸汽冷凝等步骤,淡化水产品可达到国家饮用水标准。 1.2工艺研究 1.2.1脱气 由于海水中溶有的不凝性气体在低压条件下将几乎全部释放,且又不会在冷凝器内冷凝。这将升高系统的压力,使蒸发结晶器内压力高于二相点压力,破坏操作的进行。显然减压脱气法适合本系统。 1.2.2预冷 海水脱气后可与蒸发结晶器内排出的浓盐水和淡化水产生热交换,预冷至海水的冰点附近。 1.2.3温度和压力 它们是影响海水蒸发与结冰速率的主要因素。 1.2.4冰-盐水是一固液系统 普通的分离方法均可使冰-盐水得到分离,但分离方法不同,得到的冰晶含盐量也不同。实验结果表明减压过滤方法得到的冰晶含盐量比常压过滤方法得到的冰晶含盐量低得多。 1.2.5蒸汽冷凝 在蒸发结晶器内,除海水析出冰晶以外,还将产生大量的蒸汽,这些蒸汽必须及时移走,才能使海水不断蒸发与结冰。 2蒸馏法海水淡化及其特点 2.1蒸馏法原理 把海水加热使之沸腾蒸发,再把蒸汽冷凝成淡水的过程即为蒸馏法。蒸馏法是最早采用的淡化法,其优点是结构简单、操作容易,所得淡水水质好等。蒸馏法有很多种,如多效蒸发、多级闪蒸、压气蒸馏、膜蒸馏等。 2.2蒸馏法特点

土壤总碳和有机碳分析测试技术

土壤有机碳分析测试技术 1、所需仪器:multi-C/N310主机和HT1300固体模块;载气:高纯氧气,纯度≥99.995%,最好使用99.999%; 2、瓷舟:用于盛放土壤样品,加盐酸反应去除无机碳,然后把待测样品送进炉膛测试用。注意事项:新的瓷舟和用过后长时间存放的瓷舟在使用之前先在马弗炉内1000 ℃烧1小时去除杂质; 3、HT1300测试条件炉温:1050±10 ℃,流速100±10 mL; 4、土壤样品预处理:风干土或者50 ℃烘干土,过100目筛; 5、土壤进样量要求:样品中碳的总含量≥1 mg,最好能达到3 mg; 6、样品进样处理:测量总碳(TC),称取一定量的干土直接进样,所需样品的量需根据毛估的土壤总碳含量决定,一般瓷舟盛放样品不宜超过500 mg,最好不超过800 mg,样品过多容易洒出,低估土壤碳含量;测量土壤有机碳(TOC),称取一定量的土壤样品,所需样品的量需根据毛估的土壤有机碳含量决定,一般瓷舟盛放样品最好不超过500 mg,样品过多在加盐酸反应会有气泡,容易洒出样品,低估土壤有机碳含量,然后加入过量的0.1 mol/L的HCl(盐酸浓度也可根据土壤无机碳含量调整)去除土壤无机碳,然后100 ℃烘3-12小时,之后继续在烘箱中以50 ℃保存,然后一边测量,一边从烘箱中拿出,即拿即测,一般四个一组为佳,因为加盐酸处理后的土壤很容易吸水,这样进样后水分生成的水汽加灰尘很容易堵塞气路的灰尘过滤器; 7、所需要的耗材:高纯铜丝,去除卤素(测量土壤有机碳是过量盐酸在高温下产生的),建议测量样品个数为100个,决不能超过130个,具体还要视样品而定,主要判断依据为铜丝变色;气体灰尘过滤器,建议测量样品个数300-500个,主要判断依据为流量波动(100+10 mL);高氯酸镁,去除测量气路中的水分,如果在烘箱中即拿即测则用量较小,每更换一次可以测量500-1000个样品,视具体情况而定;以上三种耗材高纯铜丝、气体灰尘过滤器、高氯酸镁多备用一些,尤其高纯铜丝,最好备足2-3年的耗材。

土壤碳含量

试剂:0.4N重铬酸钾—硫酸溶液(称取化学纯重铬酸钾20.00克,溶于500毫升蒸馏水中(必要时可加热溶解),冷却后,缓缓加入化学纯浓硫酸500毫升于重铬酸钾溶液中,并不断搅动,冷却后定容至1000毫升,贮于棕色试剂瓶中备用。)、0.2N硫酸亚铁溶液(称取硫酸亚铁(FeSO4·7H2O)56克,溶于500毫升蒸馏水中,加浓硫酸5ml,然后再加蒸馏水稀释至1升,贮于棕色瓶中,用时需标定)、邻菲啰啉指示剂(称取此指示剂1.49g与FeSO4·7H2O 0.695g溶于含100ml水溶液中。此指示剂易变质,应密闭保存于棕色瓶中。)、0.1N重铬酸钾标准溶液(称取经130℃烘1.5h的优级纯重铬酸钾(4.1)9.807g,先用少量水溶解,然后移入1L容量瓶内,加水定容。) 操作步骤:准确称取通过0.25毫米筛孔的土样0.1000~0.5000克,土样数量视有机质含量多少而定。有机质含量大于5%的称土样0.2克以下,4~5%的称0.3~0.2克,3~4%的称0.4~0.3克,2~3%的称0.5~0.4克,小于2%则称0.5以上。由于土样数量少,为了减少称样误差,好最用减量法。将土样放入干燥的硬性试管中,用移液管准确加入0.4N的重铬酸钾—硫酸溶液10毫升(先加入3毫升,摇动试管,使溶液与土混匀,然后再加其余的7毫升),在试管上套一小漏斗,以冷凝蒸出的水汽,把试管放入铁丝笼中。将装有试管的铁丝笼(每笼应有1~2个试管做空白试验,用灼烧过的土壤代替土样,其他手续均相同)放入温度为185~190℃的油浴锅中,要求放入后油浴锅温度下降至170~180℃左右,以后必须控制温度在170~180℃,当试管内液体开始沸腾(溶液表面开始翻动,有较大的气泡发生)时记时,缓缓煮沸5分钟,取出铁丝笼,稍冷,用纸擦净试管外部的油液。等试管冷却后,将试管内溶液倒入250毫升三角瓶中,用蒸馏水冼净试管内部及小漏斗的内部,洗涤液均冲洗至三角瓶中,最后总的体积约60~70毫升。滴加3~4滴邻啡啰啉指示剂,此时溶液为橙**,用已标定过的硫酸亚铁溶液滴定,溶液由橙**经过绿色突变到砖红色即为终点。 结果计算:根据前面所述的反应式,1毫克当量的重铬酸钾相当于3毫克碳(1毫克当量的碳),按有机质平均含碳58%作为计算标准,在求得碳的含量乘以系数1.724和校正系数1.1,

保护性耕作下土壤碳库管理指数的研究

第20卷第3期2006年6月 水土保持学报 Journal of S oil and Water Conservation Vol.20No.3 J un.,2006  保护性耕作下土壤碳库管理指数的研究 李 琳,李素娟,张海林,陈阜3 (中国农业大学农学与生物技术学院,北京100094) 摘要:以保护性耕作长期定位试验为研究对象,分析了保护性耕作对土壤不同层次的总碳、活性碳的影响,并计 算了各处理的碳库活度、碳库活度指数和碳库管理指数。结果表明,土壤总有机碳和活性碳均随土层的增加而减 少,其0~30cm平均总有机碳含量大小为旋耕>免耕>翻耕>对照,秸秆还田提高土壤耕层总有机碳,旋耕和免 耕提高表层土壤有机碳,且差异达到显著水平;土壤活性碳平均含量为旋耕>翻耕>对照>免耕,旋耕和翻耕提 高土壤活性碳,免耕则降低土壤活性碳,尤其是10~20cm土层活性碳比旋耕下降了27133%。华北平原0~30 cm土层的碳库各项指数受表层的影响比较大,其中保护性耕作(少免耕和秸秆还田)能增加土层的总有机碳、稳 态碳和碳库指数;而翻耕秸秆还田则提高了土壤的A和AI,少免耕则降低了土壤的A和AI;就碳库管理指数来 讲,秸秆还田的贡献大于耕作措施。 关键词:保护性耕作; 总有机碳; 活性碳; 碳库管理指数 中图分类号:S153161;S157.42 文献标识码:A 文章编号:100922242(2006)0320106204 Study on Soil C Pool Management Index of Conversation Tillage L I Lin,L I Su2juan,ZHAN G Hai2lin,CHEN Fu3 (College of A gronomy and Biotechnology,China A gricultural U niversity,Beijing100094) Abstract:The TOC(total organic carbon),AC(active carbon)pool and CPM I(carbon pool management index) of soils in long term conversation tillage were discussed1The results indicated that TOC and AC pool were de2 creased with deeper layer,The average TOC order of0~30cm by conversation tillage was X(minimum tillage)> M(no2tillage)>F(moldboard plow tillage)>C K1Stubble return increased TOC in0~20cm layer,while X and M significant increased TOC in0~10cm layer1The average AC order of0~30cm layer by conversation tillage was X>F>C K>M1X and F enhanced AC,while M reduced AC especially in10~20cm layer it was27133% lower than X1The average CPM I was effect by0~10cm layer in Huabei plain,and conversation tillage improved TOC,UAC(unactive carbon)and CPM I1F added A and A I,while X and M lessened them1Stubble return effect more than tillage form for CPM I1 K ey w ords:conversation tillage; TOC; AC; CPM I 土壤有机碳库是由不同稳定性的组分组成,其概念性库包括活跃、慢性和惰性库。土壤总有机碳可能在较短时间内对因农业管理措施导致的土壤质量的变化反映不甚敏感[1]。因此,前人试图用土壤有机碳亚库来指示全碳变化[2]。其中农业生产措施(如土壤耕作管理、植物残体或有机物料的还田等)引起土壤碳库的最初变化主要是易分解、矿化,即活性碳部分[3]。一些研究发现,土壤活性有机碳对耕作方式和秸秆还田的反应更为迅速[4]。尽管这部分碳素占全碳的比例很小,但它们对土壤碳素的转化很重要,而且与土壤生产力密切相关[3]。测定土壤活性有机碳组分方面,提出过许多方法,如物理组分、化学氧化和生物活性测定法等[5]。这些方法中,KMnO4氧化法被认为是简单易行,并被广泛用来研究农业生产措施对土壤活性有机碳的影响[1]。这个方法最早由Loginow等(1987)提出,他根据高锰酸钾氧化强度来确定土壤有机碳的活性部分。Blair等对此方法进行了修改,并在此基础上提出了表示土壤活性碳的一些相关概念。国外在这方面的研究已经不少[6],而我国的研究还不多[7]。保护性耕作是对农田实行免耕、少耕,并用作物秸秆覆盖地表,以减少风蚀、水蚀,提高土地肥力和抗旱能力的先进农业耕作技术[8]。近年来的研究表明,保护性耕作有利于土壤碳固定,减少温室气体排放,通过改变农业管理措施(耕作措施和秸秆覆盖)和农业投入而使农田生态系统中土壤碳含量提高,同时减少CO2向大气中的释放[9]。但是关于耕作措施对土壤活性碳库及碳库管理指数的影响还未见报道。本研究运用高锰酸钾氧化法测定了保护性耕作下土壤活性碳,并计算出了土壤碳库管理指数,旨在探讨 收稿日期:2005212212 3通讯作者 基金项目:国家重大科技专项:粮食主产区保护性耕作制与关键技术(2004BA520A14) 作者简介:李琳,女,生于1979年,博士研究生。主要进行宏观农业及保护性耕作研究。Email:lilin991213@https://www.sodocs.net/doc/1f6356970.html,

可溶性有机碳的测定

可溶性有机碳测定: 1. 取10 g 新鲜土样,按照土:水为1∶5的比例混匀,在25℃条件下,以250 r/min 的速度振荡1 h,接着在转速为15 000 r/min 离心10min,上部悬浮液过0·45μm 薄滤膜[1],以后的步骤采取测有机碳的方。 2. 取过0·45μm 薄滤膜的溶液放入消煮管中,加5ml 0.8000mol/L 的1/6K 2Cr 2O 7标准溶液, 然后用注射器注人5ml 浓硫酸,旋转摇匀,在消煮管上加一小漏斗。 3. 将盛土样的消煮放人铁丝笼架中,放入已预热至185 -190oC 的油浴锅中(豆油)加热。 此时应控制锅内温度在170-180oC ,沸腾开始,准确加热5min ,取出冷却,如溶液呈绿色,表示重铬酸钾用量不足,应再取较少的样品(或适当增加重铬酸钾的量)重做。 4. 冷却后的溶液呈橙黄色或黄绿色,用洗瓶将消煮管中的溶液洗人250ml 三角瓶中,使三 角瓶内溶液体积在60-80ml 左右,加邻啡啰啉指示剂3—4滴,用0.2mol /L FeSO 4滴定,溶液的颜色变化为:橙黄—→蓝绿—→棕红色,记录硫酸亚铁用量(V )。 每批分析样,应做2—3个空白;空白标定用0.1-0.5g 石英砂代替土样,其它步骤与测定土样时完全相同,记录硫酸亚铁用量(V 0)。 5. 计算方法 有机碳(g/kg )=10001.1003.0)(0.58000.02100????-??K m V V V 有机质(g/kg )=有机碳(g/kg )×1.724 式中:0.8000——1/6 K 2Cr 2O 7标准溶液的浓度(mol/L ); 5.0——1/6 K 2Cr 2O 7标准溶液的体积(ml ); V 0——空白标定用去硫酸亚铁溶液体积(ml ); V ——滴定土样用去硫酸亚铁溶液体积(ml ); 0.003——1/4碳原子的摩尔质量(g/m mol); 1.1——氧化校正系数; 1.724——将有机碳换算成有机质的系数; m 1——风干土样质量(g ); K 2——将风干土换算成烘干土系数。土壤碳氮比的计算: )/() /(kg g kg g 全氮有机碳碳氮比= 1.耕作措施对土壤有机碳和活性有机碳的影响.严昌荣,刘恩科,何文清,刘爽,刘勤.

地统计分析土壤有机碳含量分布

地统计分析土壤有机碳含量分布 土壤特性的空间变异研究一直是个被关注的热点,但对土壤物理性质、土壤盐分变化问题的研究较多1,2,对土壤养分空间变异性的研究则相对较少。90年代,随着发达国家精确农业技术的发展和GIS的广泛应 用3,4,土壤特性的空间变异研究得到了众多学者的关注。邛海盆地是凉山彝族自治州所在地,农业人口约占总人口的66.4%,土地肥沃,自流灌溉便利,是国家和四川省农业综合开发重点区。因此,如何合理 利用土地和如何进行生态环境保护是该区经济发展面临的重大课题。 本研究通过分析该区土壤有机碳含量的影响因子,旨在为优化土地资 源管理措施和保护生态环境提供参考。 1材料与方法 1.1研究区基本概况 邛海盆地地处川西高原,属亚热带高原季风气候,年平均气温17.2℃,日照充足,雨量充沛;该区以红壤、黄红壤为主,局部地区的红壤达 海拔2100m以上。 1.2数据来源与预处理 数据源于西昌2006年测土配方施肥国家补贴项目土样化验分析汇总表,共提取392个采样点。基于Arc-GIS9.3生成样点分布图如图1所示。 1.3常规统计分析 利用ArcGIS9.3中地统计模块,统计出土壤有机碳含量的基本特征性 数据。 1.4地统计学基本理论 传统统计学理论是纯随机变量,但很多土壤性质在空间上并不完全独立,而在一定范围内存有着空间相关性。地统计学方法以半方差函数

和Kriging插值为基本工具,能对既具有随机性又具有结构性的各种 变量在空间上的分布进行研究5。半方差函数能较好地描述区域化变量的空间分布结构性和随机性,其中一些重要参数,可反映区域化变量 在一定尺度上的空间变异和相关水准,是研究土壤特性空间变异性的 关键,同时也是进行精确Krigking插值的基础6,式中,r(h)为半方差函数;h为样点空间间隔间距,即步长;N(h)为间隔距离为h时的所有观察样点的成对数;Z(xi)和Z(xi+h)分别是区域化变量Z(x)在空间位 置xi和xi+h的实测值。若h为横坐标,r(h)为纵坐标绘制函数曲线图,称为半方差函数曲线图,它可直接展示Z(x)的空间变异特点。克 里格插值,是地统计学的主要内容,它是通过对已知样本点赋权重来 求得未知点的值。式中,Z(x0)为未知采样点的值;Z(xi)为未知样点 周围的已知样本点的值;i为第i个已知样本点对位置样点的权重;n 为已知样本点的个数。 1.5空间分布特征分析 缓冲区分析是通过生成相关空间实体的缓冲区,以判断空间实体影响 范围的过程8。本研究以土壤质地、城镇、邛海和河流为影响源,建立不同距离的缓冲区,以分析有机碳含量的变化情况。 2结果与分析 2.1常规统计分析 基于ArcGIS9.3的地统计模块,对采样数据进行常规描述性统计(见 表1)。从偏度上看,呈右偏态分布。变异系数反映空间变异性水准, 通常认为变异系数CV≤10%为弱变异性,10%

土壤碳库的研究方法

土壤碳库的研究方法 目前国内土壤碳循环的研究主要是针对特定的地区、生态系统和生物群落以及对小区域农业土壤呼吸进行了CO。倍增的实验,这些仅仅是陆地生态系统碳循环的部分环节。近年来我国许多学者对中国陆地土壤有机碳库的估算和空间分布开展研究工作,一些学者还特别对我国特定区域和生态群落的SOC储量进行了探索。如对我国热带、亚热带地区土壤碳储量开展的研究工作,得出了按不同植被类型土壤等分类方式下的有机碳储量,分析了SOC在不同粒级土壤中的分布与转化(Zhao et a1.,1997);对我国主要森林生态系统的碳储量和碳平衡通量的研究,初步表明我国主要森林生态系统的碳储量为28.1lPg,其中土壤碳库21.02Pg(周玉荣等,2000)。王绍强等(1999)利用1:400万土壤图,根据我国第一次土壤普查实测土体深度下的236个土壤剖面资料,统计出中国陆地生态系统土壤有机碳总量为100.18Pg。之后,他(2000)又根据我国第二次土壤普查实测土体深度下的2473个典型剖面数据,估算出我国土壤有机碳库总量为92.4Pg。解宪丽(2004)利用《中国土种志》(共六卷)和全国1:400万土壤图,估算得到中国水稻土O~lOOcm深度有机碳储量为2.9Pg,表层O~20cm为0.93Pg。潘根兴利用《中国土种志》(共六卷)和全国第二次土壤普查时的全国水稻土统计面积,估算得到中国水稻土耕层加犁底层有机碳储量为1.3Pg,我国的土壤有机碳储量储量为50Pg(Pan et a1.,2003)。李忠和金峰等人(2001,2000)根据我国第二次土壤普查数据,采用面积加权平均值的方法,对各土壤亚类的有机碳密度进行回归估算,统计出O~lOOcm土体的土壤有机碳贮量。李忠(2001)利用土壤有机碳与土壤剖面深度的统计回归模型,估算出我国东北地区232×104km2 土壤o~lOOcm剖面中有机碳储量为24.36Pg,占全球总储量的1.5%~1.7%;东南热带亚热带地区共94.3×104km2土壤中O~lOOcm的有机碳储量为9.35Pg,占全球热带地区总储量的1.8%~3.0%。金峰(2001,2000)统计出我国山东省共12.1×104km2土壤O~lOOcm土体中有机碳储量约为0.62Pg,对我国(除港、澳、台地区)共865.18×104km2土壤有机碳贮量的估算结果为81.7Pg。土壤是一个不均匀的三维结构体,在空间上呈现复杂的镶嵌性,且土壤与气候、植被和生物之间发生复杂的相互作用,因此土壤有机碳密度存在极大的空间变异性。当前土壤碳循环的研究仍是陆地碳循环研究中最不充分的部分,对土壤碳库的估计误差也很大。如对中国土壤有机碳库总量的估算结果从50Pg到180Pg,相差三倍多。由于不同研究者所采用的资料来源和统计样本容量不同,所包含的土壤碳属性数据不同,以及不同研究者所采用的深度标准、统计方法及估算的准确程度存在差异,所得结果必然存在差算差异。 1.土壤类型法 第二节土壤碳库的研究方法 一、剖面类型推算法 Bolin(1977)根据不同研究者发表的美国9个土壤剖面的有机碳含量,推算出全 球土壤有机碳库为710Pg。Bohn对全球土壤有机碳的统计工作是较典型的研究,

中国土壤有机碳库及空间分布特征分析

收稿日期:2000205215;修订日期:2000207210 基金项目:中国科学院“九五”重大A 类项目(KZ 95T 203202204)及国家重点科技攻关专题项目(962911201201) [Foundation Ite m :T he Key P ro ject of Ch inese A cadem y of Science ,N o .KZ 95T 203202204;and the Key P ro ject of State Science T echnique ,N o .962911201201] 作者简介:王绍强(19722),男,博士,湖北襄樊市人。1997年在北京师范大学资源与环境科学系获得硕士学位, 2000年在中国科学院地理科学与资源研究所获得博士学位。主要从事全球变化、地理信息系统和遥感的 应用研究,在Int .J .of R emo te Sensing 等刊物发表论文8篇。E 2m ail :w sqlxf @2631net 文章编号:037525444(2000)0520533212 中国土壤有机碳库及空间分布特征分析 王绍强1,周成虎1,李克让1,朱松丽2,黄方红1 (11中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京 100101; 21北京师范大学环境科学研究所,北京 100875) 摘要:土壤有机碳库是陆地碳库的主要组成部分,在陆地碳循环研究中有着重要的作用。根据 中国第二次土壤普查实测2473个典型土壤剖面的理化性质,以及土壤各类型分布面积,估算 中国土壤有机碳库的储量约为924118×108t ,平均碳密度为10153kg m 2,表明中国土壤是一 个巨大的碳库。其空间分布总体规律上表现为:东部地区大致是随纬度的增加而递增,北部地 区呈现随经度减小而递减的趋势,西部地区则呈现随纬度减小而增加的趋势。 关 键 词:碳循环;全球变化;土壤有机碳库 中图分类号:S 15912 文献标识码:A 1 前言 全球变化研究引起了许多科学家对陆地生态系统中碳平衡以及碳存储和分布的关注,由于土壤中所存储的碳大约是植被的115~3倍[1,2],而且是全球生物地球化学循环中极其重要的生态因子,因而土壤有机碳的分布及其转化日益成为全球有机碳循环研究的热点[3,4]。 土壤是陆地生态系统中最大且周转时间最慢的碳库。它由有机碳库和无机碳库两大部分组成,且土壤无机碳库占的比例较小[5]。国际上很早就开展了土壤碳研究,其中Po st 根据全球2696个土壤剖面估计全球土壤有机碳为13953×108t [6],而与大气交换的土壤有机碳大约占陆地表层生态系统碳储量的2 3[6]。目前对于全球陆地碳循环认识的不确定性,大部分是关于土壤有机碳库的分布和动力学[7],全球变暖将会加速土壤向大气的碳排放,加剧大气CO 2浓度的上升,这将进一步加强全球变暖的趋势[8]。 土地利用 土地覆盖变化既可改变土壤有机物的输入,又可通过对小气候和土壤条件的改变来影响土壤有机碳的分解速率,从而改变土壤有机碳储量。土地利用的变化,特别是森林砍伐所引起的变化,减少土壤上层的有机碳达20%~50%[9]。不合理的土地利用,会导致土壤储存的碳和植被生物量减少,使更多的碳素释放到大气中,从而导致大气CO 2浓第55卷第5期 2000年9月地 理 学 报A CTA GEO GRA PH I CA S I N I CA V o l .55,N o .5Sep.,2000

土壤微生物量碳测定方法

土壤微生物量碳测定方法及应用 土壤微生物量碳(Soil microbial biomass)不仅对土壤有机质和养分的循环起着主要作用,同时是一个重要活性养分库,直接调控着土壤养分(如氮、磷和硫等)的保持和释放及其植物有效性。近40年来,土壤微生物生物量的研究已成为土壤学研究热点之一。由于土壤微生物的碳含量通常是恒定的,因此采用土壤微生物碳(Microbial biomass carbon, Bc)来表示土壤微生物生物量的大小。测定土壤微生物碳的主要方法为熏蒸培养法(Fumigation-incubation, FI)和熏蒸提取法(Fumigation-extraction, FE)。 熏蒸提取法(FE法) 由于熏蒸培养法测定土壤微生物量碳不仅需要较长的时间而且不适合于强酸性土壤、加 入新鲜有机底物的土壤以及水田土壤。Voroney (1983)发现熏蒸土壤用·L-1K 2SO 4 提取液提取 的碳量与生物微生物量有很好的相关性。Vance等(1987)建立了熏蒸提取法测定土壤微生物 碳的基本方法:该方法用·L-1K 2SO 4 提取剂(水土比1:4)直接提取熏蒸和不熏蒸土壤,提取 液中有机碳含量用重铬酸钾氧化法测定;以熏蒸与不熏蒸土壤提取的有机碳增加量除以转换 系数K EC (取值来计算土壤微生物碳。 Wu等(1990)通过采用熏蒸培养法和熏蒸提取法比较研究,建立了熏蒸提取——碳自动一起法测定土壤微生物碳。该方法大幅度提高提取液中有机碳的测定速度和测定结果的准确度。 林启美等(1999)对熏蒸提取-重铬酸钾氧化法中提取液的水土比以及氧化剂进行了改进,以提高该方法的测定结果的重复性和准确性。 对于熏蒸提取法测定土壤微生物生物碳的转换系数K EC 的取值,有很多研究进行了大量的 研究。测定K EC 值的实验方法有:直接法(加入培养微生物、用14C底物标记土壤微生物)和间接法(与熏蒸培养法、显微镜观测法、ATP法及底物诱导呼吸法比较)。提取液中有机碳的 测定方法不同(如氧化法和仪器法),那么转换系数K EC 取值也不同,如采用氧化法和一起法 K EC 值分别为(Vance等,1987)和(Wu等,1990)。不同类型土壤(表层)的K EC 值有较大不 同,其值变化为(Sparling等,1988,1990;Bremer等,1990)。Dictor等(1998)研究表 明同一土壤剖面中不同浓度土层土壤的转换系数K EC 有较大的差异,从表层0-20cm土壤的K EC 为,逐步降低到180-220cm土壤的K EC 为。 一、基本原理 熏蒸提取法测定微生物碳的基本原理是:氯仿熏蒸土壤时由于微生物的细胞膜被氯仿破 坏而杀死,微生物中部分组分成分特别是细胞质在酶的作用下自溶和转化为K 2SO 4 溶液可提取 成分(Joergensen,1996)。采用重铬酸钾氧化法或碳-自动分析仪器法测定提取液中的碳含量,以熏蒸与不熏蒸土壤中提取碳增量除以转换系数K EC 来估计土壤微生物碳。 二、试剂配制 (1)硫酸钾提取剂(·L-1):取分析纯硫酸钾溶解于蒸馏水中,定溶至10L。由于硫酸钾较难溶解,配制时可用20L塑料桶密闭后置于苗床上(60-100rev·min-1)12小时即可完全溶解。 (2) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:称取130℃烘2-3小时的K 2 Cr 2 O 7 (分析纯)9.806g 于1L大烧杯中,加去离子水使其溶解,定溶至1L。K 2Cr 2 O 7 较难溶解,可加热加快其溶 解。 (3) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:取经130℃烘2-3小时的分析纯重铬酸钾4.903g, 用蒸馏水溶解并定溶至1L。

土壤活性有机碳的测定

土壤活性有机碳的测定 (高锰酸钾氧化法) 土壤样品经粘磨过0.5mm筛,根据土壤全有机碳含量,计算含有15mg碳的土壤样品量作为待测样品的称样重,然后将样品转移至50ml带盖的塑料离心管中,以不加土样作为空白。 向离心管中加入25ml浓度为333mmol/L的高锰酸钾溶液,在25℃左右,将离心管振荡(常规震荡即可)1小时,然后在转速2000rpm 下离心5分钟,将上清液用去离子水以1:250倍稀释,吸取1ml上清液转移至250ml容量瓶中,加去离子水至250ml即可。稀释样品用分光光度计在565纳米处测定吸光值。 配制不同浓度梯度的高锰酸钾的标准溶液,同样于分光光度计上测定吸光值,建立高锰酸钾的浓度和吸光值的线性直线方程,将稀释好的待测样品的吸光值代入方程得到氧化有机碳后剩余高锰酸钾的浓度,同样得到空白的高锰酸钾浓度,前后二者之差即为氧化活性有机碳后高锰酸钾溶液的浓度变化值,根据假设,氧化过程中高锰酸钾浓度变化1mmol/L消耗0.75mM或9mg碳。其中能被333mmol/L高锰酸钾氧化的碳是活性有机碳,不能被氧化的碳上非活性有机碳。 高锰酸钾标准曲线配制:首先配制0(去离子水)、15、30、60、100、150、300mmol/L的高锰酸钾标准梯度溶液,从每个浓度的标准溶液中吸取1ml标准溶液转移至250ml容量瓶中定容(既稀释250倍),这样能够就得到浓度梯度为0、0.06、0.12、0.24、0.4、0.6、1.0、1.2mmol/L的标准高锰酸钾梯度溶液,然后同样用分光光度计在565纳米处测定吸光值,绘制高锰酸钾的浓度与吸光值间的标准曲线。注意标准曲线配制过程中尽量避光,以防高锰酸钾氧化消耗,可以将容量瓶套上信封袋以避光,还有容量瓶等一定要清洗干净,以防高锰酸钾氧化杂质而消耗,影响测定结果。 活性有机碳(mg/g) =高锰酸钾浓度变化值×25×250×9 称样重×1000

不同林地土壤有机碳储量及垂直分布特征

0引言 全球气候的变化,引起了许多科学家对陆地生态系统中碳平衡、碳存储及分布的关注。据Post [1]和 Houghton [2]等研究表明,土壤中所存储的碳是植被中的2.5~3倍,而森林土壤约占全球土壤有机碳库的73%,是陆地生态系统最大的有机碳库[3-4],因而其储 基金项目:国家重点基础研究发展计划“973”项目(2007CB106803);国家自然科学基金重点项目(40730631);中国科学院重要方向项目(KZCX2-YW-441)、(KZCX2-YW-149)。 第一作者简介:杨晓梅,女,1983年出生,陕西宝鸡人,硕士,研究方向:恢复生态。通信地址:712100陕西杨凌西农路26号中国科学院水土保持与生态环境研究中心。E-mail:yangxiaomei.003@https://www.sodocs.net/doc/1f6356970.html, 。 通讯作者:程积民,男,1955年出生,陕西渭南人,研究员,研究方向:黄土高原植被恢复与生态环境建设。通信地址:712100陕西杨凌西农路26号中国科学院水土保持与生态环境研究中心。Tel :029-********,E-mail :gyzcjm@https://www.sodocs.net/doc/1f6356970.html, 。收稿日期:2009-12-28,修回日期:2010-01-14 不同林地土壤有机碳储量及垂直分布特征 杨晓梅1,程积民1,孟蕾2,韩娟娟2 (1中国科学院水利部水土保持研究所,陕西杨凌712100;2 西北农林科技大学动物科技学院,陕西杨凌712100) 摘要:基于样地调查与室内分析,研究了黄土高原子午岭林区天然柴松林、辽东栎林及人工油松林3种林地土壤有机碳储量及其垂直分布特征。结果表明:(1)3种林地土壤有机碳含量柴松林为13.67g/kg ,辽东栎林为13.95g/kg ,油松林为11.43g/kg ,并随着土壤深度的增加呈现递减的趋势,不同林分变化幅度差异不同,且各土层间的差异达到了显著性水平。(2)3种林地土壤有机碳密度差异显著,土层间碳密度变化范围为1.06~3.67kg/m 2,并随土壤深度增加而减少;在整个土壤垂直剖面上,有机碳碳密度在9.38~11.43kg/m 2之间,其中0~50cm 深度碳密度的贡献率达80%以上。(3)3种林地土壤碳储量偏低,平均为105.2t/hm 2,不同林分间的差异较大。关键词:土壤有机碳;碳储量;垂直分布;森林类型中图分类号:S714.5 文献标志码:A 论文编号:2009-2786 Features of Soil Organic Carbon Storage and Vertical Distribution in different Forests Yang Xiaomei 1,Cheng Jimin 1,Meng Lei 2,Han Juanjuan 2 (1Institute of Soil and Water Conservation ,Chinese Academy of Sciences and Ministry of Soil Resources ,Yangling Shaanxi 712100; 2 College of Animal Sciences ,Northwest A &F University ,Yangling Shaanxi 712100) Abstract:Based on the field data and laboratory analysis,we studied the soil organic carbon storage and vertical distribution features about natural Pinus tabulaeformis f.shekannesis ,Quercus liaotungensis and artificial P.tabulaeformis forest in Ziwuling forest area of Loess Plateau.The results were showed as followings:1)Content of soil organic carbon was:13.67g/kg,13.95g/kg,and 11.43g/kg,respectively for Pinus tabulaeformis f.shekannesis,Quercus liaotungensis and artificial P.tabulaeformis .With depth of soil,organic carbon contents generally decreased,but the range was different in these three forest types.Meanwhile,great significance differences have appeared among different soil layers.2)Soil carbon density in the three forest types changed greatly,with a range of 1.06~3.67kg/m 2for five soil layers.Furthermore,soil carbon density decreased generally with the depth,as well as carbon content.In the whole soil profile,the range of carbon density in these three forests was from 9.38kg/m 2to 11.43kg/m 2.However,80%carbon concentrated in 50cm depth of soil.3)Soil carbon storage is low in these three forests.The average of storage was 105.2t/hm 2,and great differences appeared between forest types. Key words:soil organic carbon;carbon storage;vertical distribution;forest types 中国农学通报2010,26(9):132-135 Chinese Agricultural Science Bulletin

中国土壤有机碳研究综述.kdh

中国土壤有机碳研究综述 刘敏 (中国林业科学研究院热带林业研究所,广东省,广州市,510520) 摘要 本文介绍了目前为止中国土壤有机碳的研究现状和进展,主要从有机碳库的计算和研究方法、有机碳库的影响因子和有机碳运动及转化等方面的研究进行了述论,为土壤有机碳,特别是森林土壤的固碳研究提供了科学的依据,为对照国外土壤有机碳的研究水平提供了参考依据,也为全球碳库的统计研究提供了数据理论基础。 关键词:土壤有机碳 影响因子 动态 方法 引言 碳是生命物质中的主要元素之一,是有机质的重要组成部分。总的来说,地球上主要有四大碳库,即大气碳库、海洋碳库、陆地生态系统碳库和岩石圈碳库,碳元素在大气、陆地和海洋等各大碳库之间不断地循环变化。陆地生态系统碳库主要由植被和土壤两个分碳库组成,内部组成和各种反馈机制最为复杂,是受人类活动影响最大的碳库。土壤在全球的碳排放和隔离潜能中被认为是一个活跃和重要的角色。研究土壤可持续利用的核心问题是土壤有机质,有机质数量的耗竭和质量的恶化可直接导致土壤生态功能的衰退。土壤有机质在微生物分解过程中,大部分的碳以CO2形式释放到空气中,迅速与大气进行交换,对大气碳库有重要的调节作用,其他部分以土壤有机碳或碳酸盐的形式储藏在土壤碳库中。于东升[1]等计算出中国的土壤面积共有928.10×104 km2,有机碳储量(SOC)为89.14Pg(1 Pg = 1015g),土壤平均碳密度为9.60 kg·m-2。植物有机质进入土壤后经过腐解,生成成复杂的土壤有机碳。李晓阳[2]等认为土壤有机碳的变化与土壤特性、土壤管理方式及土壤有机碳检测方法有关。周莉[3]等认为理解土壤有机碳蓄积过程对生物、物理和人为因素的响应和把握关键的控制因子是准确预测土壤有机碳在全球变化情景下对大气 CO2的源、汇方向及准确评估碳收支的关键。 1 土壤有机碳库的计算方法 土壤有机碳库计算方法主要有5种:土壤类型法、生命带研究方法、GIS估算土壤有机碳储量、相关关系估算法、统计估算法等。根据研究对象的不同主要有4种类型:根据植被类型推算、根据土壤类型推算、根据生命气候带推算、利用模型计算。于东升[1],王义祥[4]用土壤类型推算法进行了研究,数据结果的准确性与数据基础有很大的关系。甘海华[5],邱建军[6]运用模型也作了这方面的研究;童成立[7]等比较了有机碳计算机模拟模型(SCNC)模型和英国洛桑模型(ROTHC-26.3),结果显示了SCNC的接近真值的效果,他们认为输入量的要求成为了取得研究的成功的关键。赵永存[8]等认为回归克里格预测土壤有机碳的空间分布效果最好,能更好地反映碳密度与地形的关系以及局部变异。 2 土壤有机碳库的影响因子 2.1土壤化学性质对土壤有机碳影响 土壤的化学性质是影响土壤有机碳库的关键因子。李明锋[9]等研究表明SOC和TN的含量直接或间接地决定生态系统CO2排放通量,并且姜勇[10]认为自然生态系统的SOC与TN的相关性略高与农田生态系统。郭胜利[11]认为Q m(P素的最大吸附量),DPS(土壤磷素吸附饱和度)和EPC o(零净吸附磷浓度)变化与SOC存在显著或极显著的线性相关关系(P<0.001)。根据不同林分有机碳、氮组分的不同,徐秋芳[12]认为灌木林和阔叶林土壤表层的微生物生物碳(C MB)、易氧化态碳(C R)与土壤总有机碳(C T)含量间相关性均达显著水平,而灌木林水溶性有机碳(C WS)与C T的相关性达到极显著水平;阔叶林土壤蔗糖酶、脲酶、蛋白酶及磷酸酶活性与C T、C MB及C R含量间均存在显著相关性,而灌木林只有蔗糖酶活性与各类碳有机碳有显著相关性。姜培坤[13]认为雷竹土壤的C T与活性碳含量(C A)、C WS之间,C A与C WS之间以及C T、C A、C WS与土壤(TN)、水解氮、有效磷(AvP)、速效钾(AvK)之间相关性均达极显著水平(P<0.01),而雷竹C MB与C T、C A、C WS、TN、水解氮、AvP、AvK之间相关性均不显著。彭佩钦[14]认为湿地土壤C MB 作者简介 刘敏,女,1974年出生,硕士,工程师。主要从事森林生态(群落基本特征分析);植物水分生理(耐旱、耐水研究);土壤(基本理化性状及有机碳研究);3S技术的应用。 Email:liumin27@https://www.sodocs.net/doc/1f6356970.html,。

相关主题