搜档网
当前位置:搜档网 › 土壤碳组分测定方法

土壤碳组分测定方法

土壤碳组分测定方法
土壤碳组分测定方法

土壤碳组分测定方法

1、轻组有机碳(LFOC):采用密度为1.7 g cm-3碘化钠分离提取后,用重铬酸钾- 浓硫酸外加热法测定,

轻组有机碳(LFOC):将过2 mm筛的风干土样20.0 g,放在装有200 ml密度为1.8 g/cm3的NaI溶液的玻璃离心管中,搅拌震荡数秒后,用NaI溶液将附着在管壁和玻璃棒上的颗粒洗入悬浮液中,静置30min后放置离心机中进行离心(825 r/30min)。利用玻璃滤纸对悬浮液进行真空过滤,并用去离子水洗去剩余的NaI溶液。将浮在滤纸上物质放65℃的烘箱中烘干12 h,烘干后称量,然后进行有机碳含量分析。

土壤轻组有机碳用NaI(称759g NaI溶解于650 ml蒸馏水中,定容至1 L,用比重计调节比重为1.7 g/cm3,相当于90 ml溶液中含有84g NaI)提取,称25 g过2 mm筛的土壤,加入100 ml NaI溶液,轻轻用手振荡,静置15 min。3500转离心15 min后,抽吸含轻组的重液到标记的真空瓶中,用一定量的NaI清洗真空管,将真空瓶中的悬浮液倒入真空系统,用0.01M Cacl2溶液清洗滤膜(Whatman GF/A)上的轻组到预先称重的容器中。这称之为“自由轻组(free light fraction; fLF)”,重复3次。重新将沉淀悬浮,在超声波中450 J/ml下超声15min,离心、过滤。这称之为“闭蓄态轻组(occluded light fraction; oLF)”,重复3次。重组(heavy fraction; HF)组分用0.01M Cacl2溶液冲洗10次,用5 g/L的六偏磷酸钠分散16 h,获得2000–250 um、250–50 um和<50 um三个组分(Roscoe et al., 2000; 2001; 2003)。

2、易氧化有机碳(LOC):采用333 mmol/L 高锰酸钾氧化法

BLAIR G J, LEFROY R D B, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459 - 1466. Logninow W, Wisniewski W, Gonet S S, Ciescinska B. Fractionation of organic carbon based on susceptibility to oxidation. Polish Journal of Soil Science, 1987, 20: 47-52.

具体方法:土壤活性有机碳的测定采用KMnO4 氧化法,具体方法为:称取1~2 g 过0.25 (60目)mm 筛的土壤样品于50 ml 离心管中,加入333 mmol/L KMnO4 25 ml,振荡1 h,离心5 min (转速2 000 r/min),取上清液用去离子水按1﹕250 稀释,然后将稀释液在565 nm 比色。根据KMnO4 浓度的变化求出样品的活性有机碳(氧化过程中1 mmol/L KMnO4 消耗0.75 mmol/L或9 mgC)。

3、水溶性有机碳(DOC)采用10∶1 去离子水和土壤混合物25 ℃恒温间歇震荡5 h,

方法(1)然后离心10 min (12 000 r min-1),用0.45 μm 微孔滤膜抽滤上清液,方法(2)直接过滤,定性或定量滤纸;

过滤液取10ml,加10ml六偏磷酸钠,混匀,直接上TOC 3100 分析仪测定

注意:1、称样量2.5g;称样前样品混匀一次;

2、上机测定样品排放顺序;

4、微生物量碳(MBC)采用氯仿熏蒸- K2SO4 浸提法, 用multi N/ C 3100 分析仪测定。

土壤微生物量碳测定方法

土壤微生物量碳测定方法及应用 土壤微生物量碳(Soil microbial biomass)不仅对土壤有机质和养分的循环起着主要作用,同时是一个重要活性养分库,直接调控着土壤养分(如氮、磷和硫等)的保持和释放及其植物有效性。近40年来,土壤微生物生物量的研究已成为土壤学研究热点之一。由于土壤微生物的碳含量通常是恒定的,因此采用土壤微生物碳(Microbial biomass carbon, Bc)来表示土壤微生物生物量的大小。测定土壤微生物碳的主要方法为熏蒸培养法(Fumigation-incubation, FI)和熏蒸提取法(Fumigation-extraction, FE)。 熏蒸提取法(FE法) 由于熏蒸培养法测定土壤微生物量碳不仅需要较长的时间而且不适合于强酸性土壤、加 入新鲜有机底物的土壤以及水田土壤。Voroney (1983)发现熏蒸土壤用·L-1K 2SO 4 提取液提取 的碳量与生物微生物量有很好的相关性。Vance等(1987)建立了熏蒸提取法测定土壤微生物 碳的基本方法:该方法用·L-1K 2SO 4 提取剂(水土比1:4)直接提取熏蒸和不熏蒸土壤,提取 液中有机碳含量用重铬酸钾氧化法测定;以熏蒸与不熏蒸土壤提取的有机碳增加量除以转换 系数K EC (取值来计算土壤微生物碳。 Wu等(1990)通过采用熏蒸培养法和熏蒸提取法比较研究,建立了熏蒸提取——碳自动一起法测定土壤微生物碳。该方法大幅度提高提取液中有机碳的测定速度和测定结果的准确度。 林启美等(1999)对熏蒸提取-重铬酸钾氧化法中提取液的水土比以及氧化剂进行了改进,以提高该方法的测定结果的重复性和准确性。 对于熏蒸提取法测定土壤微生物生物碳的转换系数K EC 的取值,有很多研究进行了大量的 研究。测定K EC 值的实验方法有:直接法(加入培养微生物、用14C底物标记土壤微生物)和间接法(与熏蒸培养法、显微镜观测法、ATP法及底物诱导呼吸法比较)。提取液中有机碳的 测定方法不同(如氧化法和仪器法),那么转换系数K EC 取值也不同,如采用氧化法和一起法 K EC 值分别为(Vance等,1987)和(Wu等,1990)。不同类型土壤(表层)的K EC 值有较大不 同,其值变化为(Sparling等,1988,1990;Bremer等,1990)。Dictor等(1998)研究表 明同一土壤剖面中不同浓度土层土壤的转换系数K EC 有较大的差异,从表层0-20cm土壤的K EC 为,逐步降低到180-220cm土壤的K EC 为。 一、基本原理 熏蒸提取法测定微生物碳的基本原理是:氯仿熏蒸土壤时由于微生物的细胞膜被氯仿破 坏而杀死,微生物中部分组分成分特别是细胞质在酶的作用下自溶和转化为K 2SO 4 溶液可提取 成分(Joergensen,1996)。采用重铬酸钾氧化法或碳-自动分析仪器法测定提取液中的碳含量,以熏蒸与不熏蒸土壤中提取碳增量除以转换系数K EC 来估计土壤微生物碳。 二、试剂配制 (1)硫酸钾提取剂(·L-1):取分析纯硫酸钾溶解于蒸馏水中,定溶至10L。由于硫酸钾较难溶解,配制时可用20L塑料桶密闭后置于苗床上(60-100rev·min-1)12小时即可完全溶解。 (2) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:称取130℃烘2-3小时的K 2 Cr 2 O 7 (分析纯)9.806g 于1L大烧杯中,加去离子水使其溶解,定溶至1L。K 2Cr 2 O 7 较难溶解,可加热加快其溶 解。 (3) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:取经130℃烘2-3小时的分析纯重铬酸钾4.903g, 用蒸馏水溶解并定溶至1L。

水中总有机碳TOC的测定

水中总有机碳(TOC)的测定 一、实验目的: 通过本实验,了解本仪器的工作原理,熟悉各操作步骤。 二、方法原理: 总有机碳TOC(Total Organic Carbon),是以构成有机物成分之一的碳的数量表示有机污染物质的量。它是把水中所含有机物质里面的碳转化成二氧化碳后加以测定而求得的。 TOC-10B自动测定仪采用分别测出总碳量和无机碳量,并从两者的差值求得TOC的方法。测定原理如下: 用空气泵将空气引入吸气管,吸气管置于TC电炉内。900℃的高温足以把空气中含碳的物质变成CO2,由吸气管而来的空气经由空气过滤器除尘,由CO2吸收器除CO2制成载气。 载气被通入TC和IC两个通道,它们由各自的流量控制阀控制在给定的流速下,空气按给定的流速进入燃烧管(不是T C燃烧管就是IC反应管,这要根据所需要的途径来选择)。一定量的样品由微量注射器通过注射口注入,使其燃烧或分解。分解或燃烧后的气体直接通过T C一IC选择部分到除水器以除去剩余水气。经这样处理的气体引入红外分析部分去测量CO2浓度。 (1)总碳量(TC )的测定: 用微量注射器将样品注入燃烧管中,在900℃的高温及C O304催化剂的作用下样品中所有含碳物质(T C)燃烧和氧化成CO2,被载气带到红外线分析部分检测,样品所含C的浓度正比于记录议出出现的峰高。 (2) 无机碳(IC)的测量: 用微量注射器将样品注入IC反应管中,在160℃的温度及磷酸催 化剂的作用下样品中所含无机碳(IC)分解产生CO2,被载气带到红外分析部分检测,样品所含C的浓度正比于记录议出出现的峰高。 (3)TOC (总有机碳)的测量: 从T C(总碳)减去IC(无机碳)得到TOC (总有机碳),或者将样 品预处理除去IC,然后在TC通道中进行测量,这样就能直接测量TOC。 (4)红外线分析原理: 由一种原子组成的那些分子如N2、O2、和H2不吸收红外线,由两种原子组成的分子,如CO2和CH3吸收红外线,所吸收的红外线的波长与组成分子的原子种类、结合状态有关。在TOC-10B中,载气中的N2和O2不吸收红外线。但是CO2吸收4.3μm的红外线。所吸收的光量正比于气体的浓度。根据朗勃-比尔定律,气体的浓度可由吸收的光量来测定。红外线分析部分原理如下: 为了测量起见,采用非色散系统代替色散光谱,两股间断平行光由检测器测量,并 对之进行选择,被测气体引入测定池光路中的样品池,在另一光路上的参比池封有不吸

土壤纤维素酶测定方法

纤维素酶 一、试剂: 1)醋酸缓冲液(pH 5.5):164.08 g无水醋酸钠(C2H3O2Na)溶于700 ml去离子水,用醋酸(C2H4O2)调节pH至5.5,用去离子水稀释至1 L。 2)CMC溶液(0.7%,w:v):7 g羧甲基纤维素钠盐溶于1 L醋酸缓冲液,45℃下搅拌2 h,此溶液在4℃下可存放7天。 3)还原糖试剂: 试剂A:16 g无水碳酸钠(Na2CO3)和0.9 g氰化钾(KCN)溶于去离子水并稀释至1 L。试剂B:0.5 g六氰铁钾(K4Fe(CN)6)溶于去离子水并稀释至1 L,贮于棕色瓶中。 试剂C:1.5 g 硫酸铁铵(NH4SO4Fe2(SO4)2·H2O)、1 g十二烷基硫酸钠(C12H25O4SNa)和4.2 ml浓硫酸溶于50℃去离子水,冷却后稀释至1 L。 4)水合葡萄糖溶液:28 mg水合葡萄糖溶于少量去离子水中,并定容至1 L。 二、仪器设备 恒温培养箱,水浴锅,分光光度计,搅拌器,三角瓶 三、操作步骤 取10.00 g(耕地)或5.00 g(林地)新鲜土壤(<2 mm)于100 ml三角瓶中,加15 ml 醋酸缓冲液和15 ml CMC溶液,盖上塞子,于50℃下培养24 h,过滤。同时做空白对照,但在培养结束时才加入15 ml CMC溶液,并迅速过滤。 取2.00 ml滤液于50 ml容量瓶中,并用去离子水定容至刻度。吸取2.00 ml稀释液于20 ml试管中,加2.00 ml还原糖试剂A和2.00 ml还原糖试剂B,盖紧混匀,在100℃水浴中加热15 min 后,立即至于20℃水中冷却5 min。加10.00 ml还原糖试剂C,混匀,20℃下静置显色60 min,于690 nm波长处比色测定(要求在30 min内完成)。 标准曲线:吸取0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 ml水合葡萄糖溶液,用去离子水稀释至2 ml,同上加入还原糖试剂A、B、C后,比色测定还原糖含量。c) 空白: 无土空白:不加土样,其余操作与样品试验相同,整个试验设置一个,重复一次。 无基质空白:以等体积水代替基质,每个土样设置一个。 四、结果计算 土壤纤维素酶活性(μg·g-1·(24 h)-1)=(C*V*f)/ dwt 式中C为样品的葡萄糖含量(μg·ml-1);V为土壤溶液体积(30 ml);f为稀释倍数(25);

土壤有机碳分类及其研究进展1

土壤有机碳( SOC)是土壤学和环境科学研究的热点问题之一,土壤有机碳库的动态平衡直接影响着土壤肥力的保持与提高,进而影响土壤质量的优劣和作物产量的高低,因而土壤有机碳的变化最终会影响土壤乃至整个陆地生态系统的可持续性。土壤有机碳包括活性有机碳和非活性有机碳。土壤活性有机碳是指在一定的时空条件下,受环境条件影响强烈的、易氧化分解的、对植物和微生物活性影响比较高的那一部分土壤碳素。根据测定方法和有机碳组分不同,土壤活性有机碳又表述为溶解性有机碳(DOC:dissolved organic carbon)、水溶性有机碳(water-soluble organic carbon)、微生物生物量碳(MBC:Microbial biomass carbon)、轻组有机碳和易氧化有机碳,可在不同程度上反映土壤有机碳的有效性和土壤质量。 国外研究进展 国外对土壤有机碳的研究开始较早, 在20世纪60年代, 就有学者开始进行全球土壤有机碳总库存量研究。但早期对土壤有机碳库存量的估算大都是根据少数土壤剖面资料进行的。如1951年Rubey根据不同研究者发表的关于美国9个土壤剖面的有机碳含量, 推算出全球土壤有机碳库存量为710 Pg。1976年Bohn利用土壤分布图及相关土组( soil association)的有机碳含量, 估计出全球土壤有机碳库存量为2946Pg。这两个估计值成为当前对全球土壤有机碳库存量的上下限值。20世纪80年代,由于研究全球碳循环与气候、植被及人类活动等因素之间相互关系的需要,统计方法开始被应用于土壤有机碳库存量

的估算。如Post等在Holdridge生命带模型基础上,估算了全球土壤碳密度的地理分布与植被及气候因子之间的相互关系,提出全球1m 厚度土壤有机碳库存量为1 395 Pg。 20世纪90年代以来, 随着遥感(RS)、地理信息系统(GIS) 和全球定位系统(GPS) 技术的发展, 为土壤有机碳研究提供了新的方法和手段。3S技术被应用于区域或全球土壤有机碳库存量大小、有机碳密度的空间分布差异等方面的研究。发达国家已在区域尺度上开展了相关研究工作。如俄罗斯在1B250万土壤分布图上建立了土壤碳空间数据库,计算出俄罗斯0~ 20 cm、0~ 50 cm和0~100 cm等不同土层有机碳库存量,估计出俄罗斯土壤有机碳库存总量为34211 Pg,无机碳库存总量为11113 Pg,土壤总碳库存量为45314 Pg,并绘制了俄罗斯0~ 100 cm土层无机碳库存量分布图。加拿大建立了1B100万的数字化土壤分布图及土壤碳数据库,并计算出加拿大0 ~ 30 cm 土层和0 ~100 cm土层土壤有机碳库存量分别为7011 Pg和249 Pg。 世界各国不同研究者对全球土壤有机碳库存量的估算方法并无本质区别,但由于所用资料来源与土壤分类方式不同,土壤有机碳库存量的估计值有较大差异。全球土壤1 m内土壤有机碳库大约是植被碳库的115~ 3倍,如此巨大的土壤有机碳库,即使其发生很轻微变动,都会引起大气中CO2浓度变化,进而影响全球气候变化。因此,土壤有机碳库存量研究成为全球变化的研究热点之一。 国内研究进展 我国学者非常关注土壤碳循环研究,并在土壤有机碳库存量研究

有机碳测定及方法

1.活性有机碳(CL) 土壤活性有机质是土壤有机质的活性部分,是指土壤中有效性较高、易被土壤微生物分解利用、对植物养分供应有最直接作用的那部分有机质。土壤活性有机质在指示土壤质量和土壤肥力的变化时比总有机质更灵敏,能够更准确、更实际的反映土壤肥力和土壤物理性质的变化、综合评价各种管理措施对土壤质量的影响。土壤活性有机质还可以表征土壤物质循环特征,作为土壤潜在生产力和由土壤管理措施变化而引起土壤有机质变化的早期预测指标。 (1)活性有机碳(CL):高锰酸钾氧化法。秤取过0.25mm筛的风干土样1.59于l00ml离心管中,加入333mM(或167mM、33mM)高锰酸钾25ml(易氧化态碳),振荡1小时,离心5分钟(转速2000次/min),取上清液用去离子水按1:250稀释,然后将稀释液在565nm比色。根据高锰酸钾浓度的变化求出样品的活性有机碳。 (2)总有机碳:重铬酸钾氧化法。 (3)非活性有机碳(CNL):总有机碳与活性有机碳的差值为非活性有机碳(CNL) (4)碳库活度(L):土壤碳的不稳定性,即碳库活度(L)等于土壤中的CL与CNL之比:L=样本中的活性有机碳CL/样本中的非活性有机碳CNL。 (5)碳库指数(CPI)=样品总有机碳含量(mg/g)/参考土壤总有机碳含量(mg/g) (6)活度指数(LI):碳损失及其对稳定性的影响,LI=样本的不稳定性(L)/对照的不稳定性(L) (7)基于以上指标可以得到碳库管理指数(CMI):CMI=CPI*LI*100 2.水溶性碳水化合物 碳水化合物是土壤中最重要、最易降解的有机成分之一,其对气候变化、耕作、生物处理等外界影响的敏感程度高于有机质总量。而且作为土壤微生物细胞必需的组成物质和主要能源,碳水化合物与土壤微生物存在密切的关系。 按Grandy 等的方法测定,操作过程为:称取一定量的风干土(根据有机质含量而定) 加入去离子水(水土比为10:1) ,在85℃下培养24 h 后用孔径为0.45μm的玻璃纤维滤纸过滤,将虑液按1:4的比例进行稀释,然后吸取5 ml 稀释液放入比色管中,再加入10 ml 蒽酮溶液,最后在625 nm 处进行比色测定,其含量用葡萄糖表示。 Grandy AS , Erich MS , Porter GA. 2000. Suitability of the anthrone-sulfuric acid reagent for determining water soluble carbohydrates in soil water extracts [J]. Soil Biol . Biochem. ,32 :725~727.

土壤总碳和有机碳分析测试技术

土壤有机碳分析测试技术 1、所需仪器:multi-C/N310主机和HT1300固体模块;载气:高纯氧气,纯度≥99.995%,最好使用99.999%; 2、瓷舟:用于盛放土壤样品,加盐酸反应去除无机碳,然后把待测样品送进炉膛测试用。注意事项:新的瓷舟和用过后长时间存放的瓷舟在使用之前先在马弗炉内1000 ℃烧1小时去除杂质; 3、HT1300测试条件炉温:1050±10 ℃,流速100±10 mL; 4、土壤样品预处理:风干土或者50 ℃烘干土,过100目筛; 5、土壤进样量要求:样品中碳的总含量≥1 mg,最好能达到3 mg; 6、样品进样处理:测量总碳(TC),称取一定量的干土直接进样,所需样品的量需根据毛估的土壤总碳含量决定,一般瓷舟盛放样品不宜超过500 mg,最好不超过800 mg,样品过多容易洒出,低估土壤碳含量;测量土壤有机碳(TOC),称取一定量的土壤样品,所需样品的量需根据毛估的土壤有机碳含量决定,一般瓷舟盛放样品最好不超过500 mg,样品过多在加盐酸反应会有气泡,容易洒出样品,低估土壤有机碳含量,然后加入过量的0.1 mol/L的HCl(盐酸浓度也可根据土壤无机碳含量调整)去除土壤无机碳,然后100 ℃烘3-12小时,之后继续在烘箱中以50 ℃保存,然后一边测量,一边从烘箱中拿出,即拿即测,一般四个一组为佳,因为加盐酸处理后的土壤很容易吸水,这样进样后水分生成的水汽加灰尘很容易堵塞气路的灰尘过滤器; 7、所需要的耗材:高纯铜丝,去除卤素(测量土壤有机碳是过量盐酸在高温下产生的),建议测量样品个数为100个,决不能超过130个,具体还要视样品而定,主要判断依据为铜丝变色;气体灰尘过滤器,建议测量样品个数300-500个,主要判断依据为流量波动(100+10 mL);高氯酸镁,去除测量气路中的水分,如果在烘箱中即拿即测则用量较小,每更换一次可以测量500-1000个样品,视具体情况而定;以上三种耗材高纯铜丝、气体灰尘过滤器、高氯酸镁多备用一些,尤其高纯铜丝,最好备足2-3年的耗材。

土壤活性有机碳的测定

土壤活性有机碳的测定 (高锰酸钾氧化法) 土壤样品经粘磨过0.5mm筛,根据土壤全有机碳含量,计算含有15mg碳的土壤样品量作为待测样品的称样重,然后将样品转移至50ml带盖的塑料离心管中,以不加土样作为空白。 向离心管中加入25ml浓度为333mmol/L的高锰酸钾溶液,在25℃左右,将离心管振荡(常规震荡即可)1小时,然后在转速2000rpm 下离心5分钟,将上清液用去离子水以1:250倍稀释,吸取1ml上清液转移至250ml容量瓶中,加去离子水至250ml即可。稀释样品用分光光度计在565纳米处测定吸光值。 配制不同浓度梯度的高锰酸钾的标准溶液,同样于分光光度计上测定吸光值,建立高锰酸钾的浓度和吸光值的线性直线方程,将稀释好的待测样品的吸光值代入方程得到氧化有机碳后剩余高锰酸钾的浓度,同样得到空白的高锰酸钾浓度,前后二者之差即为氧化活性有机碳后高锰酸钾溶液的浓度变化值,根据假设,氧化过程中高锰酸钾浓度变化1mmol/L消耗0.75mM或9mg碳。其中能被333mmol/L高锰酸钾氧化的碳是活性有机碳,不能被氧化的碳上非活性有机碳。 高锰酸钾标准曲线配制:首先配制0(去离子水)、15、30、60、100、150、300mmol/L的高锰酸钾标准梯度溶液,从每个浓度的标准溶液中吸取1ml标准溶液转移至250ml容量瓶中定容(既稀释250倍),这样能够就得到浓度梯度为0、0.06、0.12、0.24、0.4、0.6、1.0、1.2mmol/L的标准高锰酸钾梯度溶液,然后同样用分光光度计在565纳米处测定吸光值,绘制高锰酸钾的浓度与吸光值间的标准曲线。注意标准曲线配制过程中尽量避光,以防高锰酸钾氧化消耗,可以将容量瓶套上信封袋以避光,还有容量瓶等一定要清洗干净,以防高锰酸钾氧化杂质而消耗,影响测定结果。 活性有机碳(mg/g) =高锰酸钾浓度变化值×25×250×9 称样重×1000

土壤酶活性测定方法

土壤酸性磷酸酶活性的测定 1.试剂配制 (1)0.115M p-硝基苯磷酸钠溶液 取10.67g p-硝基苯磷酸二钠(6H O,分子量为371.1),溶于pH4.5通用缓冲液中并稀释至 2 250ml.4摄氏度冰箱保存。 (2)通用缓冲液(pH4.5)(缓冲液久置会有沉淀) 原液由以下成分组成: 三羟甲基氨基甲烷12.1g 顺丁烯二酸11.6g 柠檬酸14g 硼酸6.3g 溶于500ml 1N NaOH(40g定容1L)中,加蒸馏水至1L。取原液200 ml,再加入0.1N HCL 或浓HCL来调pH为4.5。最后稀释至1L,即得。 (3)甲苯 (4)0.5 mol/L Cacl2.2H2O溶液: 36.75g Cacl2.2H2O定容500ml. (无水CaCl2: 11.1g定容200ml) (5)0.5 mol/L NaOH溶液:20g NaOH定容1L. 2.测定步骤 置于50ml三角瓶中,加4ml通用缓冲液(pH4.5)、0.25ml甲苯和1ml 0.115M p-硝基苯磷酸钠溶液,摇匀后,置于37℃恒温箱中1h。 培养结束后,加入1ml 0.5 mol/L氯化钙溶液和4ml 0.5 mol/L NaOH溶液,通过致密滤纸过滤到50ml容量瓶,用蒸馏水定容后在410nm处比色. 3.计算方法 土壤酸性磷酸酶的活性用单位时间内每克土中的对硝基苯酚的毫克数表示, W(mg·g-1·h-1)=M1/(m×t) 式中:M1—标准曲线上查得样品中对硝基苯酚的质量(mg); t —反应时间(h);=1h m—样品土壤的重量(g) 无土壤CK: 用1ml蒸馏水代替1g土壤;每批土样做2个;无基质CK: 用1ml蒸馏水代替1ml PNPP。每个处理做1个。 标准曲线的制作: 1)对硝基苯酚标液:1g对硝基苯酚定容1L,低温保存。 2)取标液0、1、2、3、4、5ml于0-6号硬质试管中,分别加pH6.5通用缓冲液4ml,Cacl2.2H2O 溶液1ml,NaOH溶液4ml, ②混匀后,定量滤纸过滤到50ml容量瓶,定容后,再取各浓度标液1ml定容至50ml,以0号试管作为对照,在A410nm波长下测光吸收值,并记录光吸收值A410。 ③以吸光值为横坐标、对硝基苯酚的含量为纵坐标计算直线回归方程y=a+bx及相关系数R,即对硝基苯酚含量n(mg)=a+b×A410.

无机碳

新疆农业大学科学技术学院专业文献综述 题目: 无机碳研究综述 姓名: 李龙 专业: 环境科学 班级: 112 学号: 115242231 指导教师: 刘耘华职称: 讲师 2014 年12 月31 日 新疆农业大学科学技术学院制

无机碳研究综述 李龙指导教师:刘耘华 摘要:难溶性无机碳含量和可溶性无机碳含量明显高于碱土。无论是土壤难溶性无机碳储量还是可溶性无机碳储量,盐土和碱土中有近80%碳是存储在l m以下,50%存储于3 m以下。相同土层,土壤可溶性无机碳储量约占土壤难溶性无摘要:通过分离土壤动态性无机碳,结合碳十四同位素技术,有效量化了盐碱土剖面无机碳组分的存储数量和年龄特征。结果表明:整个土壤剖面,盐土机碳储量的50%。无论是盐土还是碱土,无机碳的年龄超过万年,而土壤可溶性无机碳的年龄明显低于土壤无机碳的年龄。研究结果证实尽管土壤可溶性无机碳储量较低,但其周转时间短,速率高,因此在参与现代碳循环的程度上明显要高于土壤无机碳。 关键词:可溶性无机碳;碳十四同位素;无机碳含;无机碳储 A review of research on inorganic carbon Li Long Tutor:Liu Yun-hua Abstract: The key to estimating dissolved and non dissolved inorganic carbon in saline alkali soil is understanding the processes of carbonate accumulation. In order to effectively quantify inorganic carbon composition and their ages in saline alkali soil,the paper introduced a convenient way to determine soil dissolved and non dissolved inorganic content in these soils. Dynamics of soil inorganic carbon was separated leaching soil, and inorganic carbon ages were determined by "C isotope technology in this study. The results showed that average values of both dissolved and non dissolved inorganic carbon contents in saline soil were higher than in alkaline soil. Through analyzing dissolved and non-dissolved inorganic carbon storages in saline and alkaline soil profiles at different depths, the paper found that there was significant soil dissolved inorganic carbon and soil non-dissolved inorganic carbon storage below 1 m depth: SIC and SDIC storage below 1 m depth accounted for more than 80% of

TOC(总有机碳分析仪)测定原理方法

下面针对TOC仪器的测定原理、TOC分析方法及分析的步骤进行介绍。 一、TOC仪器的测定原理 总有机碳(TOC),由专门的仪器——总有机碳分析仪(以下简称TOC 分析仪)来测定。TOC分析仪,是将水溶液中的总有机碳氧化为二氧化碳, 并且测定其含量。利用二氧化碳与总有机碳之间碳含量的对应关系,从而 对水溶液中总有机碳进行定量测定。 仪器按工作原理不同,可分为燃烧氧化—非分散红外吸收法、电导法、 气相色谱法等。其中燃烧氧化—非分散红外吸收法只需一次性转化,流程 简单、重现性好、灵敏度高,因此这种TOC分析仪广为国内外所采用。 TOC分析仪主要由以下几个部分构成:进样口、无机碳反应器、有机碳 氧化反应(或是总碳氧化反应器)、气液分离器、非分光红外CO2分析器、数据处理部分。 二、燃烧氧化——非分散红外吸收法 燃烧氧化—非分散红外吸收法,按测定TOC值的不同原理又可分为差 减法和直接法两种。 1.差减法测定TOC值的方法原理 水样分别被注入高温燃烧管(900℃)和低温反应管(150℃)中。经 高温燃烧管的水样受高温催化氧化,使有机化合物和无机碳酸盐均转化成 为二氧化碳。经反应管的水样受酸化而使无机碳酸盐分解成为二氧化碳, 其所生成的二氧化碳依次导入非分散红外检测器,从而分别测得水中的总 碳(TC)和无机碳(IC)。总碳与无机碳之差值,即为总有机碳(TOC)。 2.直接法测定TOC值的方法原理 将水样酸化后曝气,使各种碳酸盐分解生成二氧化碳而驱除后,再注 入高温燃烧管中,可直接测定总有机碳。但由于在曝气过程中会造成水样 中挥发性有机物的损失而产生测定误差,因此其测定结果只是不可吹出的 有机碳值。 三、水样中TOC的分析步骤 1.试剂准备 (1)邻苯二甲酸氢钾(KHC8H4O)4:基准试剂 (2)无水碳酸钠:基准试剂 (3)碳酸氢钠:基准试剂 (4)无二氧化碳蒸馏水 2.标准贮备液的制备 (1)有机碳标准贮备液:称取干燥后的适量KHC8H4O,4用水稀释, 一般贮备液的浓度为400mg/L碳。 (2)无机碳标准贮备液:称取干燥后适量比例的碳酸钠和碳酸氢钠, 用水稀释,一般贮备液的浓度为400mg/L无机碳。 3.有机碳、无机碳标准溶液的配制 从各自的贮备液中按要求稀释得来。

土壤有机质测定

土壤有机质测定 5.2.1重铬酸钾容量法——外加热法 5.2.1.1方法原理在外加热的条件下(油浴的温度为180,沸腾5分钟),用一定浓度的重铬酸钾——硫酸溶液氧化土壤有机质(碳),剩余的重铬酸钾用硫酸亚铁来滴定,从所消耗的重铬酸钾量,计算有机碳的含量。本方法测得的结果,与干烧法对比,只能氧化90%的有机碳,因此将得的有机碳乘以校正系数,以计算有机碳量。在氧化滴定过程中化学反应如下: 2K2Cr2O7+8H2SO4+3C→2K2SO4+2Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4→K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H20 在1mol·L-1H2SO4溶液中用Fe2+滴定Cr2O72-时,其滴定曲线的突跃范围为1.22~0.85V。 从表5—4中,可以看出每种氧化还原指示剂都有自己的标准电位(E0),邻啡罗啉(E0=1.11V),2-羧基代二苯胺(E0=1.08V),以上两种氧化还原指示剂的标准电位(E0),正落在滴定曲线突跃范围之内,因此,不需加磷酸而终点容易掌握,可得到准确的结果。 例如:以邻啡罗啉亚铁溶液(邻二氮啡亚铁)为指示剂,三个邻啡罗啉(C2H8N2)分子与一个亚铁离子络合,形成红色的邻啡罗啉亚铁络合物,遇强氧化剂,则变为淡蓝色的正铁络合物,其反应如下: [(C12H8N2)3Fe]3++e [(C12H8N2)3Fe]2+ 淡蓝色红色 滴定开始时以重铬酸钾的橙色为主,滴定过程中渐现Cr3+的绿色,快到终点变为灰绿色,如标准亚铁溶液过量半滴,即变成红色,表示终点已到。 但用邻啡罗啉的一个问题是指示剂往往被某些悬浮土粒吸附,到终点时颜色变化不清楚,所以常常在滴定前将悬浊液在玻璃滤器上过滤。 从表5-4中也可以看出,二苯胺、二苯胺磺酸钠指示剂变色的氧化还原标准电位(E0)分别为0.76V、0.85V。指示剂变色在重铬酸钾与亚铁滴定曲线突跃范围之外。因此使终点后移,为此,在实际测定过程中加入NaF或H3PO4络合Fe3+,

可溶性有机碳的测定

可溶性有机碳测定: 1. 取10 g 新鲜土样,按照土:水为1∶5的比例混匀,在25℃条件下,以250 r/min 的速度振荡1 h,接着在转速为15 000 r/min 离心10min,上部悬浮液过0·45μm 薄滤膜[1],以后的步骤采取测有机碳的方。 2. 取过0·45μm 薄滤膜的溶液放入消煮管中,加5ml 0.8000mol/L 的1/6K 2Cr 2O 7标准溶液, 然后用注射器注人5ml 浓硫酸,旋转摇匀,在消煮管上加一小漏斗。 3. 将盛土样的消煮放人铁丝笼架中,放入已预热至185 -190oC 的油浴锅中(豆油)加热。 此时应控制锅内温度在170-180oC ,沸腾开始,准确加热5min ,取出冷却,如溶液呈绿色,表示重铬酸钾用量不足,应再取较少的样品(或适当增加重铬酸钾的量)重做。 4. 冷却后的溶液呈橙黄色或黄绿色,用洗瓶将消煮管中的溶液洗人250ml 三角瓶中,使三 角瓶内溶液体积在60-80ml 左右,加邻啡啰啉指示剂3—4滴,用0.2mol /L FeSO 4滴定,溶液的颜色变化为:橙黄—→蓝绿—→棕红色,记录硫酸亚铁用量(V )。 每批分析样,应做2—3个空白;空白标定用0.1-0.5g 石英砂代替土样,其它步骤与测定土样时完全相同,记录硫酸亚铁用量(V 0)。 5. 计算方法 有机碳(g/kg )=10001.1003.0)(0.58000.02100????-??K m V V V 有机质(g/kg )=有机碳(g/kg )×1.724 式中:0.8000——1/6 K 2Cr 2O 7标准溶液的浓度(mol/L ); 5.0——1/6 K 2Cr 2O 7标准溶液的体积(ml ); V 0——空白标定用去硫酸亚铁溶液体积(ml ); V ——滴定土样用去硫酸亚铁溶液体积(ml ); 0.003——1/4碳原子的摩尔质量(g/m mol); 1.1——氧化校正系数; 1.724——将有机碳换算成有机质的系数; m 1——风干土样质量(g ); K 2——将风干土换算成烘干土系数。土壤碳氮比的计算: )/() /(kg g kg g 全氮有机碳碳氮比= 1.耕作措施对土壤有机碳和活性有机碳的影响.严昌荣,刘恩科,何文清,刘爽,刘勤.

土壤酶活性测定方法

土壤酶活性测定方法 土壤脲酶的测定方法(苯酚钠—次氯酸钠比色法) 一、原理 脲酶存在于大多数细菌、真菌和高等植物里。它是一种酰胺酶作用是极为专性的,它仅能水解尿素,水解的最终产物是氨和二氧化碳、水。土壤脲酶活性,与土壤的微生物数量、有机物质含量、全氮和速效磷含量呈正相关。根际土壤脲酶活性较高,中性土壤脲酶活性大于碱性土壤。人们常用土壤脲酶活性表征土壤的氮素状况。 土壤中脲酶活性的测定是以脲素为基质经酶促反应后测定生成的氨量,也可以通过测定未水解的尿素量来求得。本方法以尿素为基质,根据酶促产物氨与苯酚—次氯酸钠作用生成蓝色的靛酚,来分析脲酶活性。 二、试剂 1)甲苯 2)10%尿素:称取10g尿素,用水溶至100ml。 3)柠檬酸盐缓冲液(PH6.7):184g柠檬酸和147.5g氢氧化钾(KOH)溶于蒸馏水。将两溶液合并,用1mol/LNaOH将PH调至6.7,用水稀释定容至1000ml。 4)苯酚钠溶液(1.35mol/L):62.5g苯酚溶于少量乙醇,加2ml甲醇和18.5ml丙酮,用乙醇稀释至100ml(A液),存于冰箱中;27gNaOH溶于100ml水(B液)。将A、B溶液保存在冰箱中。使用前将A液、B液各20ml混合,用蒸馏水稀释至100ml。 5)次氯酸钠溶液:用水稀释试剂,至活性氯的浓度为0.9%,溶液稳定。 6)氮的标准溶液:精确称取0.4717g硫酸铵溶于水并稀释至1000ml,得到1ml含有0.1mg 氮的标准液;再将此液稀释10倍(吸取10ml标准液定容至100ml)制成氮的工作液(0.01mg/ml)。 三、操作步骤 称取5g土样于50ml三角瓶中,加1ml甲苯,振荡均匀,15min后加10ml10%尿素溶液和20ml PH 6.7柠檬酸盐缓冲溶液,摇匀后在37℃恒温箱培养24小时。培养结束后过滤,过滤后取1ml滤液加入50ml容量瓶中,再加4ml苯酚钠溶液和3ml次氯酸钠溶液,随加随摇匀。20min后显色,定容。1h内在分光光度计与578nm波长处比色。(靛酚的蓝色在1h 内保持稳定)。 标准曲线制作:在测定样品吸光值之前,分别取0、1、3、5、7、9、11、13ml氮工作液,移于50ml容量瓶中,然后补加蒸馏水至20ml。再加入4ml苯酚钠溶液和3ml次氯酸钠溶液,随加随摇匀。20min后显色,定容。1h内在分光光度计上于578nm波长处比色。然后以氮工作液浓度为横坐标,吸光值为纵坐标,绘制标准曲线。 注意事项: 1、每一个样品应该做一个无基质对照,以等体积的蒸馏水代替基质,其他操作与样品 实验相同,以排除土样中原有的氨对实验结果的影响。 2、整个实验设置一个无土对照,不加土样,其他操作与样品实验相同,以检验试剂纯

土壤有机碳及碳组份测定

①土壤有机碳测定 风干土过0.25 mm土壤筛,用重铬酸钾-外加热法测定有机碳含量。 ②土壤重组和轻组分离 取100 g(干土重)土,分成3等分,分别放入密度为1.70g cm-3的重液中(ZnI 2和KI 混合溶液,用KOH 溶液调至中性),用手摇动震荡5min,再用超声波400Jml-1震荡3 min,离心机离心,虹吸法取上清液,过滤,重复操作3 次。所得样品用 100 mL 0.01 mol L-1CaCl 2 溶液洗涤,再用200 mL 蒸馏水反复冲洗,得到轻组。 剩余部分为重组,用100ml 0.01mol L-1 CaCl 2 溶液洗涤,再用200 mL 蒸馏水反复冲洗。样品回收率均在95%以上。将得到的组分分出一份,过0.25 mm 土壤筛,用重铬酸钾-外加热法测定有机碳含量。 ③土壤水溶性有机碳测定 20g(干土重)新鲜土放入盛有60 mL 蒸馏水的三角瓶中,常温下震荡浸提30 min,用高速离心机离心,上清液过0.45μm 滤膜,用岛津TOC-V CPH仪测定浸提液有机碳浓度,得到水溶性有机碳。为了避免浓度的差异对特定波长吸收值的影响,先把所有样品的水溶性有机碳的浓度稀释到10 mg/L,再用岛津UV-2550 测 定250 (A 250)、280 (A 280 )、和365 nm (A 365 )处吸收值,并计算A 250 /A 365 比值。 ④热水浸提碳的测定 10 g(干土重)新鲜土放入盛有100 mL 蒸馏水的三角瓶中,先震荡10 min,80℃浸提16 h,再震荡10 min,离心后,上清液用0.45 μm 滤膜过滤,用TOC-V CPH 仪测定浸提液碳浓度,得到热水浸提碳。 ⑤土壤微生物量碳测定 土壤微生物量碳(MBC)采用氯仿熏蒸-K 2SO 4 浸提法,熏蒸和未熏蒸的样品分 别用0.5 M K 2SO 4 浸提30 min,用岛津TOC-V CPH仪测定浸提液碳浓度。然后,用 以下公式计算获得微生物量碳: MBC =Ec/0.38 (1-1) 式中MBC 为微生物量碳,Ec 为熏蒸和未熏蒸样品浸提液测定的有机碳差值。用以下公式计算微生物商: MQ=MBC/TOC (1-2) 式中MBC 为微生物量碳,MQ 为微生物商,TOC 为土壤总有机碳

第三章 土壤有机质的测定

土壤有机质是土壤中各种营养元素特别是氮、磷的重要来源。它还含有刺激植物生长的胡敏酸类等物质。由于它具有胶体特性,能吸附较多的阳离子,因而使土壤具有保肥力和缓冲性。它还能使土壤疏松和形成结构,从而可改善土壤的物理性状。它也是土壤微生物必不可少的碳源和能源。因此,除低洼地土壤外,一般来说,土壤有机质含量的多少,是土壤肥力高低的一个重要指标。 本章介绍了有机质的形态、含量与分布,土壤有机质测定各种方法的方法原理、适用范围、试剂的配制、操作步骤、结果计算、方法要点等内容。

3.1.1 土壤有机质含量及其在肥力上的意义 土壤有机质是土壤中各种营养元素特别是氮、磷的重要来源。它还含有刺激植物生长的胡敏酸类等物质。由于它具有胶体特性,能吸附较多的阳离子,因而使土壤具有保肥力和缓冲性。它还能使土壤疏松和形成结构,从而可改善土壤的物理性状。它也是土壤微生物必不可少的碳源和能源。因此,除低洼地土壤外,一般来说,土壤有机质含量的多少,是土壤肥力高低的一个重要指标。 华北地区不同肥力等级的土壤有机质含量约为:高肥力地>15.0g·kg-1 ,中等肥力地10~14g·kg-1,低肥力地5.0-10.0g·kg-1,薄砂地<5.0g·kg-1。 南方水稻土肥力高低与有机质含量也有密切关系。据浙江省农业科学院土壤肥料研究所水稻高产土壤研究组报道:浙江省高产水稻土的有机质含量大部分多在23.6~48g·kg-1,均较其邻近的一般田高。上海郊区高产水稻土的有机质含量也在25.0~40g·kg-1范围之内。 我国东北地区雨水充足,有利于植物生长,而气温较低有利土壤有机质的积累,因此东北的黑土有机质含量高达40~50g·kg-1以上。由此向西北,雨水减少,植物生长量逐渐减少,土壤有机质含量亦逐渐减少,如栗钙土为20~30g·kg-1,棕钙土为20g·kg-1 左右,灰钙土只有10~20g·kg-1。向南雨水多、温度高,虽然植物生长茂盛,但土壤中有机质的分解作用增强,黄壤和红壤有机质含量一般为20~30g·kg-1。对耕种土壤来讲,人为的耕作活动则起着更重要的影响,因此在同一地区耕种土壤有机质含量比未耕种土壤要低得多。影响土壤有机质含量的另一重要因素是土壤质地,砂土有机质含量低于粘土。 土壤有机质的组成很复杂,包括三类物质: 1.分解很少,仍保持原来形态学特徵的动植物残体。 2.动植物残体的半分解产物及微生物代谢产物。 3.有机质的分解和合成而形成的较稳定的高分子化合物——腐殖酸类物质。

土壤漆酶活性检测试剂盒说明书 微量法

土壤漆酶活性检测试剂盒说明书微量法 注意:正式测定之前选择2-3个预期差异大的样本做预测定。 货号:BC1965 规格:100T/48S 产品内容: 试剂一:液体30mL×1瓶,4℃保存。 试剂二:粉剂×2瓶,4℃避光保存,临用前每瓶加7.5mL试剂一溶解。 试剂三:液体3mL×1瓶,常温保存。若有白色物质析出,放于37℃中溶解即可。 产品说明: 土壤漆酶(SL)是一种含铜的多酚氧化酶,属于铜蓝氧化酶家族,广泛分布于真菌和高等植物中,具有较强的氧化还原能力,在纸浆生物漂白,环境污染物降解和木质纤维素降解以及生物检测方面有非常广泛的应用。 漆酶分解底物ABTS产生ABTS自由基,在420nm处的吸光系数远大于底物ABTS,测定ABTS自由基的增加速率,可计算得漆酶活性。 自备实验用品及仪器: 天平、低温离心机、可见分光光度计/酶标仪、微量玻璃比色皿/96孔板、震荡仪、30目筛(或更小)。操作步骤: 一、样本处理 新鲜土样风干,过30目筛。 二、测定操作 1.分光光度计/酶标仪预热30min,调节波长到420nm,蒸馏水调零。 2.加样表: 试剂名称测定管对照管 土样(g)0.030.03

试剂一(μL)135135 试剂二(μL)150- 37℃水浴反应10min。 试剂三(μL)1515 试剂二(μL)-150 4℃12000g离心15min,取200μL上清于420nm测定其吸光值,分别记为A测定管、A对照管,计算ΔA=A测定管-A对照管。 三、土壤漆酶(SL)活性计算公式 (1)按微量比色皿计算: 酶活性定义:每克土壤每分钟生成1nmol ABTS自由基所需的酶量为一个酶活力单位(U)。 SL活性(U/g)=ΔA÷(ε×d)×109×V反总÷W÷T=0.833×△A÷W。 ε:ABTS自由基摩尔消光系数:36000L/mol/cm;d:比色皿光径,1cm;V反总:反应总体积,3×10-4L;W,样本质量,g;T:反应时间,10min;109:单位换算系数,1mol=109nmol。 (2)按96孔板计算: 酶活性定义:每克土壤每分钟生成1nmol ABTS自由基所需的酶量为一个酶活力单位(U)。 SL活性(U/g)=ΔA÷(ε×d)×109×V反总÷W÷T= 1.39×△A÷W。 ε:ABTS自由基摩尔消光系数:36000L/mol/cm;d:比色皿光径,0.6cm;V反总:反应总体积,3 ×10-4L;W,样本质量,g;T:反应时间,10min;109:单位换算系数,1mol=109nmol。 注意事项: 1.试剂一需临用前配制,并且尽快使用,4℃保存一周,若变色则不能使用。 2.测定之前进行预实验,若吸光值较高(A>1.5),请减少土样质量再进行测定。若数值偏小可以延长反 应时间或增加土样质量进行测定。 3.离心后若上清仍然浑浊,可再次离心去除。

土壤有机碳检测方法介绍与自我总结

土壤有机碳检测方法介绍 土壤有机碳是以有机物形式存在于土壤中的C元素的一种存在形式,作为土壤碳库中的重要组成部分,一方面在土壤品质监测中是一项重要的检测项目,另一方面对研究空气中二氧化碳来源也有很大的作用。 土壤有机碳根据其稳定性可分为活性有机碳、慢性有机碳和惰性有机碳三种,其中活性有机碳是反映土壤肥力和土壤管理措施的较好指标。而根据土壤中有机碳的溶解性质又可分为溶解性有机碳和非溶解性有机碳。非溶解性有机碳属于惰性有机碳,由于不能溶解不能被植物吸收也不易产生迁移,所以在土壤质量监控和环境监测方面没有实际意义,而活性有机碳和慢性有机碳大多属于溶解性有机碳。 目前土壤有机碳的检测方法主要是干烧法和湿氧化法。常用的重铬酸钾和浓硫酸湿氧化滴定技术由于不能确保样品完全氧化,检测效果较差检测结果必须进行修正。而干烧法目前又有土壤直接高温燃烧和土壤经溶液萃取后高温燃烧溶液两种方法。 土壤直接燃烧法大多需在样品燃烧前使用磷酸溶液或盐酸溶液去除土壤中的无机碳。磷酸酸性较弱不易将土壤中的难溶碳酸盐氧化(西南地区广布卡斯特地貌,碳酸岩形成的土壤比重较高),而直接燃烧需要在900℃以上的温度才能保证燃烧完全,碳酸盐在800℃左右就会分解,所以检测结果受无机碳干扰明显。盐酸溶液虽然可将大部分碳酸盐去除,但是残留的盐酸会对催化剂和检测器的寿命造成严重影响,使用时必须将样品再次淋洗、烘干才能上机检测,冲洗过程中又会造成溶解性有机碳的损失,所以检测结果也不是很准确。这正是Tekmar在第6带产品设计生产时取消固体进样器的一个主要原因。所以相对来说检测更准确的则是溶液萃取法。 溶液萃取法是通过一定浓度的盐溶液将土壤中的有机碳转移至液相后再对溶液进行检测的方法。一方面该方法只将溶液中的溶解性碳转移至溶液,溶液再上仪器进行检测,检测过程中仪器会自动清除无机碳,所以检测结果准确可靠;而不溶解性碳(包括难溶性碳酸岩和不溶性有机碳)不是土壤的有效养分或污染物所以实际监测意义不大,这也是为什么中国农科院和中科院下属单位长期将溶液萃取法作为土壤有机碳检测手段的根本原因。

相关主题