搜档网
当前位置:搜档网 › 微电网运行控制策略

微电网运行控制策略

微电网运行控制策略
微电网运行控制策略

微电网运行控制策略

截至目前,国内已开展微电网试点工程30个,既有安装在海岛孤网运行的微电网,也有与配电网并网运行的微电网。“十三五”期间,我国将在太阳能、风能占优势的地区建设微电网示范区,还将推动建设100座新能源示范城市。为进一步保障微电网的安全、可靠、经济运行,结合我国微电网发展的实际情况,一些新的微电网技术需求有待进一步研究。

微电网研究领域,最为关键的技术是微电网的运行控制,微电网控制的基本要求是:任一微电网的接入,不对既有微电网系统造成明显影响;能协调微电网的发电与负荷,自主选择运行点;能稳定的在并网和孤岛两种模式下运行,并在两种模式间平滑切换;可以对有功、无功进行独立控制,具有自主校正电压跌落和系统不平衡的能力。

微电网控制功能基本要求是新的微电源接入时不改变原有设备,微电网解、并列时是快速无缝的,无功功率、有功功率要能独立进行控制,电压暂降和系统不平衡可以校正,要能适应微电网中负荷的动态需求。微电网控制功能如下:

(1)基本的有功和无功功率控制

由于微电源大多为电力电子型的,有功功率和无功功率的控制、调节科分别进行,可通过调节逆变器的电压幅值来控制无功功率,调节逆变器电压和网络电压的相角来控制用功功率。

(2)基于调差的电压调节

在有大量微电源接入是用P-Q控制是不适宜的,若不进行就地电压控制,就坑内产生电压或无功振荡。而电压控制要保证不会产生电源间的无功环流。在大电网中,由于电源间的阻抗相对较大,不会出现这种情况。

微电网中只要电压整定值有小的误差,就可能产生大的无功环流,使微电源的电压值超标。要根据微电源所发电流是容性还是感性来决定电压的整定值,发容性电流时电压整定值要降低,发感性电流时电压整定值要升高。

(3)快速负荷跟踪和储能

在大电网中,当一个新的负荷接入时最初的能量平衡依赖于系统的惯性,主要为大型发电机是惯性,此时仅系统频率略微降低而已。由于微电网中发电及的惯量较小,有些电源是响应时间常数又很长,因此当微电网与主网解列成孤岛运行时,必须提供蓄电池、超级电容器、飞轮等储能设备,相当于增加一些系统的惯性,才能维持电网的正常运行。

(4)频率调差控制

在微电网成孤岛运行时,要采取频率调差控制,改变各台机组承担负荷比例,已使各自出力在调节中按一定的比例且都不超标。

储能系统是微电网中的一种特殊微电源。储能系统由储能单元和双向变流器构成,在联网运行时,储能系统能够存储能量;在孤岛运行时,储能系统起着加快切换时间,改善电能质量和平衡多种电源间响应时间不一致的弊端的重要作用。

微电网控制与保护学习心得

微电网控制与保护学习心得 摘要:本文介绍了文献查阅后总结的微电网的基本知识和微电网控制与保护相关的一些问题。微电网的出现协调了大电网与分布式电源的矛盾,对大电网表现为单一的受控单元,对用户则表现为可定制的电源,可以提高本地供电可靠性,降低馈线损耗。但是目前我国微电网的发展尚处于起步阶段,还有很多问题有待研究。微电网的保护和控制问题是目前分布式发电供能系统广泛应用的主要技术瓶颈之一。微电网的保护既要克服微电网接入对传统配电系统保护带来的影响,又要满足含微网配电系统对保护提出的新要求,这方面的研究是保证分布式发电供能系统可靠运行的关键。文中提出了一些现有的文献中提及的微电网继电保护方法和保护方案。 关键词:微电网;控制;保护;分布式发电 Abstracts:This article describes the literature review after the conclusion of the basics of micro grid and micro grid control and protection-related problems. The emergence of micro-coordination of a large power grid and distributed power conflicts, the performance of a single large power controlled unit, users can customize the performance of the power supply, can improve local supply reliability and reduce feeder loss. But at present, the development of micro-grid is still in its infancy, there are many problems to be studied. Microgrid protection and control of distributed power generation is widely used for energy systems one of the main technical bottlenecks. Microgrid protection is necessary to overcome the Microgrid access to protect the traditional distribution system impact, but also to meet with micro network distribution system to protect the new requirements, this research is to ensure that distributed generation energy supply system reliable operation of the key. This paper presents some of the existing literature mentioned methods and microgrid relay protection scheme. Key Words:Microgrid; Control; Protection; Distributed Power Generation 一、微电网基本知识 当前电力系统已成为集中发电、远距离高压输电的大型互联网络系统。随着电网规模的不断扩大,超大规模电力系统的弊端也日益凸现,如运行难度大、难以满足用户越来越高的可靠性及多样化用电需求等。近年来世界范围内的大面积停电事故,充分暴露了大电网的脆弱性。鉴于上述问题,国内外学者开始广泛研究分布式发电技术。分布式发电是指直接布置在配电网或分布在负荷附近的发电设施,能够经济、高效、可靠地发电。分布式电源位置灵活、分散,能与大电网互为备用,在一定程度上分担了输电网从电厂向用户远距离和大功率输电的功能。经过20 多年的发展,分布式发电已成为一股影响电力工业未来面貌的重要力量。 1) 应对全球能源危机的需要。随着国际油价的不断飙升,能源安全问题日益突出,为了实现可持续发展,人们的目光转向了可再生能源,因此,风力发电、太阳能发电等备受关注,快速发展并开始规模化商业应用,而这些可再生能源的发电大都是小型的、星罗棋布的。 2) 保护环境的需要。CO2 排放引起的全球气候变暖问题,已引起各国政府的高度重视,并成为当今世界政治的核心议题之一。为保护环境,世界上工业发达国家纷纷立法,扶持可再生能源发电以及其他清洁发电技术(如热电联产微型燃气轮机) ,有利地推动了DG的发展。 3) 天然气发电技术的发展。对于天然气发电来说,机组容量并不明显影响机组的效率,并且天然气输送成本远远低于电力的传输,因此比较适合采用有小容量特点的DG。 4) 避免投资风险。由于难以准确地预测远期的电力需求增长情况,为规避风险,电力公司往往不愿意投资大型的发电厂以及长距离超高压输电线路。此外,高压线路走廊的选择也比较困难。这都促使电力公司选择一些投资小、见效快的DG项目来就地解决供电问题。 尽管分布式电源优点突出,但分布式电源相对于大电网来说是一个不可控电源,大电网也往往限制或隔离分布式电源。为了协调大电网与分布式电源的矛盾,学者又提出了微电网的概念。

微电网并离网控制策略研究及实现

微电网并离网控制策略研究及实现 任洛卿,唐成虹,王劲松,黄琦 南瑞集团公司(国网电力科学研究院), 江苏省南京市211106 The Research and Implementation of Micro-grid's Grid-connected & Off-Grid Control Strategy Ren Luoqing, Tang Chenghong, Wang Jinsong, Huang Qi NARI Group(SGEPRI), Nanjing, Jiangsu 210003 ABSTRACT: This paper analyzes the network structure and operation modes of micro-grid and proposes a method of grid-connected & off-grid control strategy, which is based on fast fault detection and pattern recognition. Improved half-wave Fourier algorithm is used to carry out fast protection computation of the characteristic value so as to implement fast fault detection. The characteristic value is described by logical expressions and its real-time value is used to identify the current running mode and as the criterion to implement smooth switching control between the grid-connected mode and off-grid mode. So far, this method has been successfully applied in Luxi island micro-grid demonstration project. KEY WORD: micro-grid; fast fault detection; pattern recognition; coordinated control strategy 摘要: 本文对微电网组成结构及运行模式进行分析研究,提出了故障快速检测和运行模式识别的微电网并离网控制策略方案。故障快速检测以改进的半波傅里叶计算为基础,通过对微电网特征量的快速保护运算,实现故障的快速检测。微电网并离网平滑切换控制实现方法,将微电网特征量以逻辑表达式的形式进行描述,通过读取微电网特征变量实时值,识别出微电网当前运行模式,实现微电网并离网平滑切换。目前该方法已经成功应用于鹿西岛微电网示范工程。 关键词: 微电网;故障快速检测;模式识别;协调控制策略 1 引言 微电网由分布式发电、负荷、储能等部分组成,一般与中低压配电网相连,是一种可以运行在并网模式或离网模式的小型配电网系统。随着分布式发电技术的发展,分布式电源数量快速增长。智能微源、节能降耗、提高供电质量的目的[1],因此微电网是处理大规模分布式发电接入电网的必然选择,微电网技术的发展对未来坚强电网的发展起着至关重要的作用[2-3]。 微电网有并网和离网两种状态。当电网发生故障时,微电网可离网运行,进入独立的孤岛状态。然而在微电网的发展中,微电网的运行控制尤其是并离网切换控制具有一定的难度。当电网发生故障时,分布式发电和储能设备的电力输出与实际负荷的电力需求很可能不平衡,造成大量电能缺额或电能过剩。此时需要迅速进行判断并进行相应的调节控制,使微电网能够平滑切换至离网状态运行。 现有的微电网并离网切换控制装置一般是针对特定并网方式设计,而离网控制操作过程需要人工参与[4-6],无法自动适应微电网运行方式,很难做到并离网平滑切换控制。因此,研究微电网并离网平滑切换控制策略实现方法[7-12]是保证微电网安全高效运行的迫切需求。 本文对智能微电网的并离网控制策略进行了研究,提出了包括基于快速保护运算的故障检测技术和基于模式自识别的协调控制方法。这些新技术组成的微电网并离网控制策略,使微电网可以在并网和离网模式间实现平滑切换,同时保证重要负荷的持续供电。 2 快速故障检测技术 快速的故障判断是微电网的并离网切换控制的重要基础,而更快速的故障判断需要在更短时间内完成保护量的运算。 传统的全波傅里叶变换是电力系统中经常使用的保护计算方法。 传统计算方法公式如下: N -1 电网作为智能电网的重要部分,能灵活有效地运用分布式发电和储能设备,达到最大化接纳分布式电 2 a n =x n N =0 sin(nπ 2π ) N 4∑ N

(整理)微电网并网系统的控制器的设计与分析

题目:微电网并网系统的控制器的设计与分析学院:电气工程学院 专业:电力电子与电力传动 学号:S130******** 姓名:唐福顺

摘要 ——这篇文章主要讲述了微电网并网控制器的设计与分析。控制器包括对于每个分布式电源的内部电压和电流环控制环和外部控制功率均分以及控制由并网转为孤岛运行模式下的功率分配问题的外部有功无功控制环。控制器还包括同步算法来确保当故障清除后平滑的自动并网。通过控制器的合理搭建,可以实现系统可以在并网和孤岛模式转换过程中并不影响外界的负荷。并且通过仿真和实验验证了这一结论。 引言 近年来,越来越多的新能源或者是微能源例如光伏,小型风机,燃料电池开始以分布式电源的形式并入大电网。随着分布式电源的发展,包含着许多系统化的分布式电源的微电网这个概念随之产生。与传统的集中式电源相比,微电网可以在并网和孤岛两种模式下运行,因而提高了系统的稳定性和电源质量。额外它还包含了所有单个微电网系统的优点。为了更好地控制微电网,在并网和孤岛运行模式下我们采用外部了功率环和内部电压环双重控制。这些控制算法应该在各个并联的分布式电源之间没有信息连接,可以分开单独控制。因此,每一个分布式电源的控制算法应该只使用自己当地能测量到的变量进行反馈。还有,我们还期望当大电网出现故障离网时,各个分布式电源之间能够迅速反应来合理的分配自己的输出功率来保证功率平衡以及当故障清除后微电网和大电网的再次同步运行然后平滑并网。 为了实现上述性能,本文对各个分布式电源采用一种统一的控制器设计方法。即,在控制输出电压的前提下,设计控制器控制功率环,它能够控制并网模式下的功率流动,能够保证在孤岛模式下使各个分布式电源有功和无功的合理分配,以及在再次并网之前实现微电网和大电网的再同步。这种控制器响应迅速,并且保证微电网能够在并网和孤岛两种模式下平滑转换并且不影响与其相连接的负载。通过仿真和实验验证了这种控制器设计具有良好的效果。 系统配置 Fig1展示了本文的微电网配置图,这里采用了两个并联的分布式电源DG1和DG2.每个分布式电源由直流源、PWM控制的电压源型逆变器以及LC滤波器。在正常的运行模式下,微电网通过STS(静态转换开关)在PCC点处与大电网相连接。在这种模式下,两个分布式电源来提供对负载123的功率和电压支持,这种配置减少了大电网的负担和大电网的功率传送并且提高了负荷的对大电网扰动的抗干扰能力。 Fig 1 微电网的配置 当大电网出现故障时,在半个周期内STS打开来断开微电网和大电网之间的连接,那么这

微电网保护方法及策略报告

保护方案研究报告 题目:多微电网关键技术研究 指导人: 报告人:

摘要:本文主要就基于区域纵联保护原理的保护方案进行了详述。 关键词:保护区域纵联 1、概述 同大电网一样,微网部发生故障时,通常不希望直接切掉电源,而是通过保护装置的选择性将故障部分切除,保障微网正常部分的稳定运行。微网除供电负荷外,还有一些其他的负荷,例如热负荷;因此更不能轻易切掉电源[1]。 故障按照微网的运行方式可以分为联网运行方式下的故障和孤岛运行方式下的故障;按照故障类型可以分为线路故障,负荷故障,变压器故障;按照故障位置可以分为位于分布式电源下游的故障和位于分布式电源上游的故障。 图1 微网可能发生的故障位置 评价一种运行方式是否合理,主要是看其能否提高系统的供电可靠性,所以需要对于上述各种运行方式进行可靠性评估,衡量电力系统的可靠性,主要是依据停电时间和停电次数。 文献[2]指出可以直接利用微型开关或者熔断器(保险丝)对低压侧负荷故障进行切除;并且提到在孤岛运行方式下,电压降落来源于故障,而这个故障导致的电压降落可能会传递到整个网络,所以使用不能使用电压水平作为协调保护装置,使用方向元件是最佳选择。 文献[3]提出利用先进的通信技术,将安装在断路器上的方向元件的状态信息传输个微网控制中心,微网控制中心对于各个继电器进行设置。 2、包含有DG的配网保护中出现的新问题 多微网配电系统的保护主要包括并网模式与孤岛模式下配网保护与孤岛保护。配电网系统接入DG以后,改变了原有的网络结构,原系统的潮流分布和短路电流的大小随之改变。这些改变对过流保护的整定、配置和动作特性都有影响,而影响的大小取决于保护的位置、故障点和DG接入的位置。带来的问题主要包括[4]: (1)DG降低所在线路保护的灵敏度或缩小保护围; 如图所示,DG接在线路末端,当DG下游出现故障时,由于DG向故障点送出短路电流,DG上游的线路保护R1感受到的故障电流将变小,从而降低了Rl的灵敏度,缩小了

基于虚拟同步发电机思想的微电网逆变电源控制策略

基于虚拟同步发电机思想的微电网逆变电源控制策略 作者:丁明, 杨向真, 苏建徽, DING Ming, YANG Xiangzhen, SU Jianhui 作者单位:合肥工业大学教育部光伏系统工程研究中心,安徽省合肥市,230009 刊名: 电力系统自动化 英文刊名:AUTOMATION OF ELECTRIC POWER SYSTEMS 年,卷(期):2009,33(8) 被引用次数:12次 参考文献(14条) https://www.sodocs.net/doc/c08916641.html,SSETTER R;AKHIL A;MARNAY C Integration of distributed energy resources.,the CERTS microgrid concept 2008 2.FIRESTONE R;MARNAY C Energy manager design for microgrids 2008 3.WANG Zhutian;HUANG Xinhong;JIANG Jin Design and implementation of a control system for a microgrid involving a fuel cell power module 2007 4.KATIRAEI F;IRAVANI R;HATZIARGYRIOU N Microgrids management 2008(03) 5.KROPOSKI B;LASSETER R;ISE T Making microgrids work 2008(03) 6.BARSALI S;CERAOLO M;PELACCHI P Control techniques of dispersed generators to improve the continuity of electricity 2002 7.LOPES J A P;MOREIRA C L;MADUREIRA A G Defining control strategies for microgrids islanded operation[外文期刊] 2006(02) 8.CONTI S;GRECO A M;MESSINA N Generators control systems in intentionally islanded MV microgrids 2008 9.LOPES J A P;MOREIRA C L;MADUREIRA A G Control strategies for microgrids emergency operation 2005 10.何仰赞;温增银电力系统分析 2002 11.李光琦电力系统暂态分析 1995 12.王兆安;黄俊电力电子技术 2005 13.刘维烈电力系统调频与自动发电控制 2006 14.孙莹;王葵电力系统自动化 2004 引证文献(12条) 1.时珊珊.鲁宗相.闵勇.王阳无差调频过程中微电源功率分配策略设计[期刊论文]-电力系统自动化 2011(19) 2.杨浩.牛强.吴迎霞.罗建.张磊.江宇飞负荷中心含微电网的小干扰电压稳定性分析[期刊论文]-电力系统保护与控制 2010(18) 3.郑竞宏.王燕廷.李兴旺.王忠军.王小宇.朱守真微电网平滑切换控制方法及策略[期刊论文]-电力系统自动化2011(18) 4.余宏桥.陈水明微电网中合闸空载电缆时的过电压[期刊论文]-电力系统自动化 2010(6) 5.陈卫民.汪伟.蔡慧一种智能型光伏发电逆变器设计[期刊论文]-中国计量学院学报 2009(4) 6.时珊珊.鲁宗相.闵勇.王阳微电网孤网运行时的频率特性分析[期刊论文]-电力系统自动化 2011(9) 7.苏建徽.汪长亮基于虚拟同步发电机的微电网逆变器[期刊论文]-电工电能新技术 2010(3) 8.彭铖.刘建华.潘莉丽基于虚拟同步电机原理的微网逆变器控制及其仿真分析[期刊论文]-电力科学与技术学报

微电网故障分析及保护配置开题报告

某某大学 本科毕业设计(论文)开题报告 课题名称:微电网保护开题 学院(系): 年级专业: 学生姓名: 指导教师: 完成日期:

一、综述本课题国内外研究动态,说明选题的依据和意义 如今化石能源逐渐枯竭及环境污染问题也日趋严重,寻找新的能源问题已经成为无可阻挡的事实。就电力行业而言,随着国家电网公司《关于做好分布式电源并网服务工作的意见》的发布,分布式发电相关政策密集出台[1]。分布式发电具有投资省、发电方式灵活且不污染环境等优点,然而分布式电源( Distributed Generation,DG) 具有间歇性、随机性等特点,大量并网将会给电网带来诸多不利影响[3]。微电网是一种将分布式电源、负荷、储能装置、变流器以及监控保护装置有机整合在一起的小型发配电系统。凭借微电网的运行控制和能量管理等关键技术,可以实现其并网或孤岛运行、降低间歇性分布式电源给配电网带来的不利影响[13]。但微电网的不断接入极大地改变了原来配电网的结构,必须对微电网的电能质量、控制方式以及保护方法等诸多问题进行深入研究。国内关于微电网保护的研究对于微电网的保护系统来说,其在并网和孤岛两种不同运行模式下故障电流存在巨大差异,这已成为保护整定和配置的一个难题。为此,有必要针对不同运行模式下的微电网开展精确的故障分析,从而为建立完整的微电网继电保护系统提供基础[6]。目前国内对于微电网研究主要有以下几个方面[11]: 1.在微电网并网模式和孤岛模式中采用相同的保护策略,通过相邻保护单元之间相互交换带方向的故障信息,确定故障范围,快速动作切除故障。 2.对配电网中常见的反时限过电流保护原理进行改进,在故障判据中加入低电压加速动作因子,实现无需借助通信的低电压反时限过电流微电网保护。 3.提出开发智能继电器测量线路两端的同步信息,实现微电网线路的差动保护。 4.设计了一种以工业控制计算机为核心的微电网保护系统,保护方案为利用采集到的电压参数和故障方向信息进行矩阵运算,通过运算结果判定并隔离故障区域。 5.采用以树图描述微电网的思想,将断路器看作图的边,以网络化数字保护为手段,提出了基于图模型的微电网边方向变化量矩阵保护算法。 6.针对微电网外部故障时正序分量、负序分量和零序分量关系实现故障选相,提出了基于故障分量和dq 变换的微电网单相接地故障识别方案。 7.从微电网作为一个小型发、配电系统的角度出发,提出了将微电网进行分

直流微电网的故障分析与保护配置研究

直流微电网的故障分析与保护配置研究 发表时间:2017-12-23T22:00:44.803Z 来源:《电力设备》2017年第24期作者:高为举刘贵 [导读] 摘要:近年来,直流微电网故障与保护配置问题得到了业内的广泛关注,研究其相关课题有着重要意义。 (南京南瑞集团公司(国网电力科学研究院)江苏南京 211100) 摘要:近年来,直流微电网故障与保护配置问题得到了业内的广泛关注,研究其相关课题有着重要意义。本文首先对相关内容做了概述,分析了基于直流母线电压的控制策略。在探讨应用状况分析的同时,结合相关实践经验,分别从多个角度与方面就其仿真性实验问题展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。 关键词:直流微电网;故障;保护;配置 1基于直流母线电压的控制策略 直流微网控制策略主要分为集中控制、分散控制和分布控制3种,其中分散控制不考虑直流母线变化使得各分布电源间的信息无法交互不予采用,集中控制由于需要一个传输速度较快的通信架构,目前实现较为困难,所以大部分直流微网的控制策略都选用分布控制,即基于直流母线电压的控制策略(DCbussignalcontrol)。直流母线电压的选取,依据文中对不同直流电压对负载和线路损耗的分析,得出选择直流母线电压为48V较为合适。直流微网作为电源输出时DBS的具体实现方式,变换器通过将母线电压幅值与自身工作状态阀值电压比较,进而决定工作模式。 直流系统中包含3类电能单元:新能源、储能装置和负载单元。首先,直流母线电压的幅值作为信号,分为不同控制区域。当系统直流母线电压处于状态1时,仅将新能源并入直流母线,状态2中储能装置也被加入。其中新能源的放电阀值为U0,储能装置的放电阀值为U1。当负载小于新能源最大功率点(曲线PS1)时,新能源的变换器与直流母线交互,使得仅新能源并网,并且变换器工作在恒压输出状态,调制母线电压至其放电阀值。当负载电流增大,母线电压由于下垂线的控制逐渐降低,所以,当带负载PL1时,系统工作点在A点处。当负载超过新能源最大功率点,新能源变换器检测到该状态后,改变其工作状态至恒功率输出模式,限制其输出功率为PS1。由于按PS1曲线增长,电压会跌落较多,所以为了保持母线电压在一定范围内稳定,当电压跌落至U1以下,储能装置并入,提高整个系统的工作电压,当带负载PL2时,系统工作点在B点处。 控制模块是标准双环控制,电流内环响应速度快,电压外环通过PI调节保证电压稳定。在恒压工作模式中,PI控制器使得直流母线电压调制到其放电阀值电压,电流按照内环输出额定值。同时,设置了控制器的下垂曲线保证了不同新能源和储能装置能通过变换器实现功率均分。下垂曲线公式为 U0*=Un-kI0。(1) 式(1)中:Un为变换器放电阀值;I0为输出电流;k为下垂系数。恒功率运行时,新能源的变换器跟踪新能源的最大功率点运行,储能装置在母线电压达到放电阀值后,按下垂控制支撑母线电压。以上介绍了新能源模块放电方式的控制策略,对于整个系统,储能装置作为一个能量缓冲器,其控制器根据直流母线电压的不同分为充电控制和放电控制两部分。 Ub为检测的蓄电池电压;Ubh为相对于剩余容量95%时的电压;Ubl为相对于剩余容量40%时的电压,充放电电流最大值都有相应限制;Ib*为储能变换器的参考电流;Ib为变换器实际输出电流;D*为变换器的占空比;Udc为直流母线电压测量值;Udc_ref为给定参考值。 将Udc和Udc_ref比较后通过PI调节及限流环节得到电流控制环的输入参考值Ir2,若Ub小于Ubl,则Ir2=0,此时蓄电池为充电状态,参考电流为Ir1;若Ub大于Ubl,则参考电流为Ir2,此时蓄电池为放电状态。其中,充电状态时,将Ub和Ubh比较后通过PI调节和限流环节,得到参考电流Ib1=Ib*。通过Ib*的大小决定电池工作状态,当其大于0,变换器工作在放电状态,小于零则充电状态。Ubh和Ubl的设置实现了储能的过冲过放保护。 2稳定直流微电网的办法分析 文章主要以Buck这一变换器作为实际案例进行分析,并从线性状态的角度对直流微电网稳定的相关方法进行阐述。从上述的指引中,在开环控制状态下,VC是作为调制的指令信号而存在的;在闭环控制下,则是作为闭PI这一控制器重要的输出信号而存在的。对于作为三角载波信号幅值的VTr,我们为了分析简便,首先会假设VTr等于一,即d等于VC。另外,来自恒功率负载主要的影响体现在一条反馈支路上,其不仅将负增量阻抗带给了微电网,而且还造成了有不稳定的电网情况在直流微电网中存在。 为了将恒功率负载所带来的影响因素抵消,就需要将一条线性的反馈支路引入到系统之中。分别有一个微分器以及数乘器包括在线性反馈支路之中,所引入的反馈支路并不会使系统原有的稳定平衡点发生改变,即UC和IL。经过合理性的选择反馈系数K,能够将恒功率负载所带来的负增量阻抗的不良因素消除掉,从而使整个系统的稳定性不断提高。 3应用状况分析 虽然存在于非线性反馈之路之中的微分器能够将系统整个的稳定性提高,但是与之相伴随的是噪声的放大,并且会有很多的高次谐波在电力电子变换器之中出现,因而我们在日常的工作中很少会直接采用到微分这一环节,更多是在微分环节之前将低通滤波器加入。 作为低通滤波器截止角频率的是ωr,明显可以看出其数值应当是比Buck这一变换器所显示的开关频率要小。为了对ωr以及K的取值范围进行分析,从而使系统的稳定性获得保证,就需要按照下述的方程对相关的小信号稳定性能进行分析。 4关于仿真性实验分析 为了对前述方法的有效性进行验证,文章专门对变换器所维持的微电网母线的电压情形进行了分析,在Simulink或者MATLAB办法的采用下,将直流微电网相关的仿真实验模型搭建了出来,源侧变换器其所表现出的线性状态的反馈控制是将Buck作为变换器,此时E等于四百伏,Vc等于零点五,L等于八毫亨,C等于零点五毫法,Uc等于两百伏。当源侧变换器是作为恒功率控制存在时,其最终所输出的功率为五百瓦。那么当恒功率负载最终的功率是两千五百瓦时,其系统等效恒功率负载则为Pcpl等于两千瓦;此时阻性负载电阻值应当是R等于四十欧。储能单位起所采用的横流充放电控制,其最终放电的电流是三A,也就是说变换器开关的频率在十千赫兹,该仿真实验最终的结果若没有将反馈控制支路加入到系统当中,通过相关的公式计算,能够计算出系统特征值是25±j499.375;直流微电网母线的电压同变换器电感电流之间的波形,正是因为特征值实部是比零大的,因而电感电流同直流母线电压之间的发散能够使电感电流直接下降到零的位置,此时直流母线的电压便会位置在大幅度振荡状态下;反之,当在系统中将低通滤波器以及线性反馈支路加入时,从验证中得知其ωr的取值范围是ωr>50rad/s,在这个区间内,当ωr等于每秒一千二百转时,K等于一点五乘以十的负五次方。经过演算得知其特征值实部是比零要小

微电网的保护方法_苏海滨

第44卷增刊1中南大学学报(自然科学版)V ol.44Suppl.1 2013年7月Journal of Central South University(Science and Technology)July2013 微电网的保护方法 苏海滨,穆春阳,王娜,刘江伟 (华北水利水电大学电力学院,河南郑州,450011) 摘要:提出了一种用于电力电子接口的微电网系统故障保护方法,该方法能够快速可靠地检测微电网内不同类型的故障。微电网保护单元利用基于差动和对称电流分量的探测方法可以检测到微电网不同类型故障电流,控制相应的断路器动作,隔离故障区域,以保护微电网。仿真和实验结果验证了该方法的有效性。 关键词:微电网保护;分布式电源;电流序分量 中图分类号:TM764文献标志码:A文章编号:1672?7207(2013)S1?0407?04 Method of micro-grid Protection SU Haibin,MU Chunyang,WANG na,LIU Jiangwei (Electric Power School,North China University of Water Conservancy and Electric Power,Zhengzhou450011,China) Abstract:A novel fault detection method of Micro-grid system based on differential and current sequence components was proposed.This method provides reliable and fast detection for different types of faults within the micro-grid.The fault position was detected based on differential and current sequence components by the protection units.The associated breaker was tripped to isolate the faults section from the network.The experiment and simulation results show that the method is very effective for detecting different types of faults within the micro-grid. Key words:micro-grid protection;distributed generation;current sequence components 微电网是指由分布式电源、储能装置、能量转换装置、相关负荷和监控、保护装置汇集而成的小型发配电系统,是一个能够实现自我控制、保护和管理的自治系统,既可以与外部电网并网运行,也可以孤立运行[1?2]。正常情况下微电网与大电网并网连接运行,此时微电网故障保护与传统故障保护一样。当微电网进入孤岛运行模式时,微电网中故障电流相对较小,并且微电网内功率流方向是双向流动,使得传统继电保护不再适用于微电网,因此,必须寻找新的保护方法和措施[3?4]。 1微电网结构 图1所示为微电网的单线连接示意图。微电网包括:静态开关和微电源。微电网含有3个微电源,分别为A1、A2和B1;4个本地负载,分别为L1、L2、L3和L4。每一个微电源可以提供的最大输出功率为100kW,每个负载消耗的最大功率不超过120kW,整个微电网负载总功率不应超过240kW。微电网和主电网之间连接有一个静态开关SS(Static Switch)。微电网和主电网合起来共划分5个保护区域,如图1所示。当微电网中出现故障、电能质量问题或IEEE1547标准中描述的问题时,引起电网扰动,静态开关断开微电网和主电网的连接,微电网进入孤岛模式运行,微电网中不再出现跳闸事件后静态开关能重新自动连接[5?6]。 收稿日期:2013?03?01;修回日期:2013?05?02 基金项目:国家电网公司项目(2010GW1046) 通信作者:苏海滨(1964?),男,河南南阳人,博士,教授,从事电力电子技术及电力系统自动控制研究;电话:0371?69127263; E-mail:suhaibin@https://www.sodocs.net/doc/c08916641.html,

微电网控制策略研究

微电网控制策略研究Last revision on 21 December 2020

微电网控制策略研究1.分布式电源及其等效模型 1.1分布式电源的定义 国际上关于分布式发电的定义较多,没有形成对分布式发电的统一定义,不仅不同国家和组织,甚至是同一国家的不同地区对分布式发电的理解和定义都不尽相同,以下是几种比较有代表性的:(1)国际能源署对分布式发电的定义为:服务于当地用户或当地电网的发电站,包括内燃机、小型或微型燃气轮机、燃料电池和光伏发电技术,以及能够进行能量控制及需求侧管理的能源综合利用系统;(2)美国《公共事业管理政策法》对分布式发电的定义为:小规模、分散布置在用户附近,可独立运行、也可以联网运行的发电系统;(3)丹麦对分布式发电的定义为:靠近用户,不连接到高压输电网,装机规模小于10MW的能源系统;(4)德国对分布式发电的定义为:位于用户附近,接入中低压配电网的电源。接入电压等级限制为20kV,主要包括光伏、风电和小水电;(5)法国对分布式发电的定义为:接入低压配电网,直接向用户供电的电源。接入电压等级限制为20kV,容量限制为10MW,主要是热电联产、小水电和柴油机。综合以上几种定义的共同点,可以认为分布式电源指的是以新能源发电为主,容量较小且靠近负荷中心的发电设备,如小型风力发电机和光伏电池等。 目前,微电网示范工程中的分布式电源主要包括柴油机、微型燃气轮机、小型水力发电机、小型风机、燃料电池和光伏电池,此外,还有少数的生物柴油机、液流电池、超级电容、飞轮储能等。

1.2分布式电源的并网方式 虽然各种分布式电源都可以接入微电网为负荷供电,但由于它们自身的一下特点和微电网对电能质量及供电可靠性的要求,各类分布式电源的并网方式不尽相同。小型水力发电机、鼠笼型异步风机和柴油机等小型常规发电机输出稳定,可直接并网。光伏电池、燃料电池和直流风机等直流分布式电源输出直流电,通常需要经逆变器接入交流微电网,这种并网方式称为直—交式并网。微型燃气轮机和同步风力发电机输出幅值频率变化的交流电电气量,需要整流逆变后才能并网,这种并网方式称为交—直—交并网,对应的分布式电源统称交直

微电网协调运行控制策略_本科论文

XX大学 本科学位论文题目:微电网协调运行控制策略 摘要

本文主要通过进行了理论研究、仿真平台搭建,研究微电网综合协调控制策略,,仿真结果分析,为后续微电网的深入研究奠定了基础。 本文设计了PQ 控制器、基于下垂特性的V/f 控制器,并对逆变器输出滤波器进行了设计。同时,针对PI 控制器的不足,利用模型预测控制方法设计了微网中分布式微电源逆变器的PQ 模型预测控制策略和基于下垂特性的V/f 模型预测控制策略, 并在MATLAB/Simulink 中建立了仿真模型,对单个微电源分别采用PI 控制和MPC 控制时的不同场景进行了分析,证明了MPC 控制器的效果。 最后,建立了微电网的模型,用风力发电机组、光伏以及蓄电池三种微电源的模型代替直流电压源,并设计相应的控制策略,在MATLAB/Simulink 中,搭建了整个系统的模型,分别在风机和光伏阵列出口处配置蓄电池,用于平抑并网功率并在孤岛下提高电压和频率支撑,仿真结果验证了控制策略的可行性。 关键词:微电网;综合协调控制;风光储;逆变器;模型预测控制

Study on the Coordination Control Strategy of Wind-Solar-Storage Micro-grid Abstract This paper mainly studies the micro-grid integrated and coordinated control strategies, and, by theoretically analyzing, simulation platform construction, and simulation results analyzing, laid the foundations for subsequent in-depth study of micro-grid. In this paper, a PQ controller, a V/f controller based on droop characteristic and the inverter output filter has been designed. Meanwhile, considering PI controller’s insufficiency, the Model Predictive Control strategy was used to design the converter’s PQ model predictive control strategy and V/f model predictive control strategy based on droop characteristics, and the simulation model was established in MATLAB/Simulink. Then, by simulating a single micro-source respectively using PI controller and MPC controller in different scenes and by afterward analyzing and comparing, the effectiveness of MPC controllers was proved. After single micro-source’s integrating strategy research, the model of micro-grid with multiple micro-sources was built, and through the simulating and analyzing under 3 conditions: the micro-grid operation mode switching, cutting or adding load in island mode, cutting a micro-source in island mode, it is found that the micro-source MPC controller designed in this thesis achieved a sound power control behavior under the aforementioned three conditions. Meanwhile, both the micro-grid’s voltage and frequency were within the required range of the system, which proves the effectiveness of control strategies. Last, the wind-solar-storage micro-grid model was built, which used a wind power generation system, a photovoltaic cell and a storage battery to replace DC voltage sources, along with the design of corresponding control strategies. The whole model of the system was then built in MATLAB/Simulink, in which a storage battery was placed respectively in the outlet of wind power generation system and the export of PV array column, for stabilizing grid power and offer voltage and frequency support in island mode. The simulation results validated the feasibility of the control strategies. Key Words: Micro-grid;Integrated coordination control;Wind-Solar-Storage;Converter;Model Predictive Control

微电网介绍

微电网介绍 一、定义 微电网(Micro-Grid):由分布式电源、储能装置、能量转换装置、负荷、监控和保护装置等组成的小型发配电系统。微电网是一个能够实现自我控制、保护和管理的自治系统,既可以与外部电网并网运行也可以孤立运行。 微电网是相对传统大电网的一个概念,多个分布式电源及其相关负载按照一定的拓扑结构组成的网络,并通过静态开关关联至常规电网。开发和延伸微电网能够充分促进分布式电源与可再生能源的大规模接入,实现对负荷多种能源形式的高可靠供给,是实现主动式配电网的一种有效方式,是传统电网向智能电网过渡。 分布式能源(DER):一般定义为包括分布式发电(DG)、储能装置(ES)和与公共电网相连的系统。其中DG是指满足终端用户的特殊需求,接在用户侧的小型发电系统,主要有内燃机,微型燃气轮机、燃料电池、太阳能、风能等发电; 二、微电网的结构

三、微电网的架构 微电网的体系结构一般采用国际上比较成熟的三层结构(许继的示范工程也是如此):配电网调度层、微电网集中控制层、分布式电源和负荷就地控制层。 四、微电网的两种运行模式 微电网存在两种典型的运行模式:正常情况下微电网与常规配电网并网运行,称为联网模式;当检测到电网故障或电能质量不满足要求时,微电网将及时与电网断开而独立运行,称为孤岛模式。两者之间的切换必须平滑而快速。微电网相对于外部大电网表现为单一的受控单元,并可同时满足用户对电能质量和供电安全等方面的要求。微电网内部的电源主要由电力电子器件负责能量的转换,并提供必要的控制。

(1)并网运行:微电网与公用大电网相连,微网断路器闭合,与主网配电系统进行电能交换。光伏系统并网发电。储能系统可进行并网模式下的充电与放电操作。并网运行时可通过控制装置转换到离网运行模式。 (2)离网运行:也称孤岛运行,是指在电网故障或计划需要时,与主网配电系统断开,由DG、储能装置和负荷构成的运行方式。储能变流器PCS工作于离网运行模式为微网负荷继续供电,光伏系统因母线恢复供电而继续发电,储能系统通常只向负载供电。

相关主题