搜档网
当前位置:搜档网 › 桥博盖梁计算4页

桥博盖梁计算4页

桥博盖梁计算4页
桥博盖梁计算4页

关于横向分布调整系数:

一、进行桥梁的纵向计算时:

a) 汽车荷载

○1对于整体箱梁、整体板梁等整体结构

其分布调整系数就是其所承受的汽车总列数,考虑纵横向折减、偏载后的修正值。例如,对于一个跨度为230米的桥面4车道的整体箱梁验算时,其横向分布系数应为4 x 0.67(四车道的横向折减系数) x

1.15(经计算而得的偏载系数)x0.97(大跨径的纵向折减系数) =

2.990。汽车的横向分布系数已经包含了汽车车道数的影响。

○2多片梁取一片梁计算时

按桥工书中的几种算法计算即可,也可用程序自带的横向分布计算工具来算。计算时中梁边梁分别建模计算,中梁取横向分布系数最大的那片中梁来建模计算。

b) 人群荷载

○1对于整体箱梁、整体板梁等整体结构

人群集度,人行道宽度,公路荷载填所建模型的人行道总宽度,横向分布系数填1 即可。因为在桥博中人群效应= 人群集度x人行道宽度x人群横向分布调整系数。城市荷载填所建模型的单侧人行道宽度,若为双侧人行道且宽度相等,横向分布系数填2,因为城市荷载的人群集度要根据人行道宽度计算。

○2多片梁取一片梁计算时

人群集度按实际的填写,横向分布调整系数按求得的横向分布系

数填写,一般算横向分布时,人行道宽度已经考虑了,所以人行道宽度填1。

c) 满人荷载

○1对于整体箱梁、整体板梁等整体结构

满人宽度填所建模型扣除所有护栏的宽度,横向分布调整系数填1。与人群荷载不同,城市荷载不对满人的人群集度折减。

○2多片梁取一片梁计算时

满人宽度填1,横向分布调整系数填求得的。

注:

1、由于最终效应:

人群效应= 人群集度x人行道宽度x人群横向分布调整系数。

满人效应= 人群集度x满人总宽度x满人横向分布调整系数。

所以,关于两项的一些参数,也并非一定按上述要求填写,只要保证几项参数乘积不变,也可按其他方式填写。

2 、新规范对满人、特载、特列没作要求。所以程序对满人工况

没做任何设计验算的处理,用户若需要对满人荷载进行验算的话,可以自定义组合。

二、进行桥梁的横向计算时

a) 车辆横向加载分三种:箱梁框架,横梁,盖梁。

○1计算箱形框架截面,实际是计算桥面板的同时考虑框架的影响,汽车横向分布系数=轴重/顺桥向分布宽度;

○2横梁,盖梁,汽车荷载横向分布调整系数可取纵向一列车的最

大支反力(该值可由纵向计算时,使用阶段支撑反力汇总输出结果里面,汽车MaxQ对应下的最大值,除以纵向计算时汽车的横向分布调整系数来算得),进行最不利加载。

b) 对于人群(或满人)效应,在“横向加载有效区域”中已经填入

了人行道分布区域,程序会据此进行影响线加载。人行道宽度填1。

横梁、盖梁计算时,这里的人群横向分布系数与汽车的相似,是指单位横向人行道宽度(1m)的支反力。在计算支反力时,这个系数已经考虑人群集度的大小,所以此时窗口中的“人群集度”

应该填1。

c) 横向加载最终效应

(假设汽车车道数输入为3)如果计入车道折减系数则折减系数=0.78(公路技术规范),不计入则=1.0。

汽车效应=三辆汽车加载的效应(每辆汽车的总重为1,每轮重1/2)x汽车横向分布系数x车道折减系数。

汽车冲击力=汽车效应x冲击系数。(此时用户应自己输入汽车冲击系数,因为横向加载不知道桥梁的实际纵向跨径,但冲击系数是根据纵向跨径计算的.

横梁和盖梁:

(1)将纵向一列车的支反力作为汽车横向系数(注意城市荷载纵向计算的车道数大于4时,计算剪力时荷载乘1.25,故用多列车支

反力除横向分布系数较真实),横向加载有效区域需手动扣除车轮距路缘石的距离。

(2)每m宽人群纵向支反力作为人群横向系数,人行道宽度为纵向宽度,填1,人群集度填1,加载有效区域按实际填。

箱梁框架:

(1)汽车横向分布系数=轴重/顺桥向分布宽度,横向加载有效区域需手动扣除车轮距路缘石的距离。

(2)人群集度按实际填,人行道宽度指顺桥向,填1m,横向分布调整系数填1,横向加载有效区域按实际填。

希望以上资料对你有所帮助,附励志名3条:

1、积金遗于子孙,子孙未必能守;积书于子孙,子孙未必能读。不如积阴德于冥冥之中,此乃万世传家之宝训也。

2、积德为产业,强胜于美宅良田。

3、能付出爱心就是福,能消除烦恼就是慧。

某高速公路大桥斜交盖梁施工

某高速公路大桥斜交盖梁施工 摘要:某高速公路大桥高架桥斜交盖梁采用预埋剪力销架设贝雷梁做托架的方法施工。利用墩身浇筑花瓶段第二节砼时预理PVC管,施工完拆除模板和PVC 管,将剪力销穿过墩身做支点架设加强贝雷梁做盖梁底模托架,盖梁砼分1次浇注。介绍大桥斜交盖梁施工情况。 关键词:高架桥;斜交盖梁;托架;施工方法 1 工程概述 高架桥是某高速公路一段,设计范围从路线K29+758.5至K30+948.9终止,前接某大桥南引桥,后接北庙高架桥,某大道高架桥18#~21#盖梁为斜交其他为正交,每墩2座,有25个墩共50座。 某大道高架桥18#~21#盖梁为斜交,其中18#、21#墩为斜交13度,19#、20#墩为斜交25度。斜交25度盖梁为长21.42m,宽3m,高2.5m,横坡2%的预应力钢筋砼结构,盖梁采用C40砼工程量约139m3。盖梁平面布置图见图1 图1斜交25度盖梁平面布置图 2 水文、气象 本标段所在的区域属亚热带季风区,长夏无冬,雨量充沛,季风明显。平均气温在21℃~22.2℃,最高气温为37.9℃,最低气温为-0.5℃,多年月平均气温最高是7月27.2℃~28.2℃,最低气温是1月13.4℃~14.2℃。本区域年降水量为1768.8mm,最大降水量为2394.9mm,最少降水量为972.2mm,主要降水集中在4~6月;由于处在季风区,受大气流影响,风向、风速随季节不同而不同,平均风速为1.9m/s,最大风速为26m/s(相当于10级台风),瞬间风速为35m/s (相当于12级台风以上)。 本桥址处于广东沿海暴雨高值带,有明显的前后汛期之分,4~6月以锋面雨为主,7~9月以台风雨为主。 3 工艺流程 盖梁施工工艺流程为:盖梁材料准备→管架拆除改造→销孔预埋、穿剪力销→贝雷梁架设→横梁、花窗安装→三角架安装→安装侧模→盖梁底模安装→钢筋安装及预埋件(含波纹管)安装→盖梁端模、张拉槽定位及侧模安装→砼浇注→养生→预应力张拉→盖梁模板拆除、盖梁托架拆除、管架拆除。

盖梁计算

六、盖梁设计 (一)荷载计算 1.恒载计算 上部结构恒载见表6 2.活载计算 (1)活载横向分布系数计算 活载横向分布系数计算时荷载对称布置及非对称布置均采用杠杆原理方法进行计算。 单列车对称布置时见图11 单列车非对称布置时见图12 双列车对称布置时见图13 单列车非对称布置时见图14

1 2 30 0.122 1 0.8750.437 2 ηη η= = =?= 1 2 31 0.560.278 2 1 (0.4340.315)0.375 2 1 0.6480.324 2 ηηη=?= =?+= =?= 图11 0.875 0.875 0.566 图12 0.684 0.434 0.315

1231 0.2860.1432 10.7010.35021 0.950.475 2 ηηη=? ==?==?= 1231 0.5560.278 21 (0.4340.315)0.37521 (0.6480.355)0.502 2 ηηη=?==?+==?+= (2)按顺桥向活载移动情况,求支座活荷载反力的最大值 布载长度L 取15.96m a. 单孔荷载(见图15) 0.556 0.7011 0.951 0.434 0.315 0.648 0.355 图14 图13 0.286

b. 单列车时支座反力 R 2=140×(1+0.913)+120×(0.474+0.386)×30×0.199=236.99KN 两列车时支座反力 2×R 2=2×236.99=473.96 KN b.双孔荷载(见图16) 单列车时支座反力 R 1=140×(0.562+0.65)=169.68 KN R 2=120×(1+0.913)+30×0.725=251.31KN R=R 1 +R 2=169.68+251.31=420.99KN 双列车时支座反力 2×(R 1 + R 2)=2×420.99=841.98KN (3)载横向分布后各梁支点反力计算见表9 表9 主梁支点反力计算 120 140 30 140 120 图15 0.913 0.474 0.386 0.199 120 140 30 140 120 0.65 0.913 1.00 0.725 0.562 2图16

桥梁博士+系+列+教+程(盖梁)

桥梁博士系列教程—小箱梁或T梁盖梁计算 上海同豪土木工程咨询有限公司 2008-4-22 教程概述

本例主要介绍利用桥梁博士对桥墩盖梁进行计算的过程和方法,重点在于虚拟桥面入盖梁活载的加载处理。 进行盖梁计算主要由以下几个步骤: 桥墩盖梁的结构离散(划分单元) 输入总体信息 输入单元信息 输入施工信息 输入使用信息 执行项目计算 查阅计算结果 本例教程桥墩构造参数

一、结构离散 首先对盖梁进行结构离散,即划分单元建立盖梁模型,原则是在支座处、柱顶、特征断面(跨中、1/4)处均需设置节点。如果需要考虑墩柱和盖梁的框架作用,还需要把墩柱建立进来;柱底的边界条件视情况而定,如果是整体承台或系梁连接,可视为柱底固结;如果是无系梁的桩柱,可以将桩使用弹性支撑或等代模型的方式来模拟。 二、输入总体信息 计算类型为:全桥结构全安计算 计算内容:勾选计算活载 桥梁环境:相对湿度为0.6 规范选择中交04规范。

输入单元信息,建立墩柱、盖梁及垫石单元模型,对于T 梁或小箱梁,因为支座间距比较大不能将车轮直接作用在盖梁上,我们还需要在盖梁上设置虚拟桥面单元来模拟车道面,与盖梁采用主从约束来连接,虚拟桥面连续梁的刚度至少大于盖梁的100倍。建立模型如下: 虚拟桥面为连续梁时,刚度可在特征系数里修改。

第一施工阶段:安装所有杆件 添加边界条件 添加虚拟桥面与盖梁的主从约束:虚拟桥面与盖梁的主从约束需要使用两种情况分别模拟:虚拟桥面简支梁和虚拟桥面连续梁;这两种方法分别是模拟墩台手册中的杠杆法和偏心受压法;其目的是杠杆法控制正弯矩截面;偏心受压法控制负弯矩截面。

斜面斜交钢便桥设计与简算

斜面斜交钢便桥设计与简算 摘要:本文主要介绍斜面斜交便桥结构设计与验算方法,为今后类似施工提供经验参考。 关键词:便桥;贝雷片;搭板 1 工程概况 新九曲河特大桥全长2513.612m,沿线跨越太平河、迎丰河、新九曲河、中心河四条河流,沿线可利用道路较少,绕行距离远且不经济,为方便桥面系快速施工,需要在迎丰河南岸河堤处搭设一座与主线桥斜面斜交的钢便桥。 2 钢便桥结构设计 根据便桥位置的地形、地貌特征,钢便桥沿大堤方向与桥轴线呈40°夹角,设计钢桥面与大堤路面呈15°夹角,便桥顶、底标高差约7m,便桥顶通过钢搭板与主桥面衔接,便桥底通过桥台基础与大堤衔接。 便桥结构型式:总长27m(跨径组合为9m+9m+9m),中间行车道宽3.5m,便桥接堤桥台台身尺寸为5m×2m×0.6m,台顶5m×1m×0.4m,台身0.6m埋在地面以下,中墩采用梁柱结构,基础采用140cm×60cm×130cm钢筋混凝土矩形结构,并在基础顶预埋方形钢板基座,单根?800mm钢管桩焊接在方形钢板基座上,在管顶焊接工字钢横梁,横梁为2I56或I56工字钢(1、2号墩采用单根,3号墩采用双拼);便桥纵梁采用2组2排单层贝雷片,上下加强弦杆,同侧竖向采用45cm的连接片进行连接,贝雷片下弦杆横桥向铺[25a槽钢(3根/m),[25a槽钢上纵桥向铺2[12.6槽钢,2[12.6槽钢上铺1cm钢板。 便桥平面布置图

钢便桥侧面布置图 便桥横断面图

钢构搭板图 钢筋混凝土基础及桥台平面图

3 钢便桥结构简算 3.1 荷载参数 砼运输车:G车=450kN,带宽按0.2m计 450kN砼运输车轴力分布 δ=10mm钢板:自重0.785 KN/m2,E=210 Gpa [25a槽钢:自重0.2747kN/m,W=269.597×0.000001 m3,I=3369.62×0.00000001 m4 2[12.6槽钢:自重0.1237 kN/m,W=62.137×0.000001m3,I=391.466×0.00000001 m4 I56工字钢:自重1.239 kN/m,W=2550×0.000001m3,I=71400×0.00000001m4 单片贝雷片:自重0.9kN/m;桁架片允许弯矩:M0=975.0 kN·m;桥面宽度:d=3.5m 3.2 纵向支撑梁受力简算 (1)选用双拼2[12.6槽钢按间距@=30cm顺桥向布置。 (2)计算原则:以车一侧后轮居中行驶时这一最不利工况,按单根纵向支承梁受力简支进行验算,此时跨中弯矩、挠度最大。 (3)荷载取值 汽车一侧后轴轮压荷载:F=(30/40) ×175/2=65.6kN (4)计算跨度L=1.0 m (5)弯矩计算 重车后轴轮压荷载在跨中引起的弯矩: M中=FL/4=65.6×1.0/4=16.4kN·m (6)强度简算

盖梁托架计算书

3.2托架计算 盖梁尺寸:长22米,宽2.2米,高2.2米 盖梁自重及支架自重均按恒载考虑组合系数1.2,施工荷载按活载考虑组合系数1.4。 3.2.1木楞计算 木楞断面5*10cm,矩形截面抵抗矩:W=bh2/6=83.3cm3,矩形截面惯性矩I=bh3/12=416.7cm4 材质为柞木,按《路桥施工计算手册》P176,[σ]—19MPa,[τ]—3.8MPa ,E—12×103MPa 木楞长度4.5m,间距为20cm,跨径为0.3m,按三等跨连续梁均布荷载合理; 混凝土容重—26KN/m3 施工荷载—1.0KPa 倾到混凝土产生的冲击—2.0KPa 振捣混凝土产生的荷载—2.0KPa 盖梁高度2.2m,q1=2.2×26×0.2=11.44KN/m×1.2=13.728 KN/m q2=(1+2+2)×1.4=7kpa Σq=q2×0.2+13.728=15.128KN/m 弯矩:M=ql2/10=0.1×15.128×0.32=0.136KN.m σ=M/W=136/83.3=1.63MPa<[σ]—19MPa,满足要求; 三跨连续均布荷载挠度计算:f=0.677×ql4/100EI=0.677× 15.128×103×0.34/(100×12×109×416.7×10-8)=1.66× 10-5m

—3.8MPa ,E—12×103MPa 木梁长度4m,间距为30cm,跨径为0.6m,其上木楞间距20cm,可按三等跨连续梁均布荷载计算; 混凝土荷载q1=2.2×26×0.3=17.16KN/m×1.2=20.59 KN/m q2=(1+2+2)×1.4=7kpa Σq=7×0.3+20.59=22.69KN/m 弯矩:M=ql2/10=0.1×22.69×0.62=0.817KN.m σ=M/W=817/167=4.89MPa<[σ]—19MPa,满足要求; 三跨连续均布荷载挠度计算:f=0.677×ql4/100EI=0.677× 22.69×103×0.64/(100×12×109×833×10-8)=1.99× 10-4m

桥博疑难解答

桥博疑难解答 1、全预应力构件中,普通钢筋输入还是不输入?对结果有多大影响? 老规范中,如果按全预应力设计,普通钢筋用量一般较少,可以不输。 新规范下为了满足开裂弯矩的要求,普通钢筋的数量可能比较多,输入与不输入的差异较大。钢筋量多对截面特性和中性轴高度的影响明显一些,对截面抗力的影响非常显著。另外,新规范对预应力构件的最小配筋率提出了明确的要求: 这主要因为普通钢筋可以避免构件发生脆性破坏。因此建议还是按照实际的进行输入。 2、附加截面如何添加钢筋信息? 附加截面添加钢筋的操作方法与主截面相同,程序是通过添加截面钢筋对话框中的“安装阶段”变量中输入的施工阶段序号来判断所添加的钢筋是主截面上的还是附加截面上的。 3、桥博中预应力钢束相关单元号是怎么用的?

相关单元号是用来指定钢束位臵的,比如梁格模型中由于程序没有空间定位,所以需要用户指定相关单元号来明确所输入的钢束位臵;在组合构件或者设臵拉索、体外束时也需要定义单元号,因为程序默认预应力钢束只存在于预应力结构单元中。 4、梁格模型中扭矩系数如何计算,对纵梁计算结果有什么影响? 由于梁格划分时,程序建模通常将截面质心放在腹板中心位臵,但实际的截面质心在腹板之外,尤其是长悬臂情况,实际质心与模型质心之间的距离差就是桥博中要求输入的扭矩系数。对纵梁计算影响很小,主要体现在横梁上,因为程序加载是在模型质心上加载,有了扭矩系数后还会在加上相应的扭矩,接近真实情况。 另外,扭矩系数的正负值需要注意,其定义为:单元重心到单元轴线距离,面对单元左端到右端的轴线,如果重心在轴线以外为负,以内为正。可见下例。

5、桥博预应力钢束信息中”松弛率”与规范中指定的”松弛系数”是什么关系? Q: 桥博预应力钢束信息中松弛率与规范中指定的松弛系数是什么关系,如何根据已知的松弛系数计算得到需要的松弛率? A: 规范中,对预应力钢束的松弛损失规定见下文,文中框注部分即为桥博中需要输入的松弛率。.

大角度斜交框构桥结构计算分析

大角度斜交框构桥结构计算分析 大角度斜交框构桥结构计算分析 摘要:本文主要对大角度斜交框构桥基于平面杆系分析方法和空间有限元分析方法,以一个工程实例为案例,分别建立平面模型、空间模型进行计算,分析计算结果,得出在空间有限元分析和平面有限元分析下,斜交框构桥内力结果的差异以及斜交框构桥配筋注意事项。 Abstract: in this paper, the main method and spatial finite element analysis method for the analysis of plane frame based on frame bridge of big angle skew, with an engineering example as a case, establish plane model, space model for calculation, analysis and calculation results, obtained in the space finite element analysis and finite element analysis, skew frame the results of internal forces between bridge and skew frame bridge reinforced the matters needing attention. 关键词:大角度斜交平面有限元空间有限元受力分析 Keywords: large angle oblique plane finite element space finite element stress analysis 中图分类号:[TU997]文献标识码:A 文章编号: 一、前言 随着我国交通事业的发展,城市桥梁、城市道路日益增多,公路、城乡道路以及市政道路相互之间的立体交叉、道路与河道、明渠,暗渠等水利交叉不可避免,且密度也随之加大,情况也多种多样。而框构桥是实现这种立体交叉的最主要的结构形式之一。框构桥也称为箱涵或地道桥。 框构桥的计算一般来说比较复杂,关于斜交桥的计算,无论国外还是国内都尚未形成完整的理论体系。无论是理论解析方法,还是数

桥梁博士连续梁桥设计建模步骤与桥博建模技巧知识分享

一、桥梁博士连续梁建模步骤 一、Dr.Bridge系统概述 Dr.Bridge系统是一个集可视化数据处理、数据库管理、结构分析、打印与帮助为一体的综合性桥梁结构设计与施工计算系统。该系统适用于钢筋混凝土及预应力混凝土连续梁、刚构、连续拱、桁架梁、斜拉桥等多种桥梁形式的设计与计算分析,不仅能用于直线桥梁的计算,同时还能进行斜、弯和异型桥梁的计算,以及基础、截面、横向系数等的计算。在设计过程中充分发挥了程序实用性强、可操作性好、自动化程度较高等特点,对于提高桥梁设计能力起到了很好的作用。 利用本系统进行设计计算一般需要经过:离散结构划分单元,施工分析,荷载分析,建立工程项目,输入总体信息、单元信息、钢束信息、施工阶段信息、使用阶段信息以及输入优化阶段信息(索结构),进行项目计算,输出计算结果等几个步骤。 二、离散结构与划分单元 1、在进行结构计算之前,首先要根据桥梁结构方案和施工方案,划分单元并对单元和节点编号,对于单元的划分一般遵从以下原则: (1)对于所关心截面设定单元分界线,即编制节点号; (2)构件的起点和终点以及变截面的起点和终点编制节点号; (3)不同构件的交点或同一构件的折点处编制节点号; (4)施工分界线设定单元分界线,即编制节点号;

(5)当施工分界线的两侧位移不同时,应设置两个不同的节点,利用主从约束关系考虑该节点处的连接方式; (6)边界或支承处应设置节点; (7)不同号单元的同号节点的坐标可以不同,节点不重合系统形成刚臂; (8)对桥面单元的划分不宜太长或太短,应根据施工荷载的设定并考虑活载的计算精度统筹兼顾。因为活载的计算是根据桥面单元的划分,记录桥面节点处位移影响线,进而得到各单元的内力影响线经动态规划加载计算其最值效应。对于索单元一根索应只设置一个单元。 2、本例为3x30m的三跨连续梁,截面在支座处加大以抵抗较大建立,同时利于端部锚固区的受力,所以该变截面点处取为单元节点,端点也应取为节点,每跨跨中是取为节点,其余节点是根据计算的精度要求定取。 本例共33个节点,划分为32个单元,离散图如下所示: 三、模型的建立 1、项目的建立

桥梁通 第4章 盖梁计算与绘图

第4章盖梁计算与绘图 4.1概述 柱式墩台是公路桥梁设计中普遍采用的结构形式,由于跨径、斜度、桥宽、地质、车荷载的变化,很难完全套用现行标准图和通用图。尤其是盖梁部分,标准化程度低,工作量大,构件配筋复杂,设计人员往往要花费很大精力和时间。因此迫切需要一套软件帮助设计人员快速准确的完成设计,同时提供设计人员多方案比选,达到优化设计的目的。盖梁计算与绘图模块就是专门用来计算盖梁的内力,并进行强度和抗裂验算,动态显示弯矩、剪力包络图和裂缝配筋图,完成钢筋构造图的设计。 4.2功能 4.2.1计算与绘图共同部分 ●⑴既可对帽梁单独设计计算,单独绘钢筋构造图;又可设计计算绘图全过程进行。 ●⑵适合任意斜交角度的桥墩或桥台盖梁。 ●⑶绘制独柱、2柱、3柱、4柱;计算独柱、2柱、3柱…9柱、10柱式盖梁。 ●⑷盖梁截面高度等高或悬臂部分变高。 4.2.2计算部分 ●⑴提供中文计算书一份,包括原始数据和16个不同内容的计算结果表,便于用户备查和复核。表格内容如下: a:每片上部梁(板)恒载反力表 b:荷载反力和冲击系数表 c:梁(板)横向分配系数表 d:活载引起梁(板)支反力表 e:上部梁(板)恒载作用截面内力表 f:盖梁自重作用截面内力表 g:人群荷载作用内力表 h:挂车荷载作用内力表 i:汽车荷载作用内力表 j:各截面单项荷载弯矩表 k:各截面单项荷载左剪力表 l:各截面单项荷载右剪力表 m:内力合计表(未计入荷载效应提高系数) n:内力组合表(已计入荷载效应提高系数) o:配筋、裂缝计算表 p:箍筋间距计算表 ●⑵绘制弯矩包络图和计算相应控制截面钢筋根数。 ●⑶绘制剪力包络图和计算相应控制截面钢筋根数。 ●⑷绘制裂缝配筋图和计算相应控制截面钢筋根数。 ●⑸按2环(4肢)、3环(6肢)分别计算箍筋间距。 ●⑹活载考虑人群、汽车、验算荷载常用的三种。 汽车荷载包括汽车-10级、汽车-15级、汽车-20级、汽车超-20级、汽车城-A级、汽车城-B级或自定义。

桥博盖梁计算4页

关于横向分布调整系数: 一、进行桥梁的纵向计算时: a) 汽车荷载 ○1对于整体箱梁、整体板梁等整体结构 其分布调整系数就是其所承受的汽车总列数,考虑纵横向折减、偏载后的修正值。例如,对于一个跨度为230米的桥面4车道的整体箱梁验算时,其横向分布系数应为4 x 0.67(四车道的横向折减系数) x 1.15(经计算而得的偏载系数)x0.97(大跨径的纵向折减系数) = 2.990。汽车的横向分布系数已经包含了汽车车道数的影响。 ○2多片梁取一片梁计算时 按桥工书中的几种算法计算即可,也可用程序自带的横向分布计算工具来算。计算时中梁边梁分别建模计算,中梁取横向分布系数最大的那片中梁来建模计算。 b) 人群荷载 ○1对于整体箱梁、整体板梁等整体结构 人群集度,人行道宽度,公路荷载填所建模型的人行道总宽度,横向分布系数填1 即可。因为在桥博中人群效应= 人群集度x人行道宽度x人群横向分布调整系数。城市荷载填所建模型的单侧人行道宽度,若为双侧人行道且宽度相等,横向分布系数填2,因为城市荷载的人群集度要根据人行道宽度计算。 ○2多片梁取一片梁计算时 人群集度按实际的填写,横向分布调整系数按求得的横向分布系

数填写,一般算横向分布时,人行道宽度已经考虑了,所以人行道宽度填1。 c) 满人荷载 ○1对于整体箱梁、整体板梁等整体结构 满人宽度填所建模型扣除所有护栏的宽度,横向分布调整系数填1。与人群荷载不同,城市荷载不对满人的人群集度折减。 ○2多片梁取一片梁计算时 满人宽度填1,横向分布调整系数填求得的。 注: 1、由于最终效应: 人群效应= 人群集度x人行道宽度x人群横向分布调整系数。 满人效应= 人群集度x满人总宽度x满人横向分布调整系数。 所以,关于两项的一些参数,也并非一定按上述要求填写,只要保证几项参数乘积不变,也可按其他方式填写。 2 、新规范对满人、特载、特列没作要求。所以程序对满人工况 没做任何设计验算的处理,用户若需要对满人荷载进行验算的话,可以自定义组合。 二、进行桥梁的横向计算时 a) 车辆横向加载分三种:箱梁框架,横梁,盖梁。 ○1计算箱形框架截面,实际是计算桥面板的同时考虑框架的影响,汽车横向分布系数=轴重/顺桥向分布宽度; ○2横梁,盖梁,汽车荷载横向分布调整系数可取纵向一列车的最

看桥图纸经验

看桥图纸经验 一:平面位置的确定、桩号、偏距 1、看图纸1—【桥型布置图】、图纸2—【桥台一般构造图】、图纸3— 【桥墩一般构造图】、图纸4—【空心板一般构造图】、图纸5— 【桩基放样坐标表】 2、桥桩基中心桩号及各部件的桩号的确定:看【桥型布置图】我们从立面 图中可得到该桥中桩的起始桩号、中心桩号、终点桩号、耳墙长度、墩台间的长度;我们在结合看【桥台一般构造图】就会得到耳墙的确切长度及桩基中心线离耳墙头(也就是桥头尾桩号)有多长,从而的得到桥台桩基中心线中桩桩号;我们在结合【空心板一般构造图】得到空心板的长度,结合【桥墩一般构造图】我们就知道桩基中心线是怎样分配墩盖梁的,在结合一下【桥型布置图】的立面图,就可算出各墩桩基中心 线的中桩桩号; 3、通过以上2我们算出了各桩基中心的中桩桩号后,我们在结合 【桥型布置图】的切面图(也就是I - I这样的)要看对应图号在 立面图上是怎么看,箭头往哪边就是往哪边看;在结合【桥台一般构造图】、【桥墩一般构造图】就可核算出桩基中心对应的桩号及偏距啦;然后对应桩基算出坐标再和【桩基放样坐标表】里的坐标核对验算就0K啦 4、对于挡块、支座垫石的平面位置的计算,(一)是结合【桥台一般构造 图】、【桥墩一般构造图】【支座及垫石布置图】算出离桩

基中心轴线的距离算出对应桩号,在根据【桥台一般构造图】 、 【桥墩一般构造图】中的立面图、平面图算出各支座、挡块的偏距就可放样;(二)另一种是可把桩基中心线看成一条桩号,在根据 【桥台一般构造图】、【桥墩一般构造图】中的立面图、平面图算 出各支座、挡块所处在这条直线从一边起始的桩号,然后再根据【桥台一般构造图】、【桥墩一般构造图】【支座及垫石布置图】算出离桩基中心轴线的距离算出偏距就可放样{以上两种方法对直线上的桥都可用,对于弯道上还没空验证} 5、除以上4点对于斜交桥还有注意以下:(1)对于【桥型布置图】 的立面图,能体现该桥实际长度不用质疑,对于【桥台一般构造 图】、【桥墩一般构造图】、中的立面图、平面图也直接体现了桩与桩之间的距离不用换算;其中不同的是切面图因为是平行于斜交线 投影的所以它的长度不是实际的斜长要用角度来换算;(2)对于 【桥型布置图】的切面图因为它是平行路线投影的,图上距离并不 是桩与桩的实际斜长距离,斜长需要斜交角度来计算。注意:以上黄色部分还是要注意有些可能不同,总之对于切面图要认真看它的那个箭头视线是怎么看的,除了圆柱那个方向看都不变以外,其他的都 变。 二:高程计算 1、桥的高程也就是等于二桩基底高程+桩长+墩长+桥台厚度/盖梁

盖梁计算书

盖梁计算书 注:横向加载位置仅按左偏、右偏、里对称、外对称加载。 注:1、加载方式为自动加载。重要性系数为1.1。 2、横向布载时车道、车辆均采用1到2列(辆)分别加载计算。 注:集中荷载Pk已经乘以1.2系数,使得竖直力效应最大。双孔加载按左孔或右孔的较大跨径作为计算跨径。

注:盖梁与立柱线刚度比小于或等于5,按刚架计算盖梁。 注:外边柱之间盖梁截面按钢筋混凝土盖梁构件配筋计算。其余按钢筋混凝土一般构件配筋计算。 注:1、“人群/每米”指横向1米宽度的支反力,不是总宽度对应的支反力。总宽度为0米。 2、“总轴重”指一联加载长度内(双孔或左孔或右孔加载)的轮轴总重。计算水平制动力使用。 3、“左、右支反力”未计入汽车冲击力的作用。 4、车道荷载均布荷载为10.5kN/m,集中荷载为:双孔加载284.448kN,左孔加载284.448kN,右孔加载284.448kN。 5、双孔支反力合计:人群荷载60.021kN/m,1辆车辆荷载436.682kN,1列车道荷载499.987kN。 6、左孔(或右孔)加载时同1辆车的前后轮轴可作用在另一孔内,保证单孔支反力最大,另一孔即便有轮轴支反力仍未计。 7、左孔、右孔冲击系数同双孔加载冲击系数。 注:1、线荷载为54kN/m,指盖梁的总重量除以盖梁长度得到的每延米重量。 2、车道和车辆双孔、左孔、右孔加载均指1列荷载作用,采用值已计冲击系数。 3、车道双孔加载控制,车辆双孔加载控制。

注:1、表中横向分配系数采用“杠杆法(支点)过渡到偏心受压法(1/4跨)”,即纵向荷载位于支点与1/4跨之间按“杠杆法”与“偏心受压法”插值计算,1/4跨之间按“偏心受压法”计算。 2、车道荷载布载两列及以上时横向分配系数值已经计入车列数和横向折减系数。

中交设计师步步解析桥梁盖梁设计计算,设计师都在看!

中交设计师步步解析桥梁盖梁设计计算,设计师都在看! 桥梁设计中,柱式桥墩是普遍采用的结构型式。对于简支桥梁,盖梁是一个承上启下的重要构件,上部结构的荷载通过盖梁传递给下部结构和基础,盖梁是主要的受力结构。在设计中,由于桥梁的跨径、斜度、桥宽、车辆荷载标准的变化,对盖梁设计的影响很大,很难完全套用标准图和通用图。盖梁设计的标准化程度很低,经常是非标准设计,需要对盖梁进行较多的计算,所以盖梁设计是桥梁设计的一个关键部分。

一、盖梁的受力特点及分析 1盖梁的受力特点 盖梁的主要荷载是由其上梁体通过支座传递过来的集中力,盖梁作为受弯构件,在荷载作用下在各截面除了引起弯矩外,同时伴随着剪力的作用。此外,盖梁在施工过程中和活载作用下,还会承受扭矩,产生扭转剪应力。扭转剪应力的数值很小且不是永久作用,一般不控制设计。实际计算中一般只考虑弯剪的组合,因为考虑弯、剪、扭三种内力同时组合,需要空间分析,计算工作会很繁琐,而且实际意义也不大。可见盖梁是一种典型的以弯剪受力为主的构件。 2盖梁的受力分析 盖梁除了自重荷载之外,主要承受由支座传递过来的上部结构的恒载。对不同桥宽、不同跨径简支梁板桥的盖梁内力计算结果进行分析,以双柱式桥墩盖梁墩顶负弯矩为例:盖梁自重所占比例很小,为9%左右;上部恒载所占比例很大,为63%左右;而活载只占总荷载比例的28%左右。表1为笔者在设计工作中对双柱式桥墩盖梁墩顶内力计算结果的一个归纳。

二、盖梁的计算要点 盖梁的计算要点是如何建立准确而且简化的计算模型。 盖梁的几何外形简单,且是以弯矩、剪力及轴力为主,受力特点明确。将它模拟成平面杆单元比模拟成空间体单元计算要简单许多,而且能满足控制要求。空间计算结果虽然准确,但是计算复杂,对于盖梁计算必要性不大。采用盖梁平面基本的简化模式进行计算是最简单且比较实用的,但使用时要对局部区域的峰值如墩顶截面进行适当的折减削峰处理,因为盖梁的实际控制截面往往不在墩顶而在墩柱边缘附近,这样能避免造成较大的浪费。盖梁的刚度与柱的刚度之比越大,简化计算结果越准确。当相对刚度比大于10时,误差已经控制在10%以内了,在精度要求不很高的结构工程中是允许的,且偏于安全。此时可忽略桩柱对盖梁的弹性约束作用,把盖梁简化成简支或连续梁的型式。当然,整体图式法是计算最为准确的平面简化计算方法,计算简单且符合实际,建议有条件时尽量采用。 1承载力计算方法

桥梁通第4章盖梁计算与绘图分析

桥梁通CAD 第4章盖梁计算与绘图使用说明17 第4章盖梁计算与绘图 4.1概述 柱式墩台是公路桥梁设计中普遍采用的结构形式,由于跨径、斜度、桥宽、地质、车荷载的变化,很难完全套用现行标准图和通用图。尤其是盖梁部分,标准化程度低,工作量大,构件配筋复杂,设计人员往往要花费很大精力和时间。因此迫切需要一套软件帮助设计人员快速准确的完成设计,同时提供设计人员多方案比选,达到优化设计的目的。盖梁计算与绘图模块就是专门用来计算盖梁的内力,并进行强度和抗裂验算,动态显示弯矩、剪力包络图和裂缝配筋图,完成钢筋构造图的设计。 4.2功能 4.2.1计算与绘图共同部分 ●⑴既可对帽梁单独设计计算,单独绘钢筋构造图;又可设计计算绘图全过程进行。 ●⑵适合任意斜交角度的桥墩或桥台盖梁。 ●⑶绘制独柱、2柱、3柱、4柱;计算独柱、2柱、3柱…9柱、10柱式盖梁。 ●⑷盖梁截面高度等高或悬臂部分变高。 4.2.2计算部分 ●⑴提供中文计算书一份,包括原始数据和16个不同内容的计算结果表,便于用户备查和复核。表格内容如下: a:每片上部梁(板)恒载反力表 b:荷载反力和冲击系数表 c:梁(板)横向分配系数表 d:活载引起梁(板)支反力表 e:上部梁(板)恒载作用截面内力表 f:盖梁自重作用截面内力表 g:人群荷载作用内力表 h:挂车荷载作用内力表 i:汽车荷载作用内力表 j:各截面单项荷载弯矩表 k:各截面单项荷载左剪力表 l:各截面单项荷载右剪力表 m:内力合计表(未计入荷载效应提高系数) n:内力组合表(已计入荷载效应提高系数) o:配筋、裂缝计算表 p:箍筋间距计算表 ●⑵绘制弯矩包络图和计算相应控制截面钢筋根数。 ●⑶绘制剪力包络图和计算相应控制截面钢筋根数。 ●⑷绘制裂缝配筋图和计算相应控制截面钢筋根数。 ●⑸按2环(4肢)、3环(6肢)分别计算箍筋间距。 ●⑹活载考虑人群、汽车、验算荷载常用的三种。 汽车荷载包括汽车-10级、汽车-15级、汽车-20级、汽车超-20级、汽车城-A级、汽车城-B级或自定义。

斜交桥盖梁横坡计算

这个问题确实非常关键,一般我们验算桥梁高程时,最关键的就是验算立柱顶高程和支座垫石顶高程,,而只要这个斜向横坡确定了,那两个部位的高程都十分容易得出。 这个问题的推导过程简单介绍如下: 以中桩桩号处的盖梁顶为坐标原点建立三维坐标系,(当有中央分割带的时候,坐标原点就是中央分割带边缘点了)x轴表示路线垂直左右方向,y轴表示前后方向,z轴表示上下方向, 设f为斜交角(0

公式中s为正1,所以是负数无误。 当路线为升坡,盖梁在路线右侧,且斜角为左角时,此项应该是正数,而公式中s为负1,但tg(f)也是负的,所以是正数无误。 当路线为降坡,盖梁在路线左侧,且斜角为左角时,此项应该是正数,而公式是正数无误。当路线为降坡,盖梁在路线右侧,且斜角为左角时,此项应该是负数,而公式中是负数无误。斜角为右角的四种情况正负号也无误。 这个公式我用来计算桥梁高程,和设计院的很多桥梁结果对过,应该是没错的。 斜交桥梁高程计算可以以这个公式为基础,用EXCEL公式编表格计算,自动化程度还是不错的,其中当桥梁在竖曲线上时,可以用前一个盖梁中线标高和本盖梁中线标高高差来近似计算路线纵坡,相差很小,s的值可以在表格里列一个判断,当盖梁斜长大于0(即盖梁在路线右侧)时s取-1,盖梁斜长小于0时取1。 另外,当平面上有曲线时,可能唯一有影响的就是桥梁某侧出在横坡渐变段,由此导致 中线的纵坡和边线处纵坡不一致,离中线越远差异越大。如果横坡渐变速度不是很快, 还是忽略算了,就用中线纵坡算。真要考虑的话可以用路基设计表对应处的前后边桩的高差来算边上的纵坡也可以。

盖梁计算书

盖梁指的是为支承、分布和传递上部结构的荷载,在排架桩墩顶部设置的横梁。又称帽梁。在桥墩(台)或在排桩上设置钢筋混凝土或少筋混凝土的横梁。主要作用是支撑桥梁上部结构,并将全部荷载传到下部结构。有桥桩直接连接盖梁的,也有桥桩接立柱后再连接盖梁的。 设计计算 桥梁设计中,柱式桥墩是普遍采用的结构型式。对于简支桥梁,盖梁是一个承上启下的重要构件,上部结构的荷载通过盖梁传递给下部结构和基础,盖梁是主要的受力结构。在设计中的跨径、斜度、桥宽、车辆荷载标准的变化梁设计的影响很大,很难完全套用标准图和通用图。盖梁设计的标准化程度很高,需要对盖梁进行较多的计算,所以盖梁设计是桥梁设计的一个关键部分。 计算要点 盖梁的计算要点是如何建立准确而且简化的计算模型。 3.1 盖梁的平面简化 3.1.1 关于盖梁平面基本简化的规定 《公路桥涵设计手册》中规定:多柱式墩台的盖梁可近似地按多跨连续梁计算;对于双柱式墩台,当盖梁的刚度与柱的刚度之比大于5时,可忽略桩柱对盖梁的约束作用,近似地按简支(悬臂)梁计算。柱顶视为铰支承,柱对盖梁的嵌固作用被完全忽略,这种计算图

式是以往设计实践中用得最多、最普遍的一种。目前一些盖梁计算程序,如“中小桥涵CAD系统”等一些平面计算的软件,基本上都是采用这种简化计算模式来分析盖梁内力的,这是一种基本的简化模式,但是对计算结果一般要作削峰处理。 3.1.2 盖梁平面基本简化模式存在的问题 上述的简化模式有些粗糙且有一定的局限性,使得计算结果偏大,按此进行的配筋设计往往过于保守。对于独柱式盖梁,常规的计算方法是将其视为一端嵌固的单悬臂梁,该简化使得悬臂根部的弯矩计算结果偏大;对于双柱式盖梁按简支(悬臂)梁计算,使得跨中弯矩计算结果明显偏大。而当盖梁的刚度与柱的刚度之比小于5时,《公路桥涵设计手册》并未做明确说明。该简化模式的问题在于将墩柱与盖梁的连接等效成点支撑,将墩梁框架结构简单等效为简支(悬臂)梁来处理。这虽然使计算得到简化,但与实际结果偏差过大。而且无论墩柱尺寸及盖梁尺寸如何,皆按简支(悬臂)梁来处理,使得其适用范围受到限制。多柱式盖梁也存在同样的问题。现在有一种修正的计算方法是将单点铰支模型转化为两点铰支模型,此时墩顶负弯矩要比基本的简化模式(单点铰支模型)小,以达到削峰处理的作用。两点铰支模型的弯矩值与所模拟的两铰支点间的距离有关,但对这个距离目前还缺乏足够的依据。这种计算方法现在多用在独柱式盖梁的计算上,对于双柱式及多柱式盖梁,因计算结果差别很大,是不可取的。 3.1.3 平面简化的其他方法—整体图式法

钢桥设计计算理论 苏庆田

第二章钢桥设计计算理论

一般规定 ①钢桥按照极限状态方法进行设计; ?承载能力极限状态设计:包括构件和连接的强度破坏,结构、构件丧失稳定及结构倾覆 ?正常使用极限状态:包括影响结构、构件正常使用的变形、振动及影响结构耐久性的局部损坏 ?疲劳极限状态:疲劳破坏 ②公路钢结构桥梁应考虑以下三种设计状况及其相应的极限状态设计; 1 持久状况:桥梁建成后承受结构自重、车辆荷载等持续时间很长的状况。该状况 应进行承载能力极限状态、疲劳极限状态和正常使用极限状态设计。 2 短暂状况:桥梁在制作、运送和架设过程中承受临时荷载的状况。该状况应进行 承载能力极限状态设计,必要时进行正常使用极限状态设计。 3 偶然状况:桥梁在使用过程中偶然出现的状况。该状况只需进行承载能力极限状 态设计。

一般规定 1桥梁杆件的强度和稳定应按有效截面计算(???)。 2 受拉翼缘的强度计算有效截面应考虑剪力滞和孔洞的影响。 3 受压翼缘和腹板的强度计算有效截面应考虑剪力滞、孔洞和板件局部稳定的 影响。 4 杆件稳定计算应考虑板件局部稳定的影响。

有效截面 有效截面规定 1) 考虑受压加劲板局部稳定影响的有效截面按下式计算: 图5.1.7 考虑受压加劲板局部稳定影响的受压板件宽度示意图(刚性加劲肋)

有效截面 有效截面规定 1) 考虑受压加劲板局部稳定影响的有效截面按下式计算: 图5.1.7 考虑受压加劲板局部稳定影响的受压板件宽度示意图(柔性加劲肋)

有效截面规定 有效截面 2) 考虑剪力滞影响的有效截面面积按下式计算: (5.1.6-1) 式中: 图5.1.8 考虑剪力滞影响的第i块板件的翼缘有效宽度示意图

盖梁计算原理

盖梁计算原理 1、行车方式分单向行驶和双向行驶,默认单幅为双向行驶,双福为单向行驶。 2、横向分布系数由用户控制,可选择杠杆法,偏心受压法等。 3、输出控制可以调整计算书内力输出方式,是柱中截面还是柱子左中右三个截面。 4、当计算桥台盖梁时,盖梁计算模块中的搭板长度为实际长度的0.7倍。程序把放置在路基上的搭板,模拟成跨径为0.7倍搭板长度的简支梁来计算,这样能比较准确的模拟桥台盖梁所受的活载作用。 5、横向加载方式分为:左偏加载,右偏加载,左右对称加载,中间对称加载。这四种加载方式基本上可以囊括盖梁截面作用的最不利位置。 6、纵向加载一般车道荷载的集中力都是加载在所要计算的盖梁墩顶处,这样才能获得汽车对应盖梁的最大作用效应。 计算原理: 一、根据主梁截面和连接形式计算横向分配系数。 1、计算主梁的抗弯惯性矩和抗扭惯性矩。 主梁根据截面可分为T梁、箱梁、空心板,每种形式又分有悬臂和无悬臂两种,有悬臂的主梁除计算主截面惯性矩外还要单独计算悬臂部分惯性矩。 2、计算横向分配影响线。 根据加载位置可分为支点处和跨中处,一般支点处采用杠杆法,跨中采用偏心受压。 主梁根据连接形式可分为刚接和铰接。刚性连接考虑时连接部产生的弯矩,采用力法建立线性方程组,通过矩阵计算可获得单位力在任一点处对主梁上任一点产生的影响从而计算出横向分配影响值。 铰接时不考虑结点处的弯矩,从而形成相应的紧缩矩阵,求解该矩阵可计算出横向分配影响值。 二、内力计算 内力计算采用有限元计算。

根据最大车道数n,从1列车开始,逐步增大到n列车,分为左偏加载,右偏加载,左右对称加载,中间对称加载几种情况,在每次加载的过程中,按照如下步骤计算列车在该位置时,盖梁上各个有限元节点处的弯矩值和剪力值,这样对应于任意一种加载方式,每个节点能够得到一组弯矩值和剪力值,分别求出所有节点的最大和最小弯矩值、最大和最小剪力值。从而得到盖梁的内力包络图。 计算方法: 1、根据横向影响线,计算横向分配系数。 2、根据横向分配系数,求出其产生的支点反力,再加上恒载作用,其中护栏和人行道荷载直接加到边梁上,可求出盖梁上的支点反力数组。 3、弯矩和剪力计算,根据反力数组,采用有限元法计算方法计算出对应的每个节点的弯矩和剪力。

关于桥博纵向计算和横向计算的总结

关于DB纵向计算和横向计算中汽车荷载加载的总结在DB的纵向计算和横向计算中,都是将空间问题简化为平面问题进行处理的,这样必然涉及到活载加载在程序中的实现问题,下面对汽车荷载的加载方式总结如下: 一、纵向计算 纵向计算针对全桥结构验算,在纵向计算中,是灰色的,不需要填写,是因为车道数已经反映在了中。关于如 何取值,分下面两种结构形式的桥梁进行讨论: 预制梁(板梁、T梁、小箱梁)。此时的即“横向分布系数 1. m”。m=车辆在横向影响线最不利布置值×横向折减×纵向折减,取m最大的那片梁进行计算。可见,多片梁中一片梁的横向分布系数即每一片梁承担了多少车道。 2.整体箱梁。此时的已经失去了横向分布的意义,这里所说的 横向分布调整系数=偏载系数(一般取1.15)×车道数×横向折减×纵向折减。可见,整体箱梁的横向分布调整系数即整片梁承担所有车道后,考虑剪力滞(截面应力在横向分布不均匀)后的一个系数,其中偏载系数反映了剪力滞作用。 在程序计算时,乘以车道荷载在DB中的平面单梁模型中进 行纵向影响线的最不利加载,即得汽车效应。 二、横向计算 横向计算针对横梁、盖梁等的计算,下面就横梁和盖梁计算分别讨论:1.横梁计算(整体箱梁)

横梁按照一次落架的施工方法采用平面杆系理论进行计算。荷载按恒载和活载分别输入。 (1)恒载 恒载分两部分:a.横梁的自重由桥博自动计入,二恒按均布力施加;b.此外还有两边梁体靠腹板传给横梁的恒载剪力。将桥梁纵向计算得到的一、二期恒载 ),扣除横梁模型中自重与施加的二期恒载,然后总和(即纵向计算中的V 自重+二恒 分成三个集中力加在三道腹板中间。 (2)活载 将纵向一列车的支反力作为汽车横向分布调整系数,即通过纵向计算得到的活载效应(该值为纵向计算时,使用阶段支撑反力汇总输出结果里面,汽车MaxQ 对应下的最大值),除以纵向计算时汽车的横向分布调整系数求得的一列车的活载效应,填到中,然后在桥梁博士中进行横向加载。此时需要填 写车道数、自动计入折减、冲击系数等,注意横向加载有效区域需手动扣除车轮距路缘石的距离。 2.盖梁计算 盖梁按照实际施工顺序采用平面杆系理论进行计算。恒载由自重和梁体通过支座传来的梁体恒载集中力组成。下面主要讨论汽车荷载的施加方法。 盖梁与横梁不同,不是桥面单元,车辆没有直接在盖梁上跑,活载是靠支反力传来的,这里近似处理为车辆在盖梁上布置,横向加载有效区域为盖梁全宽,与横梁计算方法一样。

相关主题