搜档网
当前位置:搜档网 › 超支化聚合物的研究进展

超支化聚合物的研究进展

超支化聚合物的研究进展
超支化聚合物的研究进展

超支化聚合物的研究进展

李璇

化学与环境学院 1105班 111030210

摘要超支化聚合物由于具有高度支化三维球状结构以及众多的端基的独特结构特征,与传统的线型高分子在性能上有很大差异,因而引起科学家们高度关注。本文通过对其结构、合成及应用的介绍,旨在加深人们对该领域的了解,从而促进该领域的快速发展。

关键词树枝状分子;超支化聚合物;结构特征;

Progress of Hyper-branched Polymers

Li Xuan

(College of Chemical and Environment Class 1105 No.111030210)

Abstract Hyper-branched polymers due to the unique characteristics of the highly branched three-dimensional spherical structure and a large number of end group structure, has the very big difference performance with the traditional linear polymers, which attracted the attention of scientists. This paper describes the structure, synthesis and application of hyper-branched polymers, in order to deepen the understanding of the people in this field, thus contributing to the rapid developments in the field.

Key Words Dendrimer,Hyper-branched polymer,Structural characteristic

在过去的很长一段时间,聚合物化学家们发现了一种由一系列支化单元组成的树状支化大分子--新的“树状分子”,它可分为树枝状大分子和超支化聚合物两大类。树状大分子的合成为了控制分子的尺寸和形状,通常需要多步反应。而超支化高分子因其分子结构而得名,它是一种经一步法合成得到的高度支化的聚

型单体分子间的缩聚合物[1]。早在1952年,Flory[2]就首先在理论上论述通过AB

x

制备高度支化大分子超支化聚合物的可能性。但是,对于这种非结晶、无链缠绕的超支化聚合物,当时并未引起足够重视。直到90年代初,Kim等[3]制备了超支化的聚苯之后,人们才开始对它产生兴趣。

1 超支化聚合物简介

1.1 超支化聚合物支化度

超支化聚合物有三种不同的重复单元,即树状单元、线型单元和由未反应的B官能团所决定的的末端单元。1991年,Fr chet 把支化度作为描述超支化聚合物结构的一个因素, 如式1 所示:

支化度(DB)=(D+T)/(D+T+L)(1) 在这里,D 代表树状单元数, T 代表末端单元数,L 代表线型单元数。

Frey 基于反应过程, 将式1 修改成如式2 所示:

(2)

这里,N 是分子数。因为式(2)中的N 可被忽略, 所以式(1)和(2)给出的DB 几乎相同。

Frey指出,AB2 型单体聚合产物的DB 值大约为0.5。文献报道的大部分超支化聚合物,其DB值实际上接近0.5。超支化聚合物即使在DB= 1 的情况下, 仍有许多异构体(图1)。

图1超支化聚苯可能的异构体(D B= 1.0)

Fig. 1Possible is omerc structures of hyper-branehed polyphenylene (DB=1.0) NM R 是测定超支化聚合物DB值的有效手段。此外,1H NM R,13C,15N ,19F 和29Si NM R 谱也都被用来确定各种超支化物的支化度。当聚合物由可降解的链如酯或碳酸盐组成时, 则其DB值可由降解后产物的定量分析数据计算得出。1.2 超支化聚合物的性质

树状大分子溶液的粘度比传统的线型聚合物小。树状大分子具球状结构, 较低的粘度意味着其分子间链缠结较少。其特性粘数与分子量之间的关系参见图2。尽管超支化聚合物的粘度也是随分子量的增加而增大, 但是, 正如图2所示的, 其斜率较之线型聚合物要小得多。通常, 对于链与链之间高度缠结的线型聚合物而言,Mark- Houwink- Sakurada 公式(η= KMα中的α介于0.5~1.0之间。而许多超支化聚合物的α值则小于0.5, 暗示着在溶液中其分子具有球状结构。在GPC 测定中, 超支化聚合物的保留体积要比相同分子量的线型聚苯乙烯大, 意味着在溶液中的超支化聚合物要比线型分子紧密。

图2 大分子的logM 与log[η]的关系图

Fig. 2Schematic plots for the relation ship between logM and log[η] for macromolecules 文献报道的大多数超支化聚合物都是无定形的。例如, 超支化聚(醚2酮)和聚(苯砜)是无定形。一些包含介晶基团的聚合物呈现出液晶相。

由AB x型单体制备的超支化聚合物包含很多未反应的B官能团, 它的数目理论上等于重复单元数。因此,末端官能团B的性质显著地影响着超支化聚合物的性质。可以通过B官能团的改变控制超支化聚合物的性质, 如玻璃化转变温度和它在各种溶液中的溶解度。树状结构的引入显著地提高了有机物的溶解性。据Kim报道, 超支化聚苯和芳香聚酰胺能溶解在有机溶剂中, 而与之相似的线型分子则由于它们主链的刚性而几乎不溶。超支化聚合物由于可以一步聚合, 适合于大量生产, 因此有望在工业上得到应用。例如, 把染料分子包裹到超支化聚合物中以及把线型聚合物和超支化聚酯混合的研究已有报道;按人们的意图设计的超支化聚合物已经被作为新的功能材料,例如交联剂、非线性光学材料和高自旋的有机大分子。超支化聚合物常表现出类似于树枝状分子的性质,如低粘度、较好的溶解性、热稳定性和化学反应性,因此超支化聚合物在特定的条件下有可能取代树枝状分子。

1.3几何异构体

异构现象是超支化分子与树枝状分子和线性分子最显著的区别。由于支化链的生长是随机的,即使相同分子量和支化度的超支化分子也具有大量的几何异构体。这种几何异构会影响聚合物的溶解性和固态堆积方式及其它相关性质。

与分子量分散性和支化度不同的是超支化分子异构体的数目难以估计。Flory曾计算过聚合度为n,官能团数为x的支化分子的几何构型数为nx !/ ( nx -n +1) ! n !。由此可见,单体越复杂,分子量越大,则构型数越多。

目前已有很多研究尝试采用图形理论来描述超支化聚合物异构体的结构特征。在不同的拓扑系数中,Wiener系数对超支化聚合物比较适用[4], 一些研究小组已经报道了计算Wiener系数[5]或Hyper-Wiener系数[6]的数学逻辑方法;另一种描述超支化分子异构体的方法是采用亚图形计算轨道和楔形的数目,以及它们与超支化分子的结构性能,例如分子量和体积的关系[7]。

1.4 分子量多分散性

超支化分子同树枝状分子相比,通常具有较宽的分子量分布[8]前者更接近于传统的聚合物。由于支化度的变化,超支化分子的分子量分布一般大于传统的聚合物。采用传统的体积排阻色谱或凝胶渗透色谱来测定超支化聚合物的分子量和分子量分布往往并不精确,尤其是分子量比实际值要小得多[9]。因为凝胶渗透色谱是一种相对测量方法,以线型聚苯乙烯作为柱填充物,因而至今没有合适的手段来表征超支化分子,而且由于超支化分子含有大量端基,有些极性端基还会与柱填充物反应,以致于它们会被不可逆地吸入填充材料的多孔结构,从而损坏柱填充物。另外,流出体积不仅与超支化分子的分子量有关,还与其结构和形状密切相关,所以也不能由单一的凝胶渗透色谱测试来确定其分子量分布。

基质辅助激光脱附电离飞行时间质谱(MALDI-TOF)是一种新的测定超支化聚合物分子量的方法。其测定结果与理论分子量十分接近,能够比较精确地反映超支化聚合物的实际分子量。

2超支化聚合物的合成

超支化聚合物的合成可分为逐步控制增长“准一步法”及无控制增长“一步法”,一般无需逐步分离提纯。通常超支化聚合物由ABx型单体一步反应所得,而且不加“核”分子。如果添加B y型分子作为“核”,可以控制产物的分子量,而且产物的分散度也会大大降低。从理论上讲,绝大多数聚合反应的方式都可以应用于ABx单体的聚合,如下列单体可分别进行缩聚反应、开环聚合及阳离子

加成聚合等。而且通常溶液聚合最为适用;本体聚合、固相聚合等也有报道。

2.1 缩聚反应

缩聚反应是合成超支化聚合物最常用的聚合方法,对它的研究比较成熟。Shu 等以52苯氧基间苯二酸为AB2型单体,以五氧化二磷和甲磺酸为缩合剂,采用一步法合成了带有羧酸端基的超支化聚(醚-酮)(图3)。通过亲电芳香取代反应形成芳香酮键。用1H NMR 测量其支化度为0.55左右;羧端基易改性成为链端是一系列不同官能团的超支化聚合物。不同的链端基对超支化聚合物的理化性能具有显著影响,如其端基为铵衍生物则可以单分子胶束的形式溶于水。

图3一步法合成了带有羧酸端基的超支化聚(醚-酮)Fig.3 Schematic illustration of the one-step synthesis route , yielding a carboxyl2functional hyperbranched poly( ether ketone)

Bolton等采用叔丁基二甲基硅基团保护1 ,1 ,1-(4’-羟基苯基)乙烷的3个苯酚中的一个苯酚,另外二个苯酚基团转化为羰基咪唑烷基官能团制得AB2型单体,进而合成了超支化芳香聚碳酸酯,用高压液相色谱分析其支化度为0. 53. Chu 等采用同时含有苯环和脂肪族反应基团的4 ,4-(4’-羟基苯基)戊酸合成了一种较少内环化的超支化聚合物。Kricheldorf等采用β-(4-乙酸苯酯)丙酸三甲基硅酯为单体,合成了一种新型超支化聚酯;对其加热至240260 ℃时将出现可逆一级相变,呈固态中间相;玻璃化转变温度随着分子量的增加从4850 ℃增加到6365 ℃;产物结晶性能与聚合度相关。Mi-ravet等采用AB2,AB4和AB6 型单体在固体载体催化剂作用下由聚硅烷氢化反应制备了新的超支化聚硅氧烷。

2.2加成反应

加成反应使合成超支化聚合物的单体数大大增加,其缺点为较难控制聚合度和支化度。Fréchet等报道了“自缩合乙烯基聚合”合成超支化聚合物的新方法,即在自缩活性自由基聚合中,单体既是引发剂也是支化点,乙烯基单体在外激发作用下活化,产生多个活性自由基,形成新的反应中心,引发下一步反应,其反应历程如图4所示。

图4自缩合乙烯基聚合法反应机理

Fig. 2 Reaction mechanism of self-condensing vinyl polymerization Hawker等采用含有一个可聚合的苯乙烯和一个具有连结在取代的苯碳原子的氮氧基团的单体的自缩合自由基聚合合成超支化聚合物。由于氮氧键的低离解能,使得热活化自缩合自由基聚合成为可能。Gaynor等采用对-(氯甲基)苯乙烯在铜(I)在2,2’-二吡啶存在下通过原子转移自由基聚合“一步法”合成超支化聚苯乙烯。Sakamoto等采用2-{[2-甲基-1-(三乙基硅氧)-1-丙烯基]氧}甲基丙烯酸乙酯为单体,在亲核催化剂作用下,通过自缩合基团转移聚合合成了超支化聚甲基丙烯酸酯.以13CNMR谱表征其结构,该超支化聚合物支化程度取决于用来激活单体的亲核催化剂。Muzafarov等以甲基二氯硅烷和10-十一碳烯-1-醇烷氧化制得的聚二(十一碳烯)甲基硅烷为单体,在铂催化剂作用下,加成聚合制得含硅的可降解超支化聚合物。

2.3 开环聚合

采用开环聚合方法合成超支化聚合物的报道并不多见。Trollsas等以具有6个羟基的2,2-二(羟甲基)丙酸衍生物为引发剂,2-乙基已酸亚锡为催化剂,通过ε-己内酯的活性开环聚合合成六臂树枝状星型聚合物,其数均分子量为14300,多分散系数为1.06。该聚合物再与经保护的2,2-二(羟甲基)丙酸反应,除去保护基团后作为大分子引发剂,进一步合成第二代十二臂和第三代二十四臂的半结晶聚己内酯。

Suzuki等采用5-亚甲基-2-全氢化-1,3-恶嗪-2-酮为单体,以钯为催化剂,在25 ℃和苯胺引发下,通过脱羧开环聚合合成了含一级、二级(无支化)、三级(支化)胺的超支化聚合物。单体首先与钯催化剂形成配合物而被活化,再与一级胺、二级胺反应,生成多个活性中心,从而形成支化点。产物支化度由反应溶剂(60 %80 %)所控制。

Sunder等通过开环多支化聚合合成了分子量可控、分子量分布较窄的超支化脂肪聚醚。用13CNMR测量其支化度为0.53~0.59。该超支化脂肪聚醚的聚合度为1583,分子量分布为1.13~1.47,玻璃化转变温度在- 20 ~ - 26 ℃之间。

3 超支化聚合物的应用

超支化聚合物的应用与其分子结构紧密相关。独特的分子内部的纳米微孔可以螯合离子,吸附小分子,或者作为小分子反应的催化活性点;若用超支化聚合物制备成膜,也可用于分离不同的物质由于具有高度支化的结构,超支化聚合物难以结晶,也无链缠绕,因而溶解性能大大提高;与相同分子量的线性分子相比,熔融态粘度较低;并且分子外围的大量末端基团可以通过端基改性以获得所需的性能。超支化聚合物独特的结构使其在许多领域中均有应用,尤其是在那些传统线性分子无力顾及的范围更可以显示其优良的性能。

3.1共聚物

超支化聚合物与线形大分子的共聚物具有良好的综合性能,从而为嵌段共聚物增添了新的内容。Kricheldorf等合成了带有超支化聚酯A-段的A-B-A三段共聚物。通过4-氟-2’-甲基-4’-(三甲基硅氧)二苯甲酮的缩聚反应制备每个重复单元包含两个三甲基硅端基和一个甲基的遥爪低聚(醚-酮)。遥爪聚合物的性能通过少量硅烷化的双酚-P共缩合引入,硅烷化的低聚(醚-酮)的端基通过乙酰氯乙酰化。1HNMR端基分析得到了聚合度分别为14和28的两种α,ω-二(乙酰氧)低聚(醚-酮)。这些低聚(醚-酮)和70或140倍摩尔量的硅烷化3,5-二(乙酰氧)苯甲酸在270 ℃下本体缩聚,将产物溶于四氢呋喃,经分离即得到A-B-A三段共聚物。由于包含长段的低聚(醚-酮),退火后可以观察到低度结晶。若缩聚在290 ℃下进行即得到完全可溶的无定形A-B-A三段共聚物。Iyer等采用亲水性线性分子聚环氧乙烷与憎水性超支化聚(胺-酰胺)共聚合成了一种两段式聚合物,其玻璃态转变温度由超支化聚合物的末端官能团决定。加入的线性链段(分子量分别为2000和5000的聚环氧乙烷)改变了嵌段聚合物的性质:短链聚环氧乙烷共聚物分子的粘度行为和线性分子类似,而长链聚环氧乙烷共聚物分子则形成了单分子胶束,这种胶束在水-空气界面上规则地排列,憎水超支化部分指向空气,而聚环氧乙烷链段则溶在水中,这样的单分子层可以在固态基材上制备成超薄纳米微孔膜。

3.2光固涂料

低的熔融粘度和众多可以改性的端基使得超支化聚合物在涂料领域具有广阔的应用前景。Ranby和作者等合成了多种可在紫外光照射下快速固化的(甲基) 丙烯酸化超支化聚合物。由于其组成的涂料体系粘度低,可以不需或少量加入稀释用多官能团单体;固化膜机械性能优异,是一种环保绿色材料。Jansen等报道了聚丙撑亚胺超支化聚合物与二苯甲酮或异丙基硫杂蒽酮一起作为光引发体系,在氮气保护下光照苯氧乙基丙烯酸酯可以快速固化和获得较高的反应程度。

3.3 药物缓释剂

超支化聚合物作为药物载体的研究较多,可望用于农业、化妆品工业和医药工业。Liu等合成的超支化聚合物的“核”分子1,1,1-三羟基苯基乙烷高度憎水,可以较好地与憎水药物相容;分子枝外部的聚乙二醇长链亲水性较好,增加了憎水药物在极性介质中的溶解性。控制超支化分子的尺寸和外形,从而可以控制缓释放药物在体内的分布。若设计可与缓释放药物物理交联(例如氢键)的超支化大分子,水解后能够产生具有生物相容性的小分子药物。

3.4 导电聚合物和电发光

Miller等将合成的超支化聚(胺-酰胺)用阳离子萘二酰亚胺修饰后,在水溶液中或甲酰胺中用硫代硫酸钠还原为阴离子,在氩气保护下使水份挥发,即生成

导电的超支化聚合物粉末。以甲酰胺为溶剂。将改性后的第三代超支化聚(胺-酰胺)制备成膜,完全还原的膜在中性环境下电导率为10- 3S/ cm,半还原的膜电导率为10- 2S/ cm。聚合物的电导率随湿度增加而增加,当相对湿度达到90 %时,电导率为18S/ cm。

3.5 其他方面

Zhao等利用超支化聚(胺-酰胺)作为制备纳米材料的“纳米反应池”,如通过超支化分子内部的空隙还原Cu2+为Cu粒子,也就是使在超支化分子内部的Cu2+被化学法还原成粒径为464nm的团簇。改变超支化分子的结构和尺寸,可以控制生成不同大小的纳米粒子,这种方法有望用于制备过渡金属纳米材料。

Kuhne等制备了可交联的聚甲基丙烯酸酯和超支化聚酯的混合物,用于作为稳定的非线性光学材料。Sorensen等由聚丙烯、马来酸酯聚丙烯和由乙氧化的季戊四醇、2,2-二甲基丙酸合成的超支化聚酯与尼龙6共混制备具有优良相容性和粘结性能的热塑型混合物。

Hong等使用超支化聚合物作为线型低密度聚乙烯的加工助剂,发现混合物的粘度下降,在固定挤出速度下流动加快,因而挤出所需的能量明显降低,同时,消除了以前加工过程中经常发生的鲨鱼皮现象。Jannerfeldt等将超支化聚合物接枝到聚丙烯上,大大降低了聚丙烯和尼龙6之间的界面张力,使两者能够较好地相容。

4 结论

近十几年来,超支化大分子的研究已取得突破性进展,成为合成化学中的一个蓬勃发展、倍受瞩目的领域。目前研究工作仍以合成及表征为主,并有合成功能性超支化大分子的趋势,有关的理论研究也开始逐渐增多,其实际应用仍处于探索阶段。由于缺乏链缠绕,超支化分子缺乏强度和韧度,无法象普通大分子那样应用于现代材料科学,只能从其独特的结构出发,应用于复合材料、涂层和改进流变性能等方面。然而目前超支化分子的许多物理性质还无法解释,许多性能还属未知,许多问题需要解决,如对超支化分子改进流变性能的机理尚待研究;对超支化分子在溶剂中的溶解性和与其它聚合物的相容性鲜有研究;另外,超支化分子的玻璃化转变温度与末端基团的依赖关系以及其在涂层中的分子链弛豫过程尚待进一步研究。

参考文献

[1] Kim Y H. J. Poly. Sci.:Part A:Polym. Chem,1998,36:1685.

[2] P J Flory. J. Am. Chem. Soc. ,1952,74:2718~2723.

[3] Y H Kim,O W Webster. J. Am. Chem. Soc. ,1990,112:4592.

[4] 8 Wiener H. . J. Am. Chem. Soc. [J ],1947:17 ~20.

[5] Gutman I.,Yeh Y. N.,Less S. L. et al. . Indian J. Chem. A[J ],1993,32 (8):651~661.

[6] Diudea M. V.,Parv B. . J. Chem. Inf. Comput. Sci. [J ],1995,35:1015~1018.

[7] Diudea M. V. . Match2Commun. Math. Co. [J ],1995,32:71~83.

[8] Mansfield M. L. . Macromolecules[J ],1993,26:3811~3814.

[9] Tomalia D. A. , Naylor A. M,Goddard W. A. . Angew. Chem. Int. Ed. Engl. [J ],1990,29:

超支化聚合物阻垢剂

一种新型超支化聚合物阻垢剂 摘要 在超支化聚乙烯亚胺中添加阴离子乙烯基单体,乙烯基磷酸、乙烯基磺酸、丙烯酸、马来酸和丙烯三羟酸来制备一系列聚合物,并对其作为防止碳酸钙和硫酸钡沉积的阻垢剂的性能进行研究。使用高压管阻塞设备对其在1200磅和100℃条件下进行动态力学测试,发现这些新型阻垢剂可以抑制碳酸盐和硫酸盐结垢,其中丙烯酸类共聚物对碳酸盐垢效果最好,膦酸基类共聚物对硫酸盐垢效果最好。 此前还没有关于超支化聚乙烯亚胺在海水中生物降解数据的报告。用 OECD306测试技术对分子量为300和1200的聚合物进行测试,得到了在28天时对海水的生物降解率分别是10%和19%,马来酸或丙烯酸功能化的分子量为1200的超支化聚乙烯亚胺表现出了很高的生物降解率,在28天内可以达到34%,到60天可以升高到60%。这反映了细菌对烯烃基羧酸盐组分的攻击和消化比对胺基聚合物骨干更容易。 关键词:垢,晶体生长,石油,阻垢剂,聚合物 1、前言 结垢通常定义为无机盐在水溶液中的沉积。在上游石油天然气工业中,水垢最常见的组分是碳酸钙和硫酸锶/硫酸钡(Sallis 等,1995;Frenier、Ziauddin,2008;Kelland,2009;mjad, 2010)。结垢是石油天然气工业中的一个主要问题,垢对油井和管道的阻碍和堵塞会导致生产中显著的延迟和损失。多种带有功能组分的水溶性分子或水溶性高分子化学药剂被用作阻垢剂来防止结垢,其中最常见的功能组分就是膦酸盐、羧酸盐和磺酸盐。高分子和低分子膦酸盐都是有效的阻垢剂,但有效的油田阻垢剂只有带有多个羧酸或磺酸基团的高分子。 氨基膦酸盐是最常见的非高分子类膦酸基油田用阻垢剂,图1所示是两个例子,包括最常见的氨基膦酸盐类油田用阻垢剂二乙烯三胺五甲叉膦酸(DTPMPA)(Stewart 、Walker,2003;Tomson等, 2003; Sorbie、Laing, 2004)。高分子膦酸盐也是熟知的阻垢剂但是由于环保特性差在北海地区并不使用,这主要

聚噻吩类导电聚合物的研究进展

聚噻吩类导电聚合物的研究进展 姓名:丁泽 班级:材化12-3 学号:1209020302

摘要 π-共轭聚合物被认为是很有发展前景的材料,因为它拥有独特的光电特性,可以被广泛的应用于太阳能电池(PSCs),电致变色器件,传感器,聚合物发光二极管(PLEDs)等各种领域。这些电活性与光活性聚合物通常是基于噻吩,吡咯,苯,芴或咔唑等芳环、芳杂环等单元的聚合物。在大量的电致变色材料中,噻吩类聚合物由于它们的高电子导电性和好的氧化还原特性,以及在可见与红外区域,快的响应时间,显著地稳定性和高的对比率而成为一类重要的电致变色共轭聚合物。更重要的是,通过聚合物链结构改动,噻吩类聚合物拥有容易的禁带可调性,可展示不同的电致变色特性。 关键词:π-共轭聚合物;电化学聚合;共聚;导电聚合物;

一、导电聚合物简介 1.1导电聚合物的分类 导电高分子材料包括结构型导电高分子材料和复合型导电高分子材料两大类型。 复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的。该类材料通常是填充高效导电粒子或导电纤维,较普及的是炭黑填充型和金属填充型。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势。 结构型(又称作本征型)导电聚合物是指聚合物本身具有导电性或经掺杂处理后具有导电性的聚合物材料。这种高分子材料本身具有“固有”的导电性,由其结构提供载流子,一经掺杂,电导率可大幅度提高,甚至可达到金属的导电水平。如聚乙炔、聚吡咯、聚苯胺、聚噻吩、聚苯硫醚、聚对苯撑等均属于结构型导电高分子材料(如图1-1)[1]。结构型导电聚合物是目前导电聚合物研究领域的重点。

树形、超支化聚合物的研究进展

树形、超支化聚合物的研究进展 董璐斌 (天水师范学院化学系,甘肃天水,741000)摘要:随着社会的高度发展,对原材料的性能提出了越来越高的要求,也推动了新型高分子化合物和新材料的发展。树形、超支化聚合物由于其独特的分子结构和物理化学性质使之在众多领域有着广泛的用途。故本文对树形、超支化聚合物的应用研究进展进行综述。 关键词:树枝状聚合物;超支化聚合物;应用;进展 树形聚合物和超支化聚合物为高度支化的聚合物,性质的独特性,引起了众多领域科学家的广泛关注,在此主要介绍树形聚合物在超分子化学、生物医学、光化学与电化学、催化剂等领域的研究进展;超支化聚合物在热固性树脂增韧剂、染色助剂、缓释剂、超支化液晶、涂料及聚合物薄膜方面的应用研究进展。 一、树形聚合物的应用研究进展 1、超分子化学 由于树形聚合物的结构、尺寸、表面和内部的官能团种类及数目等分子参数都可以精确控制,使得其非常适合作为超分子体系的构筑单元和研究超分子体系的模型,因此,从树形聚合物的出现开始就在超分子领域引起了极大的兴趣。 Cardulls等合成了一种两亲的C60树枝状聚合物,并在空气-水界面上形成了单分子层的L2B膜。C60树枝状聚合物共轭体系是由富勒烯二酸合成的。这种膜有可能应用于光学技术或生物传感器领

域。 Crooks等用在金箔表面重复沉淀的方法,通过第四代的聚酰胺2胺树形聚合物(PAMAM)与马来酸酐-甲基乙烯基醚共聚物自组装成渗透选择性膜,该膜对外部刺激、pH值变化具有响应性。此膜作超分子“门”的功能是pH的函数:在低pH值时阴离子容易穿透而阳离子被排除在外;在高pH值时,结果相反。 2、生物和医学 树形聚合物的大小、内部空腔和表面管道决定了它可以作为蛋白质、酶和病毒理想的合成载体,再加上它们很容易进行官能化作用,树形聚合物在很多与生物和医学相关的领域都得到了应用。这些领域包括药物载体、基因载体、DNA生物传感器、硼中子俘获治疗试剂、核磁共振造影剂、免疫制剂等。 Roy和Zanini等在糖型树形聚合物方面进行了部分研究工作。他们合成的L2赖氨酸树形聚合物能有效的抑止红血球的凝聚。这一点已通过流感A病毒试验证实。 硼中子俘获治疗(BNCT)是一种最新治疗癌症的方法。在这种疗法中,低能中子与10B核子进行的核裂变反应所产生的能量及细胞毒素用来破坏恶性细胞。PAMAM树形聚合物(G2,G4)首先连接到异氰酸根络硼烷,再被接到单克隆抗体上,这样就具有了通过免疫结合来选择靶向肿瘤的能力。 树形聚合物在医学上的另一个重要应用是用作核磁共振造影剂(MRI)。它与螯合剂相连可对靶器官进行成像,以检查脑或器官血池

有机导电聚合物研究进展a

有机导电聚合物研究进展 1 导电聚合物 各种人造聚合物俗称为塑料或化纤,天然聚合物主要有蛋白质和树脂等。上述有机固体通常是绝缘体,而增强它们的电导率是一个非常吸引人的研究领域。因为这类材料成本低廉、重量轻,更重要的是,可以把聚合物的可塑以及柔韧等优良机械特性与通常只有金属才具备的高电导特性结合在一起,从而将应用范围大大拓宽。 1977年,白川英树在一次聚乙炔合成的实验中,意外地加入了过多的催化剂(齐格勒—纳塔催化剂,以1963年诺贝尔化学奖得主Ziegler 和Natta命名,其作用是定向催化——用于严格控制聚合物的空间结构)。不料,在反应器中生成了一种光亮的反式聚乙炔薄膜。如果将薄膜暴露于卤族Br2或I2蒸汽,生成物的电导率可以提高1012倍[1],从此有机物不能导电的观念被打破。 2000 年度诺贝尔化学奖授予了三位致力于导电聚合物研究的科学家,他们是美国物理学家艾伦·黑格(Alan Heeger)、化学家艾伦·麦克迪尔米德(Alan MacDiarmid )和日本化学家白川英树(Hideki Shirakawa )。这是对导电聚合物研究的充分肯定。 导电聚合物根据材料的组成可以分成复合型导电聚合物材料和本征型导电聚合物材料两大类[2-4]。复合型导电聚合物材料是由普通高分子结构材料与金属或碳等导电材料,通过分散、层合、梯度复合、表面镀层等复合方式构成。其导电作用主要通过其中的导电材料来完成。本征型导电聚合物材料也被称为结构型导电聚合物材料,其高分子本身具备一定的导电能力,这种导电聚合物如果按其结构特征和导电机理还可以进一步分成:载流子为自由电子的电子导电型聚合物和载流子为能在聚合物分子间迁移的正负离子的离子导电型聚合物。 在电子导电聚合物的导电过程中,载流子在电场的作用下能够在聚合物内定向移动形成电流。电子导电聚合物的共同结构特征是分子内有大的线性共轭π电子体系,给自由电子提供了离域迁移条件,故又称为共轭聚合物。作为有机材料,聚合物是以分子形态存在的,其电子多为定域电子或具有有限离域能力的电子。π电子虽然具有离域能力,但它并不是自由电子。当有机化合物具有共轭结

超支化聚合物的研究进展

超支化聚合物的研究进展 李璇 化学与环境学院 1105班 111030210 摘要超支化聚合物由于具有高度支化三维球状结构以及众多的端基的独特结构特征,与传统的线型高分子在性能上有很大差异,因而引起科学家们高度关注。本文通过对其结构、合成及应用的介绍,旨在加深人们对该领域的了解,从而促进该领域的快速发展。 关键词树枝状分子;超支化聚合物;结构特征; Progress of Hyper-branched Polymers Li Xuan (College of Chemical and Environment Class 1105 No.111030210) Abstract Hyper-branched polymers due to the unique characteristics of the highly branched three-dimensional spherical structure and a large number of end group structure, has the very big difference performance with the traditional linear polymers, which attracted the attention of scientists. This paper describes the structure, synthesis and application of hyper-branched polymers, in order to deepen the understanding of the people in this field, thus contributing to the rapid developments in the field. Key Words Dendrimer,Hyper-branched polymer,Structural characteristic 在过去的很长一段时间,聚合物化学家们发现了一种由一系列支化单元组成的树状支化大分子--新的“树状分子”,它可分为树枝状大分子和超支化聚合物两大类。树状大分子的合成为了控制分子的尺寸和形状,通常需要多步反应。而超支化高分子因其分子结构而得名,它是一种经一步法合成得到的高度支化的聚 型单体分子间的缩聚合物[1]。早在1952年,Flory[2]就首先在理论上论述通过AB x 制备高度支化大分子超支化聚合物的可能性。但是,对于这种非结晶、无链缠绕的超支化聚合物,当时并未引起足够重视。直到90年代初,Kim等[3]制备了超支化的聚苯之后,人们才开始对它产生兴趣。 1 超支化聚合物简介 1.1 超支化聚合物支化度 超支化聚合物有三种不同的重复单元,即树状单元、线型单元和由未反应的B官能团所决定的的末端单元。1991年,Fr chet 把支化度作为描述超支化聚合物结构的一个因素, 如式1 所示: 支化度(DB)=(D+T)/(D+T+L)(1) 在这里,D 代表树状单元数, T 代表末端单元数,L 代表线型单元数。 Frey 基于反应过程, 将式1 修改成如式2 所示: (2) 这里,N 是分子数。因为式(2)中的N 可被忽略, 所以式(1)和(2)给出的DB 几乎相同。

导电聚苯胺的研究进展

导电聚苯胺的研究进展 摘要:导电高分子的出现打破了聚合物仅为绝缘体的传统观念。在众多的导电高分子中,聚苯胺是目前研究进展最快的导电高分子之一。介绍了聚苯胺的结构,性质,合成和掺杂,改性,并对其应用前景作了展望。 关键词:导电高分子;聚苯胺;改性 2000年10月10日瑞典皇家科学院授予美国Alan MacDiamid和Alan Heeger 教授及日本Hideki Shirakawa 教授2000年诺贝尔化学奖,以表彰他们开创了新的研究领域——导电高聚物。导电高聚物的出现不仅打破了聚合物仅为绝缘体的传统观念,而且对高分子物理和高分子化学的理论研究也是一次划时代的事件,为功能材料开辟了一个极具应用前景的崭新领域。最早发现的本征导电高聚物是掺杂聚乙炔(PA),在随后的研究中科研工作者又相继开发了聚吡咯(PPy)、聚对苯(PPP)、聚噻吩(PTh)、聚对苯撑乙烯(PPv)、聚苯胺(PAn)等导电高分子。人们对聚乙炔的研究较早,也最为深入,但由于它的制备条件比较苛刻,且它的抗氧化能力和环境稳定性差,给它的实用化带来了极大困难。在众多导电高分子中,聚苯胺以其良好的热稳定性、化学稳定性和电化学可逆性,优良的电磁微波吸收性能,潜在的溶液和熔融加工性能,原料易得,合成方法简便,还有独特的掺杂现象等特性,成为现在研究进展最快的导电高分子材料之一。 1 聚苯胺的结构 聚苯胺是典型的导电聚合物,常温下一般呈不规则的粉末状态,具有较低的结晶度和分子取向度。与其它导电高聚物一样,它也是共轭高分子,在高分子主链上形成一个电子离域很大的p-π共轭。1987 年,MacDiarmid[1]提出了后来被广泛接受的苯式-醌式结构单元共存的模型,两种结构单元通过氧化还原反应相互转化。即本征态聚苯胺由还原单元: 和氧化单元: 构成,其结构为: 其中y值用于表征聚苯胺的氧化还原程度,不同的y 值对应于不同的结构、组分和颜色及电导率,完全还原型( y = 1) 和完全氧化型( y = 0) 都为绝缘体。在0 < y < 1 的任一状态都能通过质子酸掺杂,从绝缘体变为导体,仅当y = 0.5 时,其电导率为最大。y值大小受聚合时氧化剂种类、浓度等条件影响,与其它导电高聚物相比,聚苯胺的结构具有如下特点:

导电高分子材料聚苯胺的研究进展.

导电高分子材料聚苯胺的研究进展 周媛媛,余旻 ,李松,李蕾 (郑州大学化学系, 河南郑州450001 摘要:聚苯胺(PAn是目前研究最为广泛的导电高分子材料之一。基于国内外最新研究文献, 综述了PAn的结构、导电和掺杂机理及常见的合成方法, 重点介绍了几种制备微米或纳米级PAn的方法, 并对其在各领域应用前景作了简要介绍。 关键词:导电高分子; 聚苯胺; 合成; 掺杂 中图分类号: TQ246.31文献标识码:A文章编号: 1672-2191(200706-0014-06 收稿日期:2007-06-23 作者简介:周媛媛(1983- , 女, 河南开封人, 硕士研究生, 研究方向为导电高分子材料。电子信箱:zhouyuanzy2004@https://www.sodocs.net/doc/273949658.html, 1975年L. F.Ni 等人在实验室合成了低温下具有超导性,其导电能力可与Ag 相媲美的聚硫化氮 (SN x ,实现了高分子由绝缘体向半导体或导体的成功转变。1977年日本筑波大学 Shirakawa教授发现掺杂聚乙炔(P A 呈现金属特性,新兴交叉学科——导电高分子科学诞生了。随着人们不断深入研究,相继发现了聚吡咯、聚对亚甲基苯、聚苯硫醚、聚噻吩、聚苯胺(PAn等导电高分子。由于导电高分子具有特殊的结构和优异的物化性能,使其自发现之日起就成为材料科学的研究热点。

目前,研究最广泛的导电聚合物包括 P A、聚吡咯、聚噻吩和 P A n,PA 是人们发现最早的一个有机共轭导电聚合物,也是研究较多的导电聚合物,但由于其合成工艺、力学性能和稳定性等诸多因素的限制,人们对其研究兴趣逐渐减少,而后 3种尤其是 P A n 由于原料易得、合成工艺简便、导电性和稳定性优良,倍受人们青睐,在应用研究方面已走到了前面,成为研究热点。通过深入研究导电 P A n 的物化性质,人们发现它具有许多独特的光、电、磁性能,于是便产生了许多独特的应用领域,以导电 P A n 作为基础材料,目前正在开发许多高新技术如抗静电技术、太阳能电池、全塑金属防腐技术、船舶防污技术、传感器器件、电化学和催化材料、隐身技术、电致变色等,并且在这些技术上的应用探索都已取得了重要进展,并逐步向实用化迈进,显示了 PAn 极其广阔且诱人的发展前景。 1 PAn 的结构及导电机理 1.1 PAn 的结构 [1] PAn 的分子是由氧化单元 和 还原单元 组成, Mac Diarmid 等最早给出 P A n 本征态的结构: 其中:y (y =1 ̄0代表 PAn 的还原程度,根据 y 的大小,P A n 主要分为以下状态:全还原态(y =1, 简称 LB 态、中间氧化态(y =0.5,简称 EB 态和全氧化态(y =0,简称PNB 态。LB 态和 PNB 态都是绝缘态,只有氧化单元数和还原单元数相等的中间氧化态通过质子酸掺杂后才可变成导体。掺杂态的 P A n 的普通分子结构为: 其中:A - 是对阴离子; x 是质子化程度的因子,代

关于导电高分子材料的研究进展

湖北汽车工业学院 本科生课程论文 《新材料导论》 论文题目关于导电高分子材料的研究进展学生专业班级 学生姓名(学号) 指导教师(职称) 完成时间

关于导电高分子材料的研究进展 摘要:与传统导电材料相比较,导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的概念、分类、导电机理及其应用领域,综述了近些年来国内外科研工作者对导电高聚物的研究进展状况并对其发展前景进行了展望。 关键词:导电高分子;功能材料;导电机理;应用;述评。 自从1976年美国宾夕法尼亚大学的化学家MacDiarmid领导的研究小组首次发现掺杂后的聚乙炔(Polyacetylene,简称PA)具有类似金属的导电性以后,人们对共轭聚合物的结构和认识不断深入和提高,新型交叉学科)))导电高分子领域诞生了。在随后的研究中科研工作者又逐步发现了聚吡咯、聚对苯撑、聚苯硫醚、聚噻吩、聚对苯撑乙烯撑、聚苯胺等导电高分子。导电高分子特殊的结构和优异的物理化学性能使它成为材料科学的研究热点,作为不可替代的新兴基础有机功能材料之一,导电高分子材料在能源、光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术上有着广泛、诱人的应用前景。到目前为止,导电高分子在分子设计和材料合成、掺杂方法和掺杂机理、可溶性和加工性、导电机理、光、电、磁等物理性能及相关机理以及技术上的应用探索都已取得重要的研究进展。本文介绍了导电高分子的结构特征、导电机理及其应用领域,综述了近些年来导电高分子材料研究领域的进展状况。 1 导电高分子材料的分类 高分子导电材料通常分为复合型和结构型两大类: ①复合型高分子导电材料。 由通用的高分子材料与各种导电性物质通过填充复合、表面复合或层积复合等方式而制得。主要品种有导电塑料、导电橡胶、导电纤维织物、导电涂料、导电胶粘剂以及透明导电薄膜等。其性能与导电填料的种类、用量、粒度和状态以及它们在高分子材料中的分散状态有很大的关系。常用的导电填料有炭黑、金属粉、金属箔片、金属纤维、碳纤维等。 ②结构型高分子导电材料。 是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。根据电导率的大小又可分为高分子半导体、高分子金属和高分子超导体。按照导电机理可分为电子导电高分子材料和离子导电高分子材料。电子导电高分子材料的结构特点是具有线型或面型大共轭体系,在热或光的作用下通过共轭π电子的活化而进行导电,电导率一般在半导

超支化聚合物增韧环氧树脂的研究进展

超支化聚合物增韧环氧树脂的研究进展 朱 超 林丽娟 (徐州建筑职业技术学院土木工程系,徐州 221008) 摘要 介绍超支化聚合物的结构及特点,着重综述了超支化聚合物增韧改性环氧树脂的研究进展,指出了超支化聚合物在环氧树脂改性方面的发展方向。 关键词 环氧树脂 超支化聚合物 增韧 改性 环氧树脂(EP)作为一种热固性树脂因具有良好的电性能、化学稳定性、粘接性、加工性等特点而被广泛应用于机械、电气电子、航天航空等领域。但纯环氧树脂的最大弱点是固化后质脆、耐冲击性较差和容易开裂,因而难以满足工程技术的要求,使其应用受到一定的限制。为了解决这些问题,需要对环氧树脂进行增韧改性,其方法包括增塑剂增韧、低分子量增韧剂增韧、热塑性树脂增韧、互穿网络聚合物(IPN )增韧、热致性液晶聚合物(TLCP)增韧、橡胶类弹性体增韧及纳米粒子增韧等[1,2]。这些增韧手段都能使环氧树脂的韧性得到较大的提高,但同时却降低了材料的耐热性、硬度、模量和电性能。而近几年出现了一种新的共混改性环氧树脂的方法,即采用超支化聚合物(HBPs)改性环氧树脂。由于超支化聚合物具有独特的性能,可以在保证提高环氧树脂韧性的同时不降低固化物的模量、耐热性等性能,故引起了人们广泛的关注。1 超支化聚合物 超支化聚合物是近10多年才出现的一种新型高分子材料,它是一种以低分子为生长点,通过逐步控制重复反应而得到的一系列分子质量不断增长的结构类似的化合物。常见的3种聚合物的结构如图1 所示。 图1 三种聚合物的结构 用超支化聚合物改性环氧树脂,初始时由超支化聚合物与环氧树脂共混形成均相体系,固化时发生相分离,由于超支化聚合物分子外层可以按要求组装官能团,这样可有效地调控环氧树脂固化物的结构和相态,为实现其改性提供了很大的空间。 2 超支化聚合物改性环氧树脂的研究进展 对于热固性的环氧树脂,其加工性能对应用有着非常重要的影响。加工时通常希望体系具有较低的粘度,使得其在固化后期能发生相分离以达到增韧的目的。但是传统增韧改性剂的分子量较高,这种高分子量往往意味着高粘度,这对加工来说是不利的。超支化聚合物具有独特的结构和良 好的相容性、低粘度等特性,所以可用作环氧树脂的改性剂。 超支化聚合物应用于增韧改性环氧树脂还具有下列优点[3]:(1)超支化聚合物的球状三维结构能降低环氧固化物的收缩率;(2)超支化聚合物的活性端基能直接参与固化反应形成立体网状结构,众多的末端官能团能加快固化速度;(3)超支化聚合物的尺寸和球状结构杜绝了在其它传统的增韧体系中所观察到的有害的粒子过滤效应,起到内增韧的作用。 2.1 超支化聚合物改性环氧树脂的固化行为 由于环氧树脂的固化行为直接影响到环氧树脂材料的制备和最终性能,所以针对超支化聚合物改性环氧树脂固化行为,人们做了大量的研究工作。 2000年韩国的Joon H ak O h 等[4]研究了超支化聚合物与环氧树脂的固化行为。他们采用差示扫描量热(D SC)仪和傅里叶变换红外光谱(FT-IR )仪等分析手段发现环氧树脂/超支化聚合物体系的固化温度比环氧树脂/线性聚合物体系的固化温度高,但环氧树脂/超支化聚合物体系的固化反应活化能较低。当超支化聚合物末端的羟基转变为苯甲酸基团时,固化反应的诱导期变得较长,并且反应热降低,整个反应级数为1.5。随着固化反应的进行,环氧基团的峰特性呈下降趋势,同时H 连接到C O 键上的峰值增加,并随着超支化聚合物含量的增加,H 与C O 连接的峰值不断增强。 日本的M.Okazak 等[5]用超支化聚酰胺多胺与有机硅接枝制得超支化聚合物。结果表明,超支化聚酰胺多胺的端 胺基促进了凝胶化反应。采用接枝有机硅为固化剂,在170e 、48h 条件下超支化聚酰胺多胺固化环氧树脂的凝胶级数达到77%,凝胶程度随其端胺基含量的增加而增加。 2003年D.R a t na 等[6]选用二乙基甲苯-2,6-二胺(DET-DA )为固化剂,使用环氧化超支化聚合物增韧双酚A 型环氧树脂。结果表明,环氧化超支化聚合物的加入对体系的固化速率没有影响。100e 时超支化聚合物与双酚A 型环氧树脂很容易混溶,固化时则发生相分离。随着固化温度的升高,分散相的超支化聚合物的含量也增加。超支化聚合物的加入使得固化物的韧性得到显著提高。 收稿日期:2006-10-12

超支化聚合物的活性聚合方法

超支化聚合物的活性聚合方法 1 前言 超支化聚合物是一类具有三维椭球状立体结构的高度支化的大分子聚合物[1],分子之间无缠结, 大量的端基暴露在最外层, 因此超支化聚合物表现出高溶解度、低粘度、化学反应活性高等特殊性能, 对其端基进行改性可得到不同特性和各种功能性的聚合物,如共混改性剂、涂料、纳米杂化材料、药物缓释、光电材料、粘合剂以及可降解聚合物等[2-4]。因此, 超支化聚合物一出现就受到了大批研究者的关注与青睐, 成为高分子科学中的热门课题之一[5-8]。超支化聚合物的飞速发展,不但增加了超支化聚合物的制备方法, 也丰富了超支化聚合物的种类[9 ]。科学家们也在不断开发和应用新型的超支化聚合物[10]。 2 超支化聚合的活性/可控自由基聚合方法 传统的自由基聚合由于其反应条件温和、形式多样化(本体、悬浮、溶液、乳液),易于制备,是合成高分子材料的主要方法。而它慢引发、快增长、易转移、链终止等反应特点使得产物的分子量和结构难以控制、分子量分布宽,还易出现支化交联等现象,严重影响了高分子材料的某些方面的性能。直至上世纪七十年代,科学家发现了碘转移自由基聚合[11](ITP),使氟烯烃的自由基聚合得以控制。经过科学家几十年的不懈努力,活性/可控自由基聚合(Control/Living Radical Polymerization,CRP)成为制备分子结构明确、分子量可控及分子量分布窄的聚合物的主要方法,已引起了学术界和工业界的极大兴趣。当前制备超支化聚合物的活性/可控自由基聚合包括原子转移自由基聚合[12-14](ATRP)、可逆加成—断裂链转移聚合[15,16] (RAFT),且他们都可以与点击化学(Click Chemistry)相结合。这些活性/可控自由基都是使增长自由基浓度降低,但链增长反应仍可进行,双基偶合和歧化反应显著减少,从而达到控制反应的目的,从而便利高效地合成各种具有预定结构的聚合物,比如嵌段、梳型、接枝、星型、超支化和环形等。 2.1 原子转移自由基聚合(ATRP) 原子转移自由基以有机卤化物为引发剂,过渡金属络合物作为卤原子载体即催化剂,在“活性种”与“休眠种”之间建立可逆的动态平衡.有效地抑制了自由基双基终止,实现多种单体的活性聚合和可控自由基聚合,最终实现对反应的控制。 Gaynor等[17]最先报道了利用ATRP制备超支化聚合物的研究成果。他们选择分子结构中含有苄基氯和聚合双键的对氯甲基苯乙烯(CMS)作为单体原料,在CuCI/2,2'-联二Ⅱtt啶(bpy)的催化体系中进行ATRP,最终得到了端基含有大量氯原子的超支化聚合物。Weimer等[18]发现只有使用大量催化剂才能制的超支化聚合物。陈云辉等[19]以CuBr/bpy作为催化剂,通过a—溴代苯乙烷引发二苯甲烷双马来酰亚胺的ATRP,可由双烯化合物原位生成自引发单体合成超支化聚合物。 原子转移自由基聚合(ATRP)利用控制自由基来控制分子结构和分子量,制备分子量分布较窄的聚合物,相对分子质量可以控制在103~105,Mw/Mn介于1.05-1.5之间。通过ATRP得到的聚合物,末端带卤素,可被其他亲核基团所取代,用来制备末端功能化的聚合物。迄今为

导电聚苯胺的特性及进展

导电聚苯胺的特性及 进展 院(部、中心)材料科学与工程 专业材料科学与工程 课程名称高分子材料进展

导电聚苯胺的特性及进展 摘要:导电聚苯胺是极有前途的导电聚合物,它能够广泛地应用于二次电池、金属的防腐、电致发光器件的电极修饰等方面。本文根据文献资料参考从其结构特性、在可溶性、复合材料及纳米粒子上的研究进展及其应用前景做整理描述。关键词:导电高分子,聚苯胺,掺杂,纳米粒子 引言: 在20世纪中发展起来的功能高分子中,导电高分子是最突出的代表之一。20世纪70年代以前,人们一直将高分子材料作为绝缘材料来使用,从来没有导电高分子的概念美国的MacDiarmid在参观日本东京大学时,看到白川英澍试验室所合成的聚乙炔薄膜具有奇特的金属光泽,惊叹这可能就是他和Heeger等多年寻求的有机导电高分子,于是邀请白川到他的实验室进行合作研究。他们根据研究硫氮聚合物(SN)n的经验,用I2和ASF5掺杂聚乙炔,发现经过掺杂的聚乙炔,导电率增加了10~12个数量级,达到103Scm的水平,接近于金属导体,并于1977年报道了这一结果。这一发现,突破了高分子是绝缘体的传统观念,立即在科学界和技术界产生了巨大的影响和冲击。理论物理学家从Pierls相变的理论出发,进行量子力学计算,计算出反式聚乙炔中长短键长的差约002nm,由此长短键交替所形成的导带和价带之间的间隙宽度是14eV,与试验观测值一致。进而提出了包括孤子、极化子、双极化子等内容的聚乙炔导电的SSH理论。实验物理学家进行了聚乙炔的一系列光谱、结构和光、电、磁学测量,验证了理论物理学家的理论结果,同时发现了当时的理论和模型尚不能解释的新现象。高分子化学家和材料学家则不断改进合成技术,提高聚合物的性能,使聚乙炔的导电率达到105Scm量级,可以和金属铜相媲美。在短短的20多年中,相继合成出了数十种导电高分子,并对它们的光、电、磁性能进行了系统深入的研究,许多新的科学现象和原理被揭示出来,导电高分子在若干高新技术领域的应用已经实现,或正在蕴育之中。正是由于Heeger、MacDiarmid和白川英澍对导电高分子领域的开创性贡献,他们被授予2000年的Nobel化学奖。后来人们陆续开发了聚苯胺、聚吡咯、聚噻吩等导电高分子材料。在众多的高分子材料中,聚苯胺有原料易得、合成简单、耐高温及抗氧化性能良好等优点,很快成为导电高分子研究的热点之一。 聚苯胺除了具有其他导电高聚物共有的性质外,还有独特的掺杂机制、良好

超支化聚合物

超支化分子(hyperbranched molecular)是最近十几年发展起来的, 在聚合物科学领域引起人们广泛兴趣的一种具有特殊大分子结构的聚合物。早在1952年, Flory就提出了可以由多官能团单体制备高度支化的聚合物。但在过去的几十年中, 高度支化的聚合物并没有引起人们的注意。直到20世纪80年代中期, 杜邦公司的瓦Kim等人有目的地合成了一种超支化聚合物, 并申请了第一项关于这方面的专利, 而且于1988年在美国洛杉矶召开的全美化学会议上公布了这一成果。在早期, 主要是对树枝形聚合物的研究。第一代树枝形聚合物图是通过缩聚反应得到的, 需严格控制反应过程使其结构具有极好的对称性、分子的体积和形状。但是, 因其结构比较规整和完善, 就需要在合成的每一步, 核心分子末端的活性基团必须反应完全, 且每一步的产物需经过彻底的纯化, 因此得到的产物产率很低, 这就大大限制了树枝形大分子的工业化生产。超支化聚合物的结构不要求很完美, 具有一定的相对分子质量分布, 并且与树枝形聚合物相似, 一般可采用一步聚合的方法来合成, 所以易于工业化生产。这两类聚合物在结构上都高度支化, 而且都带有大量官能性的端基, 与线性同系物相比都具有较高的溶解性和较低的粘度, 因此现在一般将这两类聚合物通称为树枝状聚合物。超支化聚合物与线性聚合物在结构上也有很大的差别。线性聚合物中线性部分占大多数, 支化点很少, 分子链容易缠结, 体系的粘度随着相对分子质量的增大而迅速增加。而超支化聚合物中主要是支化部分, 支化点较多, 支化部分至少呈的几率增长。分子具有类似球形的紧凑结构, 流体力学回转半径小, 分子链缠结少, 所以相对分子质量的增加对粘度影响较小而且分子中带有许多官能性端基, 对其进行修饰可以改善其在各类溶剂中的溶解性, 或得到功能材料。摘抄自“超支化聚合物合成及其端基改性”,寇玉霞等,武汉化工学院化工与制药学院,上海涂料第42卷第2期2004.4

超支化聚合物应用研究进展

超支化聚合物研究进展 摘要:本综述的目的是叙述和讨论近年来国内外有关超支化聚合物(HBP)的概述、制备方法、羟基改性引入功能基团以及应用研究进展,并对今后HBP的应用前景进行了展望。方法是以数据库资源为主,查询万方、维普、以及各大外文数据库中有关超支化聚合物研究进展的资料。结果选取其中有代表性的文献进行参考后做出的总结与讨论。本文介绍了超支化聚合物的结构和性能特征,综述了超支化聚合物的制备方法,如缩聚反应、加成反应等,介绍了羟基改性引入功能基团、功能型元素的用途,并对其应用研究进行了说明和分析。Abstract: The purpose of this review is described and discussed the hyperbranched polymer(HBP)'s research in recent years. Method is based on database resources, mainly inquires the ten thousand party, VIP, and other big foreign language database about the hyperbranched polymer. The results is came from making reference to summarize and discuss after selecting representative literature. This paper introduces the hyperbranched polymer structure and performance characteristics,summarized the hyperbranched polymer preparation methods, such as polycondensation reaction,addition reaction.And introduces the hydroxyl modified into functional groups and analysis its application in research. 关键词:超支化聚合物端羟基制备方法应用前景 Keyword:The hyperbranched polymer Hydroxyl Preparation methods Application prospect 正文: 一.超支化聚合物的概述 1.1 结构特征 超支化聚合物(Hyperbranched Polymer)(简称HBP)可以简单描述为具有高度支化结构的聚合物。它既与支化聚合物不同也与树形分子有别。超支化高分子因其分子结构而得名,其结构和树枝状大分子非常相似,树枝状大分子分子结构中只含有末端单元和支化单元,而超支化聚合物不仅含有末端单元、支化单元还有线形单元。如图1所示.

超支化聚合物的合成及应用

基金项目:武汉市科技攻关基金; 作者简介:易昌凤(1964-),女,副教授,现主要从事乳液聚合、分散聚合、功能高分子等领域的研究工作。 3通讯联系人。 超支化聚合物的合成及应用 易昌凤,陈爱芳,徐祖顺3 (湖北大学化学与材料科学学院,湖北武汉 430062) 摘要:综述了超支化聚合物合成方法的最新研究进展,并对其应用进行了描述,旨在加深人们对该领域的 了解,从而加速该领域的发展。 关键词:超支化聚合物;合成;应用 超支化聚合物因其分子结构而得名,它是一种经一步法合成得到的高度支化的聚合物[1] 。早在1952 年,Flory [2]就首先在理论上论述通过AB X 型单体分子间的缩聚制备超支化聚合物的可能性。但是,对于这种非结晶、无链缠绕的超支化聚合物,当时并未引起足够的重视。直到1987年,K im [3]申请了制备超支 化聚合物的专利,并于1988年在洛杉机美国化学会上公布了这一成果[4]之后,人们才开始对它产生兴 趣。迄今为止,超支化聚合物的研究已经经历了十多年的历程,本文对超支化聚合物的合成及应用的研究进展做一论述。1 超支化聚合物的合成 目前,超支化聚合物的合成方法除了研究的比较成熟的一步缩聚法外,近年来又发展了一些新的合成方法。下面就文献中报道的一些超支化聚合物的合成方法进行介绍。 111 缩聚反应 缩聚反应是合成超支化聚合物最常用的方法,也是最经典、研究得最成熟的方法,主要是采用AB X 型单体通过逐步增长的方式合成的。一般采用最多的是AB 2型单体,有时为了控制支化度,得到结构更复杂的聚合物,可以采用AB 4、AB 6、AB 8型的单体。目前已用此法合成出了各种类型的超支化聚合物,如聚酯类、聚醚类、聚酰胺类、聚醚2酮类、聚硅氧烷类、聚氨酯类 、聚碳酸酯类等。Y ang 等[5] 以3,52二(42氨基苯氧基)苯甲酸为AB 2型单体,在235℃下进行缩聚合成了超支化芳香聚酰胺(见图1)。产物的重均分子量M W 及分子量多分散指数分别为74600和216。图1 超支化芳香聚酰胺的形成 Figure 1 The formation of the hyperbranched polyamides

超支化聚合物涂料

超支化聚合物涂料 苏慈生(天津理工大学,300191) 摘要:介绍了超支化聚合物的发展、特性,合成的简捷性及在涂料中的应用前景。 关键词:超支化聚合物;超支化聚酯;超支化聚酯酰胺;涂料;发展 超支化聚合物是树状大分子同系物,是从一个中心核分子出发,由支化单体(ABx) 逐级扩散伸展开来的结构,或者是由中心核、数层支化单元和外围基团通过化学键连接而成的。早在1952 年Flary 就首先在理论上提出由ABx 型单体(x ≥2 ,A 、B 为反应基团) 分子间缩聚,制备高度支化聚合物的可能,同时还就其特性作了一些预测。直到20 世纪80 年代才相继合成出此类聚合物,并深入地对其合成、性质及应用进行了研究。至今主要品种有超支化聚酯、酰胺、醚、芳烃、有机硅等,有些已经商品化,如超支化聚酯Boltron20 , Boltron 30 ,Boltron 40 , Perstorp Speciality Chemicals AB 。超支化聚合物的特性是其分子结构规整,分子体积、形状和末端官能可在分子水平上设计与控制,因此成为高分子科学中的热门课题之一,也引起了涂料界的关注。树状大分子、超支化聚合物和传统的线型聚合物的分子结构模型如图1 所示。 图1 树枝状大分子、超支化聚合物、线型聚合物的分子结构模型 1 超支化聚合物的特性概述 树枝状大分子和超支化聚合物均可由ABx 单体合成,二者既有相同之处,也有区别。前者分子具有高度规整的分支结构,分子中无缺陷,呈园球形,后者的分子规整性较前者差,呈椭球形。二者分子的表面均密布着大量有反应活性的末端官能团。其次,前者是分步合成的,在进行下一步合成之前需分离提纯, 其所合成的高度规整分子结构,可作为模型分子供理论研究,后者是由一釜法合成的,制备较简便、经济、易于工业化。再有一点是超支化聚合物的相对分子质量分布较树状大分子宽,具有多分散性。该不足之处可以采用多官能度的核分子,在降低核分子浓度, 以及采取缓慢滴加单体的条件下,是可以改进的。试验证明这是减少分散性和增加分支度的有效方法。经研究发现超支化聚合物与树状大分子在结构和性能上的相似性,加之其在工业上的易合成性,使得超支化聚合物可以满足实际应用的需要。由AB2 单体合成的超支化聚合物分子结构见图2 。

超支化聚合物

超支化大分子的最新应用进展 超支化大分子独特的构筑使其合成与应用在世界范围内受到人们越来越多的关注。笔者对最近以来国内外超支化大分子的最新应用进行了简要的综述, 对今后超支化大分子的应用前景进行了展望和预测。 最近几年以来, 由于超支化大分子独特的构筑, 使得超支化大分子的合成与应用在世界范围内受到人们越来越多的关注。与线性大分子相比较, 超支化大分子具有内部多孔的三维结构, 表面富集大量的端基, 使超支化大分子具有较佳的反应活性。其独特的分子内部的纳米微孔可以螯合离子, 吸附小分子, 或者作为小分子反应的催化活性点; 由于具有高度支化的结构, 超支化聚合物难以结晶, 也无链缠绕, 因而溶解性、相容性大大提高; 与相同分子量的线性分子相比, 超支化分子结构紧凑( 较低的均方回转半径和流体力学半 径) , 熔融态粘度较低; 并且分子外围的大量末端基团可以通过端基改性以获得所需的性能。此外超支化大分子的合成采用一锅法, 合成方法简单, 无需繁琐耗时的纯化与分离过程, 大大降低了成本. 因此超支化聚合物独特的结构和简单的合成方法使其在许多领域中均有着广泛的应用,现将最近以来国内外超支化大分子的主要应用领域作一简要的总结与展望。 1 超支化大分子嵌段共聚物 在水溶液中具有自组织功能的两亲性嵌段共聚物由于其在生

物工程、信息材料和药物传输等领域的潜在应用前景而备受人们关注, 被人们称作 architectural copolymer!聚乙烯醇共聚物组成的胶束由于具有良好的生物相容性和溶解性而在药物载体运输( 药物缓释) 和基因转移方面具有潜在应用价值。与传统的由表面活性剂组成的低分子胶束相比较, 由大分子组成的胶束具有较低的临界胶束浓度( CMC) 和稳定性, 通过调节不同结构嵌段比例可以使某种嵌段富集于胶束的内部或外部。但是, 大分子两亲嵌段共聚物的扰曲性产生的链缠结和较宽的相对分子质量分布限制了其应用。采用内部具有高度支化结构的单分子胶束可以避免以上问题, 通过对超支化大分子表面的改性可以捕捉不同的分子, 因此此种结构的单分子胶束可以作为纳米反应器。超支化大分子..线型分子的嵌段共聚物具有两亲性自组织功能, 可以形成胶束通过对超支化大分子表面的改性可作为分子载体吸纳不同有机分子, 起纳米胶囊作用。例如富含羟基端基的极性聚酯超支化大分子可通过表面改性形成非极性烷基长链, 形成极性内核和非极性外壳的两亲性胶束结构, 可使非极性的聚烯烃吸纳极性染料等有机物质而不产生明显相分离, 通过对核/ 臂长度和结构的恰当选择可合成出具有两亲性结构的嵌段共聚物。Iyer等采用亲水性线性分子聚环氧乙烷与憎水性超支化聚( 胺/ 酰胺) 共聚合成了一种两段式嵌段共聚物, 其玻璃态转变温度Tg 取决于超支化聚合物的末端官能团的性质和数量。加入的线性聚环氧乙烷链段明显改变了嵌段聚合物的性质: 短链聚环氧乙烷共聚物分子的粘度行为和线性分子类似, 而长链聚环氧乙烷共聚物分子则通过自组装形成了单分子胶束, 这种胶束

导电聚苯胺的制备方法及应用

导电聚苯胺的制备方法及应用 1862年H.Letheby发现作为颜料使用和研究的聚苯胺,1984年,MacDiarmid在酸性条件下,由聚合苯胺单体获得具有导电性聚合物,通过20多年的研究,聚苯胺在电池、金属防腐、印刷、军事等领域展示了极广阔的应用前景,成为现在研究进展最快、最有工业化应用前景的功能高分子材料。 聚苯胺的合成方法主要有化学氧化聚合法(乳液聚合法、溶液聚合法等)和电化学合成法(恒电位法、恒电流法、动电位扫描法等),近年来,模板聚合法、微乳液聚合、超声辐照合成、过氧化物酶催化合成、血红蛋白生物催化合成法等以其各自的优点而受到研究者的重视。 本文就近些年来导电高分子材料聚苯胺最新的研究现状,以对比的方法概述了合成聚苯胺的几种方法及其在各领域的应用。 1导电聚苯胺的合成方法 1.1化学合成 (1)化学氧化聚合 化学氧化法合成聚苯胺是在适当的条件下,用氧化剂使An发生氧化聚合。An的化学氧化聚合通常是在An/氧化剂/酸/水体系中进行的。较常用的氧化剂有过硫酸铵((NH4)2S2O8)、重铬酸钾(K2Cr2O7)、过氧化氢(H2O2)、碘酸钾(KIO3)和高锰酸钾(KMnO4)等。(NH4)2S2O8由于不含金属离子、氧化能力强,所以应用较广。 聚苯胺的电导率与掺杂度和氧化程度有关。氧化程度一定时,电导率随掺杂程度的增加而起初急剧增大,掺杂度超过15%以后,电导率就趋于稳定,一般其掺杂度可达50%。井新利等通过氧化法合成了导电高分子PANI,研究了氧化剂APS与苯胺单体的物质的量之比对PANI的结构与性能的影响。结果表明:合成PANI时,当n(APS):n(An)在0.8-1.0之间聚合物的产率和电导率较高。研究表明,聚苯胺的导电性与H+掺杂程度有很大关系:在酸度低时,掺杂量较少,其导电性能受到影响,因而一般应在pH值小于3的水溶液中聚合。质子酸通常有HCl、磷酸(H3PO4)等,苦味酸也用来制备高电导率的聚苯胺,而非挥发性的质子酸如H2SO4和HCIO4等不宜用于聚合反应。但HCl稳定性差,易挥发,在较高温度下容易从PANI链上脱去,从而影响其导电性能。 用大分子质子酸如十二烷基苯磺酸(DB-SA)、二壬基奈磺酸、丁二酸二辛酯磺酸等掺杂聚苯胺,在提高其溶解性的同时还可以提高其电导率。大分子质子酸具有表面活化作用,相当于表面活性剂,掺杂入聚苯胺中既可以提高其溶解性又可以使PANl分子内及分子间的构象更有利于分子链上电荷的离域化,大幅度提高电导率。同时,同小分子酸比较,有机磺酸具有较高的热稳定性。因此,有机磺酸掺杂将拓宽PANI掺杂剂的选择范围。ShannonK 等以(NH4)2S2O8和过硫酸钾为氧化剂研究了PSSA掺杂PANI的制备和性质。 (2)乳液聚合 乳液聚合法制备聚苯胺有以下优点: ①用无环境污染且低成本的水为热载体,产物不需沉析分离以除去溶剂; ②若采用大分子有机磺酸充当表面活性剂,则可一步完成质子酸的掺杂以提高聚苯胺的导电性; ③通过将聚苯胺制备成可直接使用的乳状液,可在后加工过程中,避免再使用一些昂贵(如NMP)的或有强腐蚀性(如H2SO4)的溶剂。 乳液聚合法以DBSA作为掺杂剂和乳化剂制备的PANI具有良好的导电性和溶解性,聚合产率大于80%,聚苯胺的电导率大于1S/cm,在N-甲基吡咯烷酮(NMP)中溶解度达86%,

相关主题