搜档网
当前位置:搜档网 › 微电网控制策略综述_苏玲

微电网控制策略综述_苏玲

微电网控制策略综述_苏玲
微电网控制策略综述_苏玲

微电网并离网控制策略研究及实现

微电网并离网控制策略研究及实现 任洛卿,唐成虹,王劲松,黄琦 南瑞集团公司(国网电力科学研究院), 江苏省南京市211106 The Research and Implementation of Micro-grid's Grid-connected & Off-Grid Control Strategy Ren Luoqing, Tang Chenghong, Wang Jinsong, Huang Qi NARI Group(SGEPRI), Nanjing, Jiangsu 210003 ABSTRACT: This paper analyzes the network structure and operation modes of micro-grid and proposes a method of grid-connected & off-grid control strategy, which is based on fast fault detection and pattern recognition. Improved half-wave Fourier algorithm is used to carry out fast protection computation of the characteristic value so as to implement fast fault detection. The characteristic value is described by logical expressions and its real-time value is used to identify the current running mode and as the criterion to implement smooth switching control between the grid-connected mode and off-grid mode. So far, this method has been successfully applied in Luxi island micro-grid demonstration project. KEY WORD: micro-grid; fast fault detection; pattern recognition; coordinated control strategy 摘要: 本文对微电网组成结构及运行模式进行分析研究,提出了故障快速检测和运行模式识别的微电网并离网控制策略方案。故障快速检测以改进的半波傅里叶计算为基础,通过对微电网特征量的快速保护运算,实现故障的快速检测。微电网并离网平滑切换控制实现方法,将微电网特征量以逻辑表达式的形式进行描述,通过读取微电网特征变量实时值,识别出微电网当前运行模式,实现微电网并离网平滑切换。目前该方法已经成功应用于鹿西岛微电网示范工程。 关键词: 微电网;故障快速检测;模式识别;协调控制策略 1 引言 微电网由分布式发电、负荷、储能等部分组成,一般与中低压配电网相连,是一种可以运行在并网模式或离网模式的小型配电网系统。随着分布式发电技术的发展,分布式电源数量快速增长。智能微源、节能降耗、提高供电质量的目的[1],因此微电网是处理大规模分布式发电接入电网的必然选择,微电网技术的发展对未来坚强电网的发展起着至关重要的作用[2-3]。 微电网有并网和离网两种状态。当电网发生故障时,微电网可离网运行,进入独立的孤岛状态。然而在微电网的发展中,微电网的运行控制尤其是并离网切换控制具有一定的难度。当电网发生故障时,分布式发电和储能设备的电力输出与实际负荷的电力需求很可能不平衡,造成大量电能缺额或电能过剩。此时需要迅速进行判断并进行相应的调节控制,使微电网能够平滑切换至离网状态运行。 现有的微电网并离网切换控制装置一般是针对特定并网方式设计,而离网控制操作过程需要人工参与[4-6],无法自动适应微电网运行方式,很难做到并离网平滑切换控制。因此,研究微电网并离网平滑切换控制策略实现方法[7-12]是保证微电网安全高效运行的迫切需求。 本文对智能微电网的并离网控制策略进行了研究,提出了包括基于快速保护运算的故障检测技术和基于模式自识别的协调控制方法。这些新技术组成的微电网并离网控制策略,使微电网可以在并网和离网模式间实现平滑切换,同时保证重要负荷的持续供电。 2 快速故障检测技术 快速的故障判断是微电网的并离网切换控制的重要基础,而更快速的故障判断需要在更短时间内完成保护量的运算。 传统的全波傅里叶变换是电力系统中经常使用的保护计算方法。 传统计算方法公式如下: N -1 电网作为智能电网的重要部分,能灵活有效地运用分布式发电和储能设备,达到最大化接纳分布式电 2 a n =x n N =0 sin(nπ 2π ) N 4∑ N

智能电网中微电网优化调度综述

智能电网中微电网优化调度综述 智能电网是一种智能技术系统,它包括优先使用清洁能源、动态定价以及通过调整发电、用电设备功率优化负载平衡等特点。终端用户不仅能从电力公司直接购买用电,同时还可以从储能设备中获取新能源和清洁能源,例如太阳能、风能,燃料电池、电动汽车等。另一方面智能电网具备高速、双向的通信系统,供电端与用电端实现实时通信、并且系统能够保证电网安全、稳定和优化运行。具有坚强、自愈、兼容、优化等特征。 微电网是一种新型的网络结构,是实现主动式配电网的一种有效的方式。由一组微电源、负荷、储能系统和控制装置构成的系统单元,可实现对负荷多种能源形式的高可靠供给。微电网中的电源多为容量较小的分布式电源,即含有电力电子接口的小型机组,包括微型燃气轮机、燃料电池、光伏电池、小型风力发电机组以及超级电容、飞轮及蓄电池等储能装置,它们接在用户侧,具有成本低、电压低及污染低等特点。开发和延伸微电网能够促进分布式电源与可再生能源的大规模接入,使传统电网向智能网络的过渡[1]。 1、微电网的组成及结构 微电网是由多种分布式电源(既包含有非可再生能源发电的燃料电池、微型燃气轮机;又包含可再生能源发电的风力和光伏发电单元等),再加上控制装置、储能装置和用电负荷共同组成。微电网的组成结构十分灵活,可以满足某片区域的特殊供电需求。微电网不仅可以通过公共连接点(PCC)与大电网连接,采用并网运行模式;还可以在大电网电能质量下降或者电网故障而影响到微电网内负荷正常用电时,在公共连接节点(PCC)处与大电网断开,采用孤岛运行模式。 典型的微电网结构如图1-1 所示。它是由热电联产源(CHP)如微型燃气轮机、燃料电池,非CHP源如风力发电机组、光伏电池组及储能装置等组成。微电源和储能设备通过微电源控制器(MC)连接到馈线A和C。微电网通过公共连接点(PCC)连接到配网中进行能量交换,双方互为备用,提高了供电的可靠性[2]。

(整理)微电网并网系统的控制器的设计与分析

题目:微电网并网系统的控制器的设计与分析学院:电气工程学院 专业:电力电子与电力传动 学号:S130******** 姓名:唐福顺

摘要 ——这篇文章主要讲述了微电网并网控制器的设计与分析。控制器包括对于每个分布式电源的内部电压和电流环控制环和外部控制功率均分以及控制由并网转为孤岛运行模式下的功率分配问题的外部有功无功控制环。控制器还包括同步算法来确保当故障清除后平滑的自动并网。通过控制器的合理搭建,可以实现系统可以在并网和孤岛模式转换过程中并不影响外界的负荷。并且通过仿真和实验验证了这一结论。 引言 近年来,越来越多的新能源或者是微能源例如光伏,小型风机,燃料电池开始以分布式电源的形式并入大电网。随着分布式电源的发展,包含着许多系统化的分布式电源的微电网这个概念随之产生。与传统的集中式电源相比,微电网可以在并网和孤岛两种模式下运行,因而提高了系统的稳定性和电源质量。额外它还包含了所有单个微电网系统的优点。为了更好地控制微电网,在并网和孤岛运行模式下我们采用外部了功率环和内部电压环双重控制。这些控制算法应该在各个并联的分布式电源之间没有信息连接,可以分开单独控制。因此,每一个分布式电源的控制算法应该只使用自己当地能测量到的变量进行反馈。还有,我们还期望当大电网出现故障离网时,各个分布式电源之间能够迅速反应来合理的分配自己的输出功率来保证功率平衡以及当故障清除后微电网和大电网的再次同步运行然后平滑并网。 为了实现上述性能,本文对各个分布式电源采用一种统一的控制器设计方法。即,在控制输出电压的前提下,设计控制器控制功率环,它能够控制并网模式下的功率流动,能够保证在孤岛模式下使各个分布式电源有功和无功的合理分配,以及在再次并网之前实现微电网和大电网的再同步。这种控制器响应迅速,并且保证微电网能够在并网和孤岛两种模式下平滑转换并且不影响与其相连接的负载。通过仿真和实验验证了这种控制器设计具有良好的效果。 系统配置 Fig1展示了本文的微电网配置图,这里采用了两个并联的分布式电源DG1和DG2.每个分布式电源由直流源、PWM控制的电压源型逆变器以及LC滤波器。在正常的运行模式下,微电网通过STS(静态转换开关)在PCC点处与大电网相连接。在这种模式下,两个分布式电源来提供对负载123的功率和电压支持,这种配置减少了大电网的负担和大电网的功率传送并且提高了负荷的对大电网扰动的抗干扰能力。 Fig 1 微电网的配置 当大电网出现故障时,在半个周期内STS打开来断开微电网和大电网之间的连接,那么这

微电网储能技术研究综述

电力系统新技术 专业电力系统及其自动化 班级研1109班 学号1108080392 学生周晓玲 2012 年

电力储能技术 摘要:储能技术在电力系统中具有削峰填谷、一次调频、提高电网稳定性、改善电能质量、提高电网利用率、提高可再生能源的利用率等重要作用。本文主要介绍了抽水储能、飞轮储能、压缩空气储能、钠硫电池储能、液流电池储能以及超导储能、超级电容器储能等典型储能技术以及各自的国内外研究动态,比较了各种储能技术的优缺点,并对储能技术在电力系统中的不同应用进行了综述。 关键词:储能技术,可再生能源发电,消峰填谷,一次调频ABSTRACT:Power storage technology serves to cut the peak and fill valley,regulate the power frequency,improve the stability,and raise the utilization coefficient of the grid in the power system.This paper introduces various types of storage technology such as pumped hydropower,flywheel electricity storage technology,compressed air energy storage,sodium sulfur(NaS)battery,,Flow Battery Technology,super conductive magnetic energy storage and super capacitor storage discusses their advantages and disadvantages.The development trend and the Different applications of storage technology in the power system are also summarized. KEY WORDS:energy storage technology,renewable energy Resources power generation,peak load shifting,primary frequency 1.背景意义 近几十年来,电能存储技术的研究和发展一直受到各国能源、交通、电力、电讯等部门的重视。电能的存储是伴随着电力工业发展一直存在的问题,其实到现在为止也没有一种非常完美的储能技术,但经过几代科学家的努力,一些比较成熟的储能技术在各行各业发挥着重要的作用。储能的优点有很多,节能、环保、经济。比如火电厂要求以额定负荷运行,以维持较高的能源转换效率和品质,但用电量却随时间变化,如果有大容量、高效率的电能存储技术对电力系统进行调峰,对电厂的稳定运行和节能是至关重要的。另外,由于分布式发电在电网中所占的比例越来越高,基于系统稳定性和经济性的考虑,分布式发电系统要存储一定数量的电能,用以应付突发事件。随着电力电子学、材料学等学科的发展,现代储能技术已经得到了一定程度的发展,在分布式发电中已经起到了重要作用。储能已经成为除发、输、变、配、用五大环节的第六大环节。如下图即为储能在电力系统中的应用。

微电网控制与保护学习心得

微电网控制与保护学习心得 摘要:本文介绍了文献查阅后总结的微电网的基本知识和微电网控制与保护相关的一些问题。微电网的出现协调了大电网与分布式电源的矛盾,对大电网表现为单一的受控单元,对用户则表现为可定制的电源,可以提高本地供电可靠性,降低馈线损耗。但是目前我国微电网的发展尚处于起步阶段,还有很多问题有待研究。微电网的保护和控制问题是目前分布式发电供能系统广泛应用的主要技术瓶颈之一。微电网的保护既要克服微电网接入对传统配电系统保护带来的影响,又要满足含微网配电系统对保护提出的新要求,这方面的研究是保证分布式发电供能系统可靠运行的关键。文中提出了一些现有的文献中提及的微电网继电保护方法和保护方案。 关键词:微电网;控制;保护;分布式发电 Abstracts:This article describes the literature review after the conclusion of the basics of micro grid and micro grid control and protection-related problems. The emergence of micro-coordination of a large power grid and distributed power conflicts, the performance of a single large power controlled unit, users can customize the performance of the power supply, can improve local supply reliability and reduce feeder loss. But at present, the development of micro-grid is still in its infancy, there are many problems to be studied. Microgrid protection and control of distributed power generation is widely used for energy systems one of the main technical bottlenecks. Microgrid protection is necessary to overcome the Microgrid access to protect the traditional distribution system impact, but also to meet with micro network distribution system to protect the new requirements, this research is to ensure that distributed generation energy supply system reliable operation of the key. This paper presents some of the existing literature mentioned methods and microgrid relay protection scheme. Key Words:Microgrid; Control; Protection; Distributed Power Generation 一、微电网基本知识 当前电力系统已成为集中发电、远距离高压输电的大型互联网络系统。随着电网规模的不断扩大,超大规模电力系统的弊端也日益凸现,如运行难度大、难以满足用户越来越高的可靠性及多样化用电需求等。近年来世界范围内的大面积停电事故,充分暴露了大电网的脆弱性。鉴于上述问题,国内外学者开始广泛研究分布式发电技术。分布式发电是指直接布置在配电网或分布在负荷附近的发电设施,能够经济、高效、可靠地发电。分布式电源位置灵活、分散,能与大电网互为备用,在一定程度上分担了输电网从电厂向用户远距离和大功率输电的功能。经过20 多年的发展,分布式发电已成为一股影响电力工业未来面貌的重要力量。 1) 应对全球能源危机的需要。随着国际油价的不断飙升,能源安全问题日益突出,为了实现可持续发展,人们的目光转向了可再生能源,因此,风力发电、太阳能发电等备受关注,快速发展并开始规模化商业应用,而这些可再生能源的发电大都是小型的、星罗棋布的。 2) 保护环境的需要。CO2 排放引起的全球气候变暖问题,已引起各国政府的高度重视,并成为当今世界政治的核心议题之一。为保护环境,世界上工业发达国家纷纷立法,扶持可再生能源发电以及其他清洁发电技术(如热电联产微型燃气轮机) ,有利地推动了DG的发展。 3) 天然气发电技术的发展。对于天然气发电来说,机组容量并不明显影响机组的效率,并且天然气输送成本远远低于电力的传输,因此比较适合采用有小容量特点的DG。 4) 避免投资风险。由于难以准确地预测远期的电力需求增长情况,为规避风险,电力公司往往不愿意投资大型的发电厂以及长距离超高压输电线路。此外,高压线路走廊的选择也比较困难。这都促使电力公司选择一些投资小、见效快的DG项目来就地解决供电问题。 尽管分布式电源优点突出,但分布式电源相对于大电网来说是一个不可控电源,大电网也往往限制或隔离分布式电源。为了协调大电网与分布式电源的矛盾,学者又提出了微电网的概念。

微网监控系统及其控制策略探究

微网监控系统及其控制策略探究 摘要:在当今世界范围内第三代电网发展和建设拉开序幕时,节能环保,可再 生能源利用和智能化为特征的微电网逐渐成为趋势,随着技术的发展,绿色环保 政策和电力市场机制改革等因素的共同作用使得分布式发电成为未来发展重要的 能源选择。现阶段我国的 能源方式仍以集中供电系统为主,分布式能源的发展并不能取代传统的能源供电方式, 将是集中供能系统的有益补充。 关键词:微网;监控系统;策略研究 引言 随着我国经济社会的不断发展,对于能源的需求也是越来越高,人们逐渐对环境的要求 也在不断变化,现代的一些清洁能源逐渐代替传统能源。在该大环境之下,微型电力系统逐 渐被大众所接受,它主要由微源、负荷和各个系统链接所构成,这样能够达到运行极为灵活 轻巧,并且可以独立并网地运行的微型电力系统。在我国逐渐提出了“互联网+”之后,新能源 微网代表了未来的发展趋势,能够推进新时代的节能减排和促进环保。 1微网具备的特点 第一是分布式能源的集成和运用,第二运行方式极为方便,第三电网可以自我调节,电 能的质量好,第四高可靠性,可以脱离大电网独立运行。根据上面的特点,我们不难看出在 微网的建设过程之中,是基于了电子技术的发展,静态开关和电能的质量控制。在运行的过 程中包括了微电网故障检测和保护技术、运行控制技术、通信技术和能量管理技术等。 2监控系统设计 监控系统是整个微网系统当中的核心部分,起着协调作用,有利于实现微网协调、稳定 控制、高效科学、能源最大化,是充分完备的设备。在微网运行过程当中,监控系统通过数 据的监测,事实掌握微网的运行现状,通过数据的分析,实现微网的控制目标和协调机制, 总的来说监控系统是微网运行不可缺少的一部分。 2.1监控系统的特点 不同于电站和水站,微网系统有着自身的特点和优势:第一,能够控制对象的分布位置,能源的负荷主要是以区域为单位,可以分布在各个区域;第二,运行模式多样化,它们的并 网运行模式根据不同的控制目标和主体有着不同的运行方式;第三,不同控制策略对系统响 应速度存在不一样的差异,比如电能质量调节、无缝对接等,都要求在发电时,必须使得监 控系统达到分钟级别或者小时级别。第四,个性化的设计需求是特别高的,要根据不同微网 的特点和分布的情况,来定制化设计系统,使得微网的运行方式更加的完备和可靠。 2.2监控系统功能架构 根据以往的微网的特点,在设计微网监控系统时,要采用模块化的设计方式,以此来适 用微网的各个功能系统。首先从纵向来看,系统功能主要分为了三个层面,主要有平台基础 功能、业务应用功能和综合功能体系。其中平台应用功能主要指的是为微网系统提供基础性 的服务支撑,主要包括了报表、数据、模型等方面的内容,业务应用主要涉及了微网内部的 各个元素的基本配置情况设置,有微网的综合监控、综合管理监控信息等。综合功能指的是 微网的效能分析、发电预测、负荷预测和协调控制。

微电网技术及其发展现状研究

2011年·06月·下期 学术·理论 现代现代企业教育 MODERN ENTERPRISE EDUCATION 企业 教育 25 微电网技术及其发展现状研究 吴 萍 尤向阳 (三门峡职业技术学院 河南 三门峡 472000) 摘 要:微电网充分发挥了分布式发电的价值和效益,可作为大型电网的有益补充,解决大规模电力系统的诸多潜在问题。本文介绍了微电网产生的背景,并阐释了其概念和结构特点,最后,对国内外微电网发展现状进行了对比研究。关键词:微电网 分布式发电 供电可靠性 引言 近年来,世界能源紧缺、环境污染、温室效应等问题越来越严重,分布式发电技术以具有低污染、高能源利用效率、可节约电网投资、提高大电网供电可靠性等优点得到重视。但是分布式电源(DG)单机接入成本高、控制困难,大量接入可能会对电网造成冲击,影响电能质量和系统的安全稳定。为协调大电网与分布式电源的矛盾,充分挖掘DG的价值和效益,在本世纪初,学者们提出了一个解决方法,即将DG及负荷一起作为公共配网的一个单一可控的子系统——微电网(Microgrid)。 一、微电网的概念 目前,国际上主要有美国、日本、欧盟等国家和地区给出了微电网定义。 美国电力可靠性技术解决方案协会(CERTS)认为:微电网由负荷和微型电源共同组成、可实现热电联供,微电源主要由电力电子器件进行能量转换和控制。当微电网与大电网相连时,微电网可视为单一的受控单元。 日本三菱公司按规模大小将微电网分为小规模(发电容量10MW,燃料为可再生能源,主要应用于小型区域电网、住宅楼、岛屿和偏远地区)、中规模(发电容量100MW,燃料为石油或煤、可再生能源,主要应用于工业园)和大规模(发电容量1000MW,燃料为石油或煤,主要应用于工业区)3类。它将以传统电源供电的独立电力系统也纳入微电网系统,扩展了研究范畴。 欧盟定义的微电网具有以下特点:1、利用一次能源;2、使用微型电源; 3、可实现冷热电三联供;4、含储能环节;5、含电力电子设备; 6、分为不可控、部分可控和全控三种类型。 综合来讲:微电网就是采用大量的现代电力技术,将微电源,负荷,储能设备及控制装置等结合在一起,直接接在用户侧,可同时向用户供给电能和热能的小规模分散独立系统。 二、微电网的结构 与传统的输配电网相比,微电网的结构比较灵活,其具体结构根据负荷情况会有所不同,但基本单元一般包括微型电源、储能元件、能量管理及控制系统、负荷等。 表演动作,这样能帮助学生理解和记忆歌词,并在理解、记忆歌词的基础上,以形象生动,优美的歌舞动作进行演唱,使演唱更富有情感的表达性。歌曲选择方面可根据我们的教学进度和学生的学习程度要求学生自行选择歌曲,可以大量的上网搜索选择自己喜欢的也都适合的歌曲,并应用所学的方法进行演唱,阶段性的开展班级音乐会,激发学生的学习热情,让他们爱学、喜欢学。 四、自我体验学习声乐 声乐是幼教专业学生学习的重要技能之一,它是培养学生的演唱技能和道德情感的主要阵地。声乐在教学过程中比较枯燥,培养学生的自主学习尤为重要,变“要我学”为“我要学”,使他们真正成为学习的主人。 声乐的学习过程是很抽象的,我在讲解声乐理论时一般采取体验法,让学生自己感觉自己体验,比如:要讲打开喉咙就要学生体验咬苹果的感觉,要讲吸气就要让学生体验闻花香的感觉等等。如:区别音的高低、长短、强弱等时,教师启发学生比较大公鸡的啼声和母鸡啄食的“咯咯”声,大部分学生对鸡是熟悉的,就让他们自己去模仿这些叫声,通过学生的亲身模仿,很快就辨出哪个是高音,哪个是低音,通过类似的方法,又能辨别出飞机在跑道上起飞的马达声震耳,是强音,而飞机上高空我们听到的声音是弱音。进而上升到理性认识,这样做会培养学生善于动脑,善于捕捉音乐的能力。在这些教学当中我都尽量融入学生 的自主学习的观念,做到“做中学”。 在枯燥的发声练习过程中我会让学生动起来,在发声前要先活动开,或小跑,或做运动操,根据练声曲的节奏让学生踏步或者小跑着发声,这样可以让学生更加放松自然。也可以编成游戏的形式,如用问答的形式,一半学生问do re mi fa so ,另一半的学生答so fa mi re do ,这样可以提高学生的兴奋度,让练声得到更好的效果。也可以围成圈相互看,或站成面对面发声,相互评价相互学习。 五、结语 如今,知识的更新日新月异,高科技的发展日趋迅猛,面对教育的新形式,学生为中心的思想已深入人心,旧的体制和模式受到极大的冲击。作为幼教专业的音乐教师更应及时转变教学观念,只有教会学生自主学习,使学生掌握学习的方法,才能达到“今天的教是为了明天的不教”的目的,在课堂上努力创设学生自主学习的环境,发挥学生的自主意识,也只有学生学会自主学习,他们才能主动地去研究,去探索,去创造。以培养有创造力、有创新思维能力的新一代幼儿教师。 参考文献: [1]张天宝著.试论主体性教育的基本理论. [2]周明星,张柏清著.创新教育模式全书.北京教学出版社 .□

微网控制策略研究综述

微网控制策略研究综述 江苏科技大学 李雅倩 【摘要】由于分布式电源各具特色,储能、负荷装置也不尽相同,为使分布式电源在并网以及脱离主网时实现无缝切换,通常需要采用不同的控制策略。本文主要阐述了国内外微网控制策略的研究现状,分析了各种微网控制方法的优点及局限性,探讨了微网控制的研究方向,给出了微网控制策略的一些建议。 【关键词】微网;分布式电源;控制 1.引言 传统的庞大电力系统在适应负荷变化的灵活性与供电安全性方面存在很多弊端,加之常规能源的逐渐衰竭以及环境污染的日益加重等因素使得全球的目光转向以新能源为主能源的分布式发电(Distributed Generation,简称DG)技术。 2.微网的概念 微网是指由多个分布式电源(Distributed Resource,简称DR)、储能系统、重要负荷和保护装置汇集而成的配电系统[1]。分布式电源包括光伏电池、风力发电机、燃料电池、燃气轮机、生物质能发电机等。储能系统分为机械储能、电磁储能和电化学储能。各种储能技术因不同的电能转换方式和存储形态,在储能容量、功率规模、功率和能量密度、循环寿命、单位容量和单位功率造价、响应时间以及综合效率等方面有着明显区别。 微网是一个能够实现自我控制、保护和管理的自治系统,既可以与大电网并网运行,也可以孤立运行。在联网模式下,负荷既可以从电网或微网获得或输送电能(根据接入电网的准则)。当电网的电能质量不满足用户要求或电网发生故障时,微网与主电网断开,运行于孤岛模式。在孤岛模式,微网必须满足自身供需能量平衡。微网技术克服了DR单独接入主网时对配电网造成的不利影响,其在可靠性、经济性和灵活性方面具有显著优势。 3.微网控制 3.1 单个分布式电源控制方法 常见的分布式电源接口逆变器控制方法分为恒功率(PQ)控制、下垂控制和恒压恒频(V/f)控制[14-16]。 (1)恒功率控制 如图1.1所示,分布式电源接口逆变器采用PQ控制,其控制目的是使分布式电源输出的有功和无功功率等于其参考功率。该控制方法需要系统中有维持电压和频率的分布式 图1.2?Droop控制的原理 (2)下垂控制 下垂控制原理如图1.2所示,它利用分布式电源输出有功功率和频率,无功功率和电压幅值均成线性关系而进行控制。对等控制 策略中的分布式电源接口逆变器的控制。 (3)恒压恒频控制 原理如图1.3所示,不管分布式电源输出 功率如何变化,其输出电压的幅值和频率一 直维持不变。此方法一般用在主从控制策略 3.2 多个分布式电源控制方法 (1)主从控制策略 主从控制模式是指在微网处于孤岛运行 模式时,其中一个DG或储能装置采取V/f控 制,用于向微网中的其它DG提供电压和频率 参考,而其它DG则可采用PQ控制。 当微网在联网模式运行时,电网可以稳 定系统的频率,微网不需要进行频率调节; 而孤岛模式运行时,主从控制系统中的主控 制单元需要维持系统的频率和电压。在联网 运行时微网中所有分布式电源采用PQ控制, 即微网不参与系统频率调节,只输出指定的 有功和无功功率;在孤岛运行时主单元采用 V/f控制维持系统的电压和频率恒定[13-14]。 常见的主控制单元选择包括下述几种: 1)储能装置作为主控制单元。这类典 型示范工程包括荷兰Continuon微网[3],希腊 NTUA微网[4]等。 2)分布式电源为主控制单元。这类典型 示范工程包括葡萄牙EDP微网[5]等。 3)分布式电源加储能装置为主控制单元。 这类典型示范工程包括德国MVV微网[6]等。 (2)对等控制模式 对等控制模式中的微网中所有的DG在控 制上都具有同等的地位,每个DG都根据接入 系统点电压和频率的就地信息进行控制。同 时这种控制方法能让微网具有“即插即用” 的功能。采用对等控制策略,要求分布式电 源采用本地变量进行控制,不同分布式电源 [7-9] 图1.5?P-f和Q-V下垂控制 两种基于下垂特性的典型控制方法在对 等控制策略的分布式电源控制中被广泛应 用[10-12]。采用Droop控制可以实现负载功率变 化在DG间的自动分配,但负载变化前后系统 的稳态电压和频率也会有所变化。一种是f-P 和V-Q下垂控制方法,它利用测量系统的频率 和分布式电源输出电压幅值产生有功和无功 功率。另一种方法是利用测量分布式电源输 出的有功和无功功率产生电压频率和幅值, 称作P-f和Q-V下垂控制法,如图1.4和1.5所 示。 TimGreen在他的微网控制系统中提出了 一种分布式电源接口逆变器的三环反馈控制 方法[17],内环控制器提高了电能质量、增 加滤波器谐振阻尼的同时限制故障电流。尤 其指出了采用滤波电感电流作为控制变量能 限制逆变器输出的最大电流,为保护逆变器 提供了依据。但是采用这种控制方法,分布 式电源接入主网时电流变化会影响其端口输 出电压的变化,因此电压受负荷扰动影响较 大。 (3)分层控制模式 文献[2]就提出配网调度中心、微网、 分布式电源三者的分层协调控制策略的基础 上,应用多代理理论,建立了一个由全系统 控制协调代理(CAG)、微网控制代理(MGAG)、 分布式电源代理(DRAG)以及母线代理(BAG) 组成的多代理系统,在保证配电网辐射状运 行、满足配电网电压与电流及馈线容量等约 束条件的情况下进行供电恢复。 3.3 其他控制方法 文献[18]用粒子群优化(PSO)方法解决继 电器协调的问题,制定一个混合整数非线性 规划(MINLP)方法。并提出了利用方向性过流 继电器保护分散型分布式电源组成的微网。 文献[19]提出了一种阻抗为电阻线的低 电压分布式电源控制策略。在电压骤降情况 下提出了逆变器接口的虚拟电感器输出控制 方法,以及当地负载效应功率控制算法。 文献[20]分析采用闭环控制的逆变器输 出阻抗受线路参数和控制器参数影响的基础 上,进行内环电压电流控制器的设计,电压 控制器采用PI控制器稳定负荷电压,采用比 例环节的电流控制器提高系统响应速度,并 且设计控制器参数使输出阻抗为感性阻抗。 在此基础上利用下垂特性设计外环功率控制 器,实现微网内多逆变单元间的无线通信控 制。 文献[21]分析了微网中:(1)可能发生的 开关事件;(2)导致分布式电源形成孤岛模式 的故障事件。DR包括一个传统的旋转同步机 和电力电子转换器接口。后者的单元接口转 换器配有独立有功和无功功率控制,以减少 孤岛瞬变,保持微网相角稳定和电压质量。 文献[22]提出了分布式电源的主动式孤 岛检测方法。该方法是基于横轴(d轴)或纵轴 (q轴)电压、电流转换器注入干扰信号然后进 行检索。 文献[23]提出了采用根轨迹和频域法分 析传统控制技术来设计控制器的方法。 4.微网控制策略的研究方向 微网技术作为电力系统的的前沿领域, 必将发挥其更大的作用。微网控制是其中最 关键的技术,它必将融合传统控制理论、智 能控制(包括模糊控制、神经网络、小波分 析、专家系统等)技术,建立微网系统最优控 制的模型。 微网系统具有单个DR的(下转第191页)

微电网文献综述

微电网文献综述 摘要:微电网是发挥分布式电源效能的有效方式,具有巨大的社会与经济意义。本文从概述角度介绍了微电网规划设计和电力系统仿真软件DIgSILENT在微电网建模和仿真中的应用,论述了微电网系统的控制策略和经济运行,指出了微电网技术的发展前景。 关键字:微电网;综述;DIgSILENT;控制策略 引言 分布式发电以其可靠、经济、环境友好、能源综合利用率高等优点越来越受到各国的重视和大力推广。然而,分布式发电技术自身存在诸多潜在弊端,如电源接入成本高、功率输出波动等,其规模化接入电网后会给电网运行控制带来一系列影响。为了协调大电网与分布式电源间的矛盾,智能微电网作为·种新型分布式能源组织形式应运而生,微电网是一种将分布式电源、负荷、储能装置、变流器以及监控保护装置有机整合在一起的小型发配电系统。 目前,随着我国微电网研究工作的不断深入,已经涉及了几乎所有技术方向,包括:①研究微电网(包括分布式电源)规划与设计,以使微电网能够更优的发挥其对配电网的正面作用,改善供电质量和可靠性;②研究微电源运行特性,为分布式电源的选择提供依据;③研究微电网运行控制与能量管理(包含储能技术),以提高微电网运行效率并降低排放;④研究微电网并网问题,以减小微电网接入对配电网的扰动,发挥微电网提高供电可靠性的优势;⑤研究微电网孤岛运行;⑥研究微电网保护。 一、微电网规划 1、智能微电网主要具有以下特点: (1)自治性:微电网是由分布式电源、负荷、储能单元构成的小型系统,运行方式灵活,可以独立自治运行,实现自我控制、保护与管理。 (2)互动性:微电网运行控制在采集分布式单元信息的基础上,实现了配电网、微电网、控制器间的互动通信。 (3)多元性:微电源构成多元化,有热电联产燃气轮机、柴油机等高效低污染电源及风力、光伏发电单元。负荷类型多元化,有敏感型、非敏感型,可控型、非可控型等。 2、微电网电压等级与容量的一般选取原则 3、微电网网架结构设计

微网基本运行与控制策略

微网基本运行与控制策略 摘要为保证微电源与微网之间,以及微网与主电网之间功率传输的稳定、可控,需要多个微电源之间的协调控制,因此微网的整体运行控制策略至关重要。本文 系统地介绍了微网中常用的基本运行与控制策略特点,以便针对微网存在的不同 问题应用不同的控制策略。 关键词微网控制策略分层控制协调控制 0.引言 由于大多数分布式电源和储能装置输出电能的频率都不是工频,它们需要通 过电力电子装置接入微网[1]。因此逆变单元是微网中必不可少的环节,分布式电 源的逆变器控制是整个微网的底层控制。从微网运行的灵活性以及微网对传统电 网的影响方面出发,有专家提出了“即插即用”式控制方案[2],该方案的含义包括 微网对大电网的“即插即用”以及微网内多个分布式电源对微网的“即插即用”。基 于以上控制思想,微网整体控制策略可分为主从控制、对等控制以及分层控制[3],而针对微电源接口的控制方法,主要包括恒功率控制(PQ Control)、下垂控制(Droop Control)以及恒压恒频控制(V/f Control)[4]。 本文将介绍微网运行与控制存在的主要问题在此基础上阐述不同微电源的接 口控制方法,最后针对三种常用的微网控制策略以及每种策略中微电源不同的控 制方法,进行了综述和比较。 1.微网运行与控制的主要问题 典型微网是由一组放射型馈线组成,通过公共耦合点(Point of Common Coupling, PCC)与主电网相连。在PCC处设有一个主接口(Connection Interface, CI),通常由微网并网专用控制开关——固态断路器(Solid State Breaker, SSB)或背 靠背式的AC/DC/AC电力电子换流器构成。分布式电源、储能单元通过电力电子 接口(Power Electronics Interfaces,PEI)与交流母线相连,负荷主要包括阻抗性 负荷、电动机负荷及热负荷。 微网既可以通过配电网与大型电力网并联运行,形成一个大型电网与小型电 网的联合运行系统,也可以独立地运行在孤岛状态,为当地负荷提供电力需求。 联网运行时,PCC连接处应满足主电网的接口要求,微网在不参与主电网操作的 同时应减少当地电能短缺且不造成电能质量恶化。这时候,微网电压和频率由大 电网提供支撑。而在孤岛情况下,微网必须能自己维持电压和频率。在微网中, 大量电力电子装置的存在使得微网缺乏惯性,而诸如光伏发电、风力发电等可再 生能源发电系统存在输出功率的波动,这些都增加了微网频率与电压调节的难度。另一方面,在联网运行与孤岛模式相互切换的暂态,如何维持微网稳定也是值得 研究的问题。一般说来,当微网联网运行从主电网吸收功率或者为主电网提供功 率时,如果突然切换到孤岛状态,微网发出功率与负荷需求功率的不平衡将导致 微网的不稳定;而当微网从孤岛状态切换到联网模式时,与电网的同步是主要问题。为保证微电源与微网之间,以及微网与主电网之间功率传输的稳定、可控, 需要多个微电源之间的协调控制,微网的整体运行控制策略也至关重要。 2.微网的控制策略 微网的控制策略主要在于控制微电源输出功率,对电力电子接口控制主要指 对DC/AC逆变环节的控制。在通常情况下,逆变器接口的直接控制目标有两种:(1)控制输出电压幅值与频率;(2)在有电压支撑的情况下控制输出电流的幅 值与频率。着眼与不同的控制目标,微电源的逆变器接口常用的控制策略可以分

微电网研究综述

2014年5月(上) [摘要]微电网是分布式发电、负荷、储能装置及控制装置构成的一个单一可控的独立发电系统,是我国电网建设中一种新型的网络结构。 是应对目前能源、资源问题的有效途径。国内学术及研究机构对微网的研究主要集中在微电网的经济性运行、微电网的核心技术研究、微电网的优化调度以及并网运行等领域。各研究表明:从经济性层面看:微电网发展符合国家节能减排政策、提高发电效率;从技术层面看:微电网仍面临并网输电时需要克服新能源中风能、太阳能等发电的不稳定性难题;尽管如此,成熟的微电网不仅可以提高电力系统的可靠性和稳定性,而且有助于减轻当今越来越严重的雾霾问题。 [关键词]微电网;经济运行;核心技术;优化调度;并网运行微电网研究综述 赵磊 曾芬钰 王霜 (上海电力学院,上海市200090) 一、微电网的经济性运行 众所周知,微电网的研究及发展归根结底是为了解决目前全球性能源资源紧张,环境污染日益严重的问题。因而,微网发展经济性问题就成为发展微电网需要解决的首要问题。贺鹏,艾欣(2012)分别从微电网的成本及经济性等方面阐述了微电网与传统电网在经济方面的区别,目前典型的经济调度模型是美国CERTS 提出的分布式电源用户侧模型(DER-CAM )。微电网的建设势必将会引起人们对微电网的成本及收益的思考。璟杨海晶,王等(2013)通过实验,以“金太阳工程”项目为案例验证微电网的收益能力,微电网后期发电成本会以每年6%至10%的趋势下降。所以前期应主要通过财政补助来实现微电网成本回收,充分鼓励用户利用新能源。[1] 茆美琴,孙树娟,苏建徽等(2011)提出了将电动汽车加入微电网的设想,电动汽车在接入微电网时具有两方面作用:1)充电时可作为是负载;2)也可作为电源对微电网进行供电。电动汽车不仅减少了微电网投资费用,而且提高了供电的可靠性。[2] 只有当微电网的建设深入到寻常百姓及社会普通住宅区中,才会实现微网的节能、高效、等作用。ToruKobayakawa (2013)以印度Sagar 岛的微电网数据为基础,分别从村民的家庭里成员的教育背景、家庭收入水平、购买煤油支出等方面进行分析论证:影响微电网建设的原因主要是初装费用或税费太高,其次才是微电网的链接质量问题。这可为我国微电网的投资建设区域提供一个大体依据。 微电网在经济方面存在着巨大的发展潜力。虽然微电网的建设存在着前期投资较大、居民接受情况等一系列问题,但微电网发展的趋势是不变的,尤其是微网在节能减排、提高用电效率等方面存在着的巨大优势。 二、微电网的核心技术研究 从微电网整体来看,刘文,杨慧霞等(2012)指出,目前微电网的关键技术主要包括:新能源的接入、电力设施、控制技术、储能技术等方面。在实验基础上李瑞生(2013)得到更深一层的结论:微电网并离网与运行控制等技术是当前微电网发展的关键技术。[3]另一方面,张章,宋海峰(2011)指出储能是实现微电网可靠运行的重要手段。目前,从技术成熟度来看,铅酸蓄电池是目前最佳选择。 在并网技术方面,杜秀丽,黄琦等(2009)认为并网逆变器可以通过无功补偿和谐波抑制等方式改善电能质量。理想并网逆变器应具备:传送无功功率、传送有功功率和谐波抑制3种工作模式。[4]并网逆变器在并网运行时起到了关键作用,保证了电力系统的稳定运行。 以上微电网运行的关键技术不外乎在于:储能技术、并网运行、电能质量等几个问题。其中储能技术到目前为止国内的研究已经取得了重大突破,在并网运行方面的相关技术也日趋成熟,在优化调度方面国内外的相关研究也越来越多。 三、微电网的优化调度 随着对微电网研究的深入,由于微电网中的分布式电源特性各异、种类繁多。如何在配电网中确定合理的分布式电源结构,有效利用各种类型电源,成为迫切需要解决的问题。 微电网是一个多对象、多目标的联合体,在微网优化运行方面郗宏伟(2013)研究了基于微分免疫算法的微电网优化运行方法,指出微电网优化运行是一个非线性、多目标的问题。从需求侧方面,周晓燕、刘天琪等(2013)基于实际风光资源和微电网运行成本数据,采用模糊评价函数并以河北承德风力发展基地全年发电量数据为算例得出结论:在满足负荷需求和分布式电源出力限制的前提下,提高了全网经济性和安全性。[5] 不同的控制策略、优化目标都决定了微电网的优化结果。白峪豪(2012)采用主网供电、供热方式,在基于状态迁移的粒子群优化方法下得到结论:合理配置分布式电源可以有效地削峰填谷,与传统电网相比微电网供电带来了明显的环境效益。[6]陈健,王成山,赵波等(2013)采用改进型非劣排序遗传算法寻求最优配置方案得出:对于环境保护要求较高的地区,可适当提高环境成本的权重系数;对于注重经济效益的地区,可加大成本的权重系数。 总的来说,通过不同的目标和要求,设置不同的权重系数,这对微电网优化会更有效、合理。[7] 微电网优化调度的关键就是在各种分布式电源之间实现最优化配置,而实现最优化调度中的关键就是建立最优化数学模型。在采用经济类分析时容易产生较大误差,但方法更容易掌握。而遗传算法的分析结果更加准确。 所以,在只是分析大体趋势时最好采用经济学分析方法,相应的,在对分析结果要求准确时最好采用遗传算法及微分算法。 四、微电网的并网运行 微电网有孤岛运行与并网运行两种方式。相对于孤岛模式,并网运行时微电源可以始终运行在最大功率点处,电源逆变器输出电能必须满足电网电压幅值、频率和相位一致。微电源并网发电既能最大限度合理地利用新能源,又能解决用户不断增长的用电需求。 微电网与大电网并网之后,二者之间相互影响。魏于萍(2013)认为微电网技术能够解决传统分布式电源的分散接入、单独并网所带来的整体不受控问题,有利于提升电网可控性。有利于在孤岛运行与并网运行之间平滑切换。[8]除去并网和孤岛两种运行模式外,李富生,李瑞生,周逢权等(2013)指出还应有微电网过渡阶段。过渡阶段包括由并网转离网的解列过渡阶段、由离网转并网过渡状态和停运过渡状态。同时还提出:微电网的并网运行的主要功能是实现经济优化调度、配电网联合调度、间歇性分布式发电预测、负荷预测。[9] 至此为止,关于微电网的核心技术以及其控制并网的相关技术指标都已得到大致地总结,其中并网稳定运行与控制成为微电网的核心甚至影响着了微电网的发展。微电网的发展更加利于中国未来电力系统发展和超高压电网的建设需求。 五、微电网面临的问题和发展前景 当今,微电网已经成为世界各国争相发展的新兴电网结构,美国、日本等国家已经形成了一系列严谨的理论与模型结构。武星,殷晓刚,王景等(2013)指出在中国,微电网的发展与可再生能源的发展密不可分。 但目前还有许多问题丞待解决:首先,缺乏相关(下转第235页) 230

相关主题