搜档网
当前位置:搜档网 › 转速电流双闭环直流调速系统仿真设计

转速电流双闭环直流调速系统仿真设计

转速电流双闭环直流调速系统仿真设计
转速电流双闭环直流调速系统仿真设计

转速电流双闭环直流调速系统仿真

摘要:本设计主要研究了直流调速转速电流双闭环控制系统以及对MATLAB软件的使用。系统模型由晶闸管-直流电动机组成的主电路和转速电流调节器组成的控制电路两部分组成。主电路采用三相可控晶闸管整流电路整流,用PI调节器控制,通过改变直流电动机的电枢电压从而进行调压调速。控制电路设置两个PI调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者实行嵌套连接,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE,形成转速电流双闭环直流调速系统。在Simulink中建立仿真模型,设置各个模块的参数,仿真算法和仿真时间,运行得出仿真模型的波形图。通过对波形图的分析,说明直流调速转速电流双闭环控制系统具有良好的静态和动态特性。

关键词:双闭环直流调速系统,MATLAB/SIMULINK仿真,ASR,ACR。

课程概述:直流调速是现代电力拖动自动控制系统中发展较早的技术。随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。其次并基于双闭环的电气原理图的SIMULINK的仿真,分析了直流调速系统的动态抗干扰性能。采用工程设计方法

对双闭环系统进行合理的设计,并选择了转速调节器,电流调节器以及对它进行参数的计算,分析,得出了系统的的稳态以及动态结构图,并由此建立起了基于跟随性和抗干扰性的SIMULINK的仿真模型。最后分析了仿真波形,并进行了合理的调试,规划结构,反复试凑以解决系统的稳、准、快和抗干扰等各方面的矛盾,达到建立更简便实用的工程设计方法的可能!

一.转速电流双闭环直流调速系统仿真的原理

1.1系统的组成

转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。采用PI调节的单个转速闭环调速系统可以在保证系统稳定的前提下实现转速无静差。但是对系统的动态性能要求较高的系统,单闭环系统就难以满足需要了。

为了实现在允许条件下的最快启动,关键是要获得一段使电流保持为最大值

的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量

基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。所以,我们希望达到的控制:启动过程只有电流负反馈,没有转速负反馈;达到稳态转速后只有转速负反馈,不让电流负反馈发挥作用。故而采用转速和电流两个调节器来组成系统。

为了实现转速和电流两种负反馈分别起作用,可以在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接,如图1-1所示。把转速调节器的输出当作电流调节器的输入,再把电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速换在外边,称作外环。这就形成了转速、电流双闭环调速系统。

图1-1 转速、电流双闭环直流调速系统

1.2 系统的原理图

为了获得良好的静、动态性能,转速和电流两个调节器一般都采用PI调节器,这样组成的直流双闭环调速系统原理图如图1-2所示。图中ASR为转速调节器,ACR为电流调节器,TG表示测速发电机,TA表示电流互感器,UPE是电力电子变换器。图中标出了两个调节器出入输出电压的实际极性,它们是按照电力电子变换器的了控制电压U C为正电压的情况标出的,并考虑到运算放大器的倒相作用。图中还标出了两个调节器的输出都是带限幅作用的,转速调节器ASR的输出限幅电压决定了电流给定电压的最大值,电流调节器ACR的输出限

幅电压限制了电力电子变换器的最大输出电压。

图1-2 双闭环直流调速系统电路原理图

第二章转速、电流双闭环直流调速器的设计

2.1 电流调节器的设计

2.1.1 电流环结构框图的化简

在图2-1点画线框内的电流环中,反电动势与电流反馈的作用互相交叉,这将给设计工作带来麻烦。实际上,反电动势与转速成正比,它代表转速对电流环的影响。在一般情况下,系统的电磁时间常数T L远小于机电时间常数T m,因此,转速的裱花往往比电流变化慢得多,对电流环来说,反电动势是一个变化较慢的扰动,在电流的瞬变过程中,可以认为反电动势基本不变,即。这样,在按动态性能设计电流环时,可以暂不考虑反电动势变化的动态影响,也就是说,可以暂且把反电动势的作用去掉,得到电流环的近似结构框图,如图2-1所示。可以证明,忽略反电动势对电流环作用的近似条件是

式中-----电流环开环频率特性的截止频率。

图2-1 忽略反电动势的动态影响时电流环的动态结构框图

如果把给定滤波和反馈滤波两个环节都等效地移到环内,同时把给定信号改

成,则电流环便等效成单位负反馈系统,如图2-2所示,从这里可以看出两个滤波时间常数取值相同的方便之处。

图2-2 等效成单位负反馈系统时电流环的动态结构框图

最后,由于T S和T OI一般都比T L小得多,可以当作小惯性群而近似看作是一个惯性环节,其时间常数为

则电流环结构框图最终简化成图2-3。简化的近似条件为

图2-3 小惯性环节近似处理时电流的动态结构框图

2.1.2 电流调节器结构的选择

从稳态要求上看,希望电流无静差,以得到理想的堵转特性,由图2-3可以

看出,采用型系统就够了。再从动态要求上看,实际系统不允许电枢电流在

突加控制作用时有太大的超调,以保证电流在动态过程中不超过允许值,而对电网电压波动的及时抗扰作用只是次要的因素。为此,电流环应以跟随性能为主,

即应选用典型型系统。

图2-3表明,电流环的控制对象是双惯性的,要校正成典型型系统,显然应采用PI 型的电流调节器,其传递函数可以写成

式中——电流调节器的比例系数;

——电流调节器的超前时间常数。

为了让调节器零点与控制对象的大时间常数极点对消,选择

则电流环的动态结构框图便成为图2-4所示的典型形式,其中

图2-4 校正成典型型系统的电流环动态结构框图

2.1.3 电流调节器的参数计算

1.确定时间常数

1)整流装置滞后时间常数。三相桥式电路的平均失控时间

2)电流滤波时间常数。取。

3)电流环小时间常数之和。按小时间常数近似处理,取

4)电磁时间常数、机电时间常数

电动势系数。;;

2.选择电流调节器结构

根据设计要求,并保证稳态电流无静差,可按典型型系统设计电流调节器。电流环控制对象是双惯性的,因此可采用PI 型电流调节器。传递函数为:

W ACR(s)=

检查对电源电压的抗扰性能:,

3.计算电流调节器参数

电流反馈系数:

电流调节器超前时间常数:。

电流环开环增益:要求时,按表2-2,应取,因此

4.校验近似条件

电流环截止频率:

(1)晶闸管整流装置传递函数的近似条件

满足近似条件。

(2)忽略反电动势变化对电流环动态影响的条件

满足近似条件。

(3)电流环小时间常数近似处理条件

满足近似条件。

5.计算调节电阻和调节电容

由图2-5,按所用运算放大器取,各电阻和电容值为

,取58

取0.65

取0.1

按照上述参数,电流环可以达到的动态跟随性能指标为,满足

设计要求。

2.1.4 电流调节器的实现

含给定滤波和反馈滤波的模拟式PI 型电流调节器原理图如图2-5所示。图中为电流给定电压,为电流负反馈电压,调节器的输出就是电力电子变换器的控制电压U C。

根据运算放大器的电路原理,可以容易地导出

图2-5 含给定滤波与反馈滤波的PI 型电流调节器

2.2 转速调节器的设计

2.2.1 电流环的等效闭环传递函数

电流环经等效后可视作转速换中的一个环节,为此,需求出它的闭环传递函数。由图2-4可知

忽略高次项,可降阶近似为

近似条件为

式中——转速环开环频率特性的截止频率。

接入转速换内,电流环等效环节的输入量应为(s),因此电流环在转速环中应等效为

这样,原来是双惯性环节的电流环控制对象,经闭环控制后,可以近似地等效成

只有较小时间常数的一阶惯性环节。

2.2.2 转速调节器结构的选择

用电流环的等效环节代替电流环后,整个转速控制系统的动态结构图便如图2-6所示。

图2-6 用等效环节代替电流环后转速环的动态结构框图把转速给定滤波和反馈滤波环节移到环内,同时将给定信号改成U*n(s)/ ,再把时间常数为1 / K I 和T0n 的两个小惯性环节合并起来,近似成一个时间常数为的惯性环节,其中

则转速环结构框图可化简成图2-7

图2-7 等效成单位负反馈系统和小惯性的近似处理后转速换的动态结构框

为了实现转速无静差,在负载扰动作用点前面必须有一个积分环节,它应该包含在转速调节器ASR 中(见图2-7),现在在扰动作用点后面已经有了一个积分环节,因此转速环开环传递函数应共有两个积分环节,所以应该设计成典型Ⅱ型系统,这样的系统同时也能满足动态抗扰性能好的要求。由此可见,ASR 也应该采用PI调节器,其传递函数为

式中——转速调节器的比例系数;

——转速调节器的超前时间常数。

这样,调速系统的开环传递函数为

令转速环开环增益为

不考虑负载扰动时,校正后的调速系统动态结构框图如图2-8所示。

图2-8 校正后成为典型系统时转速环的动态结构框图

2.2.3 转速调节器的参数计算

1.确定时间常数

1)电流环等效时间常数1/K I :已取,则

2)转速滤波时间常数: 根据所用测速发电机纹波情况,取

3)转速环小时间常数:按小时间常数近似处理,取

2.选择转速调节器结构

按照设计要求,选用PI 调节器,其传递函数为

3. 计算转速调节器参数

按跟随和抗扰性能都较好的原则,取h=3,则ASR的超前时间常数为

转速环开环增益

ASR的比例系数为

4.检验近似条件

转速环截止频率为

1)电流环传递函数简化条件

满足简化条件。

2)转速环小时间常数近似处理条件为

满足近似条件。

5. 计算调节器电阻和电容

根据图2-9,取,则

取424

取0.11

取1。

2.2.4 转速调节器的实现

含给定滤波和反馈滤波的PI型转速调节器原理图如图2-9所示,图中为转速给定电压,为转速负反馈电压,调节器的输出是电流调节器的给定电压。

转速调节器参数与电阻、电容值的关系为

图2-9 含给定滤波与反馈滤波的PI型转速调节器

第三章系统仿真

本设计运用Matlab的Simulink来对系统进行模拟仿真。根据图3-1以及上面计算出的系统参数,可以建立直流双闭环调速系统的动态仿真模型,如图3-2所示。

图3-1直流双闭环调速系统的实际动态结构框图

仿真原理图

图3-2直流双闭环调速系统的仿真原理图

仿真结果

根据以上所示添加元器件,然后合理地设置参数,并进行仿真,其波形如下:a)电枢两端的电压:

b)转速相应:

c)电流相应:

3.1仿真分析

从转速和电流波形可以看到,在起动阶段电动机以恒流起动,在0.4s时起动过程结束,电枢电流下降到零,转速上升到最高且最高大于1450r/min,尽管转速已经超调,电路给定变“-”,但是本系数为不可逆调速系统晶闸管整流装置不能产生反向电流,这是电枢电流为零,电动机的电磁转矩也为零,没有反向制动转矩。

又因为是在理想空载起动状态,所以电动机保持在最高转速状态。0.5s后加上负载,电动机转速下降,ASR开始退饱和,电流环发挥调节作用,使电动机稳定在给定转速上。

这结果与按双闭环调速系统动态结构图分析的结构有质的不同,不同在于,在动态结构图中由于晶闸管整流器的传递函数是线性的,输出电压可以变成负,电动

机电流出现负值,因此从调节过程来看按动态结构图的仿真速度较快。

以上的这些是电动机在空载时的情况,如果是电动机带负载起动,那么这两者是基本相同。

总的来说,波形还算理想,比较接近与实际的情况。

4.1总结

通过这次的专业课程设计,尤其是对 MATLAB的完全不理解到后来的基本能运用其来进行一些简单电路的仿真,确实感觉到了它的强大的作用,对电路仿真这一块是一个不错的选择。强大的功能,丰富的元器件是进行电路仿真不可缺少的工具,我想在以后的仿真中,它一定会帮助我们更多,这次仿真深受其好处。

本来还以为这次专业课程设计还很简单,可是刚一上手,却发现并不是那么简单,尤其是MATLAB中的函数、变量以及许多的模块,太多了,加上又对英语不是很熟悉,给我在找元器件的时候带来了不少麻烦。不过,虽然付出了不少汗水和努力,以及在老式合同学的帮助下,让我对这款软件有了进一步的熟悉和了解,我想以后一定还会用到它的。

参考文献

[1] 陈伯时. 电力拖动自动控制系统—运动控制系统第3版[M]. 北京:机械工业出版社, 2007.

[2] 王兆安, 黄俊. 电力电子技术第4版[M]. 北京:机械工业出版社, 2000.

[3] 任彦硕. 自动控制原理[M]. 北京:机械工业出版社, 2006.

[4] 洪乃刚. 电力电子和电力拖动控制系统的MATLAB仿真[M]. 北京:机械工业出版社, 2006.

转速电流双闭环直流调速系统实训设计说明

摘要 电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 本次设计的主要任务就是应用自动控制理论和工程设计的方法对直流调速系统进行设计和控制,设计出能够达到性能指标要求的电力拖动系统的调节器,通过在DJDK-1型电力电子技术及电机控制试验装置上的调试,并应用MATLAB软件对设计的系统进行仿真和校正以达到满足控制指标的目的。

在转速闭环直流调速系统中,只有电流截止负反馈环节对电枢电流加以保护,缺少对电枢电流的精确控制,也就无法充分发挥直流伺服电动机的过载能力,因而也就达不到调速系统的快速起动和制动的效果。通过在转速闭环直流调速系统的基础上增加电流闭环,即按照快速起动和制动的要求,实现对电枢电流的精确控制,实质上是在起动或制动过程的主要阶段,实现一种以电动机最大电磁力矩输出能力进行启动或制动的过程。 一、设计要求 设一个转速、电流双闭环直流调速系统,采用双极式H桥PWM方式驱动,已知电动机参数为:

转速电流双闭环可逆直流调速系统仿真与设计方案

《运动控制》课程设计题目:转速,电流双闭环可逆直流宽频调速系统设计 系部:自动化系 专业:自动化 班级:自动化1班 学号:11423006 11423025 11423015 姓名:杨力强.丁珊珊.赵楠 指导老师:刘艳 日期:2018年5月26日-2018年6月13日

一、设计目的 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MA TLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 二、系统设计参数 直流电动机控制系统设计参数:< 直流电动机(3> ) 输出功率为:5.5Kw 电枢额定电压220V 电枢额定电流 30A 额定励磁电流1A 额定励磁电压110V 功率因数0.85 电枢电阻0.2欧姆 电枢回路电感100mH 电机机电时间常数1S 电枢允许过载系数=1.5 额定转速 970rpm 直流电动机控制系统设计参数 环境条件: 电网额定电压:380/220V。电网电压波动:10%。 环境温度:-40~+40摄氏度。环境湿度:10~90%. 控制系统性能指标: 电流超调量小于等于5%。 空载起动到额定转速时的转速超调量小于等于30%。 调速范围D=20。 静差率小于等于0.03.

1、设计内容和数据资料 某直流电动机拖动的机械装置系统。 主电动机技术数据为: ,,,电枢回路总电阻,机电时间常数 ,电动势转速比,Ks=40,,Ts=0.0017ms,电流反馈系数,转速反馈系数,试对该系统进行初步设计。2、技术指标要求 电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间,电流超调量,空载起动到额定转速时的转速超调量。 三、主电路方案和控制系统确定 主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器。其中属于脉宽调速系统特有的部分主要是UPM、逻辑延时环节DLD、全控型绝缘栅双极性晶体管驱动器GD和PWM变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差, 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流原理图

双闭环直流调速系统设计及仿真

双闭环直流调速系统设计及仿真 一转速、电流双闭环控制系统 一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。这种理想的起动过程如图1所示。 n n t 图1 转速调节系统理想起动过程 为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。因此很自然地想到要采用电流负反馈控制过程。这里实际提到了两个控制阶段。起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。如图2所示。 图2 双闭环直流调速控制系统原理图 参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。如图3所示。

图3 双闭环直流调速系统动态结构图 在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。 二双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。 第Ⅰ阶段:0~t1是电流上升阶段。突加给定电压后,通过两个调节器的控制作用,使、、都上升,当后,电动机开始转动。由于机电惯性的作用,转速的增长不会太快,因而ASR的输入偏差电压数值较大并使其输出达到饱和值,强迫电流迅速上升。当时,,电流调节器ACR的作用使不再迅速增加,标志着这一阶段的结束。 在这一阶段中,ASR由不饱和很快达到饱和,而ACR一般应该不饱和,

转速电流双闭环直流调速系统 课程设计

课程设计任务书 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:U N=220V,I N=205A,=575r/min , R a=0.1,电枢电路总电阻R=0.2,电枢电路总电感L=7.59mH,电流允许过载倍数,折算到电动机轴的飞轮惯量。 晶闸管整流装置放大倍数,滞后时间常数 电流反馈系数( 转速反馈系数() 滤波时间常数取,。 ;调节器输入电阻R0=40。 设计要求: 稳态指标:无静差; 动态指标:电流超调量;空载起动到额定转速时的转速超调量。

目录 课程设计任务书 (1) 第一章直流双闭环调速系统原理 (3) 1.1系统的组成 (3) 1.2 系统的原理图 (4) 第二章转速、电流双闭环直流调速器的设计 (6) 2.1 电流调节器的设计 (6) 2.2 转速调节器的设计 (13) 第三章系统仿真 (21) 心得体会 (26) 参考文献 (27)

第一章直流双闭环调速系统原理 1.1系统的组成 转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。采用PI调节的单个转速闭环调速系统可以在保证系统稳定的前提下实现转速无静差。但是对系统的动态性能要求较高的系统,单闭环系统就难以满足需要了。 为了实现在允许条件下的最快启动,关键是要获得一段使电流保持为最大值的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。所以,我们希望达到的控制:启动过程只有电流负反馈,没有转速负反馈;达到稳态转速后只有转速负反馈,不让电流负反馈发挥作用。故而采用转速和电流两个调节器来组成系统。 为了实现转速和电流两种负反馈分别起作用,可以在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接,如图1-1所示。把转速调节器的输出当作电流调节器的输入,再把电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速换在外边,称作外环。这就形成了转速、电流双闭环调速系统。

实验二转速、电流双闭环直流调速系统

实验二 转速、电流双闭环直流调速系统 一、实验目的 1.了解转速、电流双闭环直流调速系统的组成。 2.掌握双闭环直流调速系统的调试步骤,方法及参数的整定。 3.测定双闭环直流调速系统的静态和动态性能及其指标。 4.了解调节器参数对系统动态性能的影响。 二、实验系统组成及工作原理 双闭环调速系统的特征是系统的电流和转速分别由两个调节器控制,由于调速系统调节的主要参量是转速,故转速环作为主环放在外面,而电流环作为副环放在里面,可以及时抑制电网电压扰动对转速的影响。实际系统的组成如实验图2-1所示。 实验图2-1 转速、电流双闭环直流调速系统 主电路采用三相桥式全控整流电路供电。系统工作时,首先给电动机加上额定励磁,改 变转速给定电压* n U 可方便地调节电动机的转速。速度调节器ASR 、电流调节器ACR 均设有 限幅电路,ASR 的输出*i U 作为ACR 的给定,利用ASR 的输出限幅*im U 起限制起动电流的作 用;ACR 的输出c U 作为触发器TG 的移相控制电压,利用ACR 的输出限幅cm U 起限制αmin 的作用。 当突加给定电压*n U 时,ASR 立即达到饱和输出* im U ,使电动机以限定的最大电流I dm 加速起动,直到电动机转速达到给定转速(即* n n U U )并出现超调,使ASR 退出饱和,最后稳 定运行在给定转速(或略低于给定转速)上。 三、实验设备及仪器 1.主控制屏NMCL-32 2.直流电动机-负载直流发电机-测速发电机组 3. NMCL -18挂箱、NMCL-333挂箱及电阻箱 4.双踪示波器 5.万用表 四、实验内容

1.调整触发单元并确定其起始移相控制角,检查和调整ASR 、ACR ,整定其输出正负限幅值。 2.测定电流反馈系数β和转速反馈系数α,整定过电流保护动作值。 3.研究电流环和转速环的动态特性,将系统调整到可能的最佳状态,画出)(t f I d =和)(t f n =的波形,并估算系统的动态性能指标(包括跟随性能和抗扰性能) 。 4.测定高低速时系统完整的静特性)(d I f n =(包括下垂段特性),并计算在一定调速范围内系统能满足的静态精度。 五、实验步骤及方法 1.多环调速系统调试的基本原则 (1)先部件,后系统。即先将各环节的特性调好,然后才能组成系统。 (2)先开环,后闭环。即先使系统能正常开环运行,然后在确定电流和转速均为负反馈后组成闭环系统。 (3)先内环,后外环。即闭环调试时,先调电流内环,然后再调转速外环。 2.单元部件参数整定和调试 (1)主控制屏开关按实验内容需要设置 (2)触发器整定 将面板上的U blf 端接地,调整锯齿波触发器的方法同实验1。 (3)调节器调零 断开主回路电源开关SW ,给定电压U g 接到零速封锁器DZS 输入端,并将DZS 的输出接到ASR 和ACR 的封锁端。控制系统按开环接线,ASR 、ACR 的反馈回路电容短接,形成低放大系数的比例调节器。 a)ASR 调零 将调节器ASR 的给定及反馈输入端接地,调节ASR 的调零电位器,使ASR 的输出为零。 b)ACR 调零 将调节器ACR 的给定及反馈输入端接地,调节ACR 的调零电位器,使ACR 的输出为零。 (4)调节器输出限幅值整定 a)ASR 输出限幅值整定 ASR 按比例积分调节器接线,将U g 接到ASR 的输入端,当输入U g 为正而且增加时,调节 ASR 负限幅电位器,使ASR 输出为限幅值* im U ,其值一般取为8~6--V 。 b)ACR 输出限幅值整定 整定ACR 限幅值需要考虑负载的情况,留有一定整流电压的余量。ACR 按比例积分调节器接线,将g U 接到ACR 的输入端,用ACR 的输出c U 去控制触发移相,当输入g U 为负且增加时,通过示波器观察到触发移相角α移至οο30~15min =α时的电压即为ACR 限幅值U cm ,可通过ACR 正限幅电位器锁定。 3.电流环调试(电动机不加励磁) (1)电流反馈极性的测定及过电流保护环节整定。 整定时ASR 、ACR 均不接入系统,系统处于开环状态。直接用给定电压g U 作为c U 接到移相触发器GT 以调节控制角α,此时应将电动机主回路中串联的变阻器M R 放在最大值处,

案例转速电流双闭环直流调速系统

案例转速、电流双闭环直流调速系统 一、概述 现以ZCC1系列晶闸管—电动机直流调速装置(简称ZCC1系列)为例,来阐述晶闸管—电动机直流调速系统分析、调试的一般方法与步骤。该装置的基本性能如下: (1)装置的负荷性质按连续工作制考核。 (2)装置在长期额定负荷下,允许150%额定负荷持续二分钟,200%额定负荷持续10秒钟,其重复周期不少于1小时。 (3)装置在交流进线端的电压为(0.9~1.05)380伏时,保证装置输出端处输出额定电压和额定电流。电网电压下降超过10%范围时输出额定电压同电源电压成正比例下降。 (4)装置在采用转速反馈情况下,调速范围为20∶1,在电动机负载从10%~100%额定电流变化时,转速偏差为最高转速的0.5%(最高转速包括电动机弱磁的转速)。转速反馈元件采用ZYS型永磁直流测速发电机。 (5)装置在采用电动势反馈(电压负反馈、电流正反馈)时,调速范围为10∶1,电流负载从10%~100%变化时,转速偏差小于最高转速的5%(最高转速包括电动机弱磁的转速)。 (6)装置在采用电压反馈情况下,调压范围为20∶1,电流负载从10%~100%变化时,电压偏差小于额定电压的0.5%。 (7)装置给定电源精度,在电源电压下降小于10%以及温度变化小于±10℃时,其精度为1%。 二、系统的组成 1、主电路 ZCC1系列装置主电路采用三相桥式全控整流电路,交流进线电源通过三相整流变压器或者交流进线电抗器接至380V交流电源。为了使电机电枢电流连续并减小电流脉动以改善电动机的发热和换向,在直流侧接有滤波电抗器L。 2、控制系统 ZCC1系列晶闸管直流调速装置的控制系统采用速度(转速)电流双闭环控制系统,其原理方框图如图3-1所示

双闭环调速系统课程设计

目录页 第一章绪论 (2) 1-1课题背景,实验目的与实验设备 (2) 1-2国内外研究情况 (3) 第二章双闭环调速系统设计理论 (3) 2-1典型Ⅰ型和典型Ⅱ型系统 (3) 2-2系统的静,动态性能指标 (4) 2-3非典型系统的典型化 (6) 2-4转速调节器和电流调节器的设计 (7) 第三章模型参数测定和模型建立 (9) 3-1系统模型参数测定实验步骤和原理 (9) 3-2模型测定实验的计算分析 (11) 3-3系统模型仿真和误差分析 (18) 第四章工程设计方法设计和整定转速,电流反馈调速系统 (22) 4-1 设计整定的思路 (22) 4-2 电流调节器的整定和电流内环的校正,简化 (23) 4-3转速调节器的整定和转速环的校正,简化 (25) 4-4系统的实际运行整定 (27) 4-5 关于ASR和ACR调节器的进一步探讨…………………………………… 33 第五章设计分析和心得总结 (34)

5-1实验中出现的问题 (34) 5-2实验心得体会 (35) 第六章实验原始数据 (38) 6-1建模测定数据 (38) 6-2 系统调试实验数据 (39) 第一章绪论 1-1课题背景,实验目的与实验设备 转速,电流反馈控制的调速系统是一种动静态特性优良的直流调速系统,它的控制规律是建立在经典控制规律的基础上的,用传递函数建立动态数学模型,并从传递函数模型和开环频域特性去总结其控制规律,用跟随和抗扰两个方面的指标去衡量它的动静态性能。转速,电流反馈控制的调速系统是一种串级系统,所以其整定系统参数的方法也借鉴了一般串级系统的差别,但又有不同于一般串级系统的。 本次实验的主要目的是针对一套调速系统(包括电源,电机,励磁回路等)建立模型并整定出带滤波的电流调节器和转速调节器参数,投入运行。实验正值暑期实践及国际交流周,我们将用两周的时间来完成参数测定实验,系统建模,调节器整定和系统投入运行。 本次实验的实验设备包括:

双闭环控制系统设计

双闭环控制系统设计 课程设计报告 电力拖动自动控制系统课程设计 题目:双闭环控制系统设计学生姓名:董长青专业:电气自动化技术专业班级: Z070303 学号: Z07030330 指导教师:姬宣德 日期:2010年03月10日 随着现代工业的发展,在调速领域中,双闭环控制的理念已经得 到了越来越广泛的认同与应用。相对于单闭环系统中不能随心所欲地 控制电流和转矩的动态过程的弱点。双闭环控制则很好的弥补了他的 这一缺陷。 双闭环控制可实现转速和电流两种负反馈的分别作用,从而获得 良好的静,动态性能。其良好的动态性能主要体现在其抗负载扰动以 及抗电网电压扰动之上。正由于双闭环调速的众多优点,所以在此有 必要对其最优化设计进行深入的探讨和研究。本次课程设计目的就是 旨在对双闭环进行最优化的设计。 Summary With the development of modern industry, in the speed area, the concept of dual-loop control has been increasingly widespread recognition and application. Relative to the single closed-loop system can not arbitrarily control the dynamic

process of current and torque weakness. Double closed-loop control is very good to make up for this shortcoming of his. Double-loop speed and current control can achieve the difference of two negative feedback effect, thus get a good static and dynamic performance. The good dynamic performance mainly reflected in its anti-disturbance and anti-grid load over voltage disturbance. Precisely because of the many advantages of Double Closed Loop, so here it is necessary to optimize the design of its depth discussion and study. This course is designed to designed to optimize the double loop design. 一.课程设计设计说明书4 1.1系统性能指标 1.2整流电路4 1.3触发电路的选择和同步5 1.4双闭环控制电路的工作原理6 二. 设计计算书7 2.1整流装置的计算7 2.1.1变压器副方电压7 2.1.2变压器和晶闸管的容量8 2.1.3平波电抗器的电感量8 2.1.4晶闸管保护电路9 2.2 控制电路的计算10

直流电动机转速电流双闭环调速系统设计

直流电动机调速系统课程设计 班级:电气0802 姓名:刘志勇 学号: 08140218

目录 第一章:设计内容 (2) 1.1设计内容: (2) 第二章:设计要求 (2) 2.1设计要求 (2) 2.2设计参数: (2) 第三章:双闭环直流调速系统设计 (3) 3.1转速、电流双闭环直流调速系统的成 (3) 3.2系统电路结构 (4) 3.3调节器的设计 (7) 第四章单闭环直流调速系统设计 (14) 4.1闭环系统调速的组成及其静特性 (14) 4.2 稳态参数计算 (16) 第五章相关原理图设计波形图 (19) 5.1.主电路图 (19) 5.2.控制电路图 (20) 第六章设计总结及参考文献 (23) 6.1设计总结 (23) 6.2 参考资料 (23) 1

第一章:设计内容 1.1设计内容: (1)根据给定参数设计转速电流双闭环直流调速系统 (2)根据给定参数设计转速单闭环直流调速系统,使用模拟电路元件实现转速单闭环直流调速系统 第二章:设计要求 2.1设计要求 2.1.1根据设计要求完成双闭环系统的稳态参数设计计算、判断系统的稳定性、绘制系统的稳态结构图 2.1.2直流调速系统的调节器,选择调节器结构、利用伯德图完成系统动态校正、计算系统的稳定余量γ及GM、计算调节器参数、绘系统动态结构图 2.1.3设计采用模拟调节器及MOSFET功率器件实现的转速单闭环调速系统,绘制控制电路及主电路电路图 2.1.4测试单闭环调速系统的PWM驱动信号波形、电压电流波形、转速反馈波形和直流电动机转速及控制电路各单元的相关波形。 2.2设计参数: =1.8Ω 2.2.1电枢电阻R a 电枢电感L =9.76mH、GD2=16.68N·cm2、Tm=35ms a 2

双闭环(电流环、转速环)调速系统

摘要 此设计利用晶闸管、二极管等器件设计了一个转速、电流双闭环直流晶闸管调速系统。该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。并通过Simulink进行系统的数学建模和系统仿真,分析双闭环直流调速系统的特性。 关键词:双闭环,晶闸管,转速调节器,电流调节器,Simulink

目录 1设计意义 (3) 2主电路设计 (4) 2.1设计任务 (4) 2.2电路设计及分析 (4) 2.2.1电流调节器 (5) 2.2.2转速调节器 (6) 2.3电路设计及分析 (7) 2.4电流调节器设计 (7) 2.4.1电流环简化 (8) 2.4.2电流调节器设计 (8) 2.4.3电流调节器参数计算 (9) 2.4.4电流调节器的实现 (10) 2.5转速调节器设计 (11) 2.5.1电流环等效传递函数 (11) 2.5.2转速调节器结构选择 (12) 2.5.3转速调节器参数计算 (13) 2.5.4转速调节器的实现 (14) 3系统参数计算和电气图 (15) 3.1电流调节器参数计算 (15) 3.2转速调节器参数计算 (15) 3.3电气原理图 (16) 4系统仿真 (18) 5小结体会 (20) 参考文献 (21)

转速电流双闭环直流调速系统仿真设计

转速电流双闭环直流调速系统仿真 摘要:本设计主要研究了直流调速转速电流双闭环控制系统以及对MATLAB软件的使用。系统模型由晶闸管-直流电动机组成的主电路和转速电流调节器组成的控制电路两部分组成。主电路采用三相可控晶闸管整流电路整流,用PI调节器控制,通过改变直流电动机的电枢电压从而进行调压调速。控制电路设置两个PI调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者实行嵌套连接,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE,形成转速电流双闭环直流调速系统。在Simulink中建立仿真模型,设置各个模块的参数,仿真算法和仿真时间,运行得出仿真模型的波形图。通过对波形图的分析,说明直流调速转速电流双闭环控制系统具有良好的静态和动态特性。 关键词:双闭环直流调速系统,MATLAB/SIMULINK仿真,ASR,ACR。 课程概述:直流调速是现代电力拖动自动控制系统中发展较早的技术。随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。其次并基于双闭环的电气原理图的SIMULINK的仿真,分析了直流调速系统的动态抗干扰性能。采用工程设计方法

转速电流双闭环直流调速系统设计

电力拖动自控系统课程设 计报告 题目转速电流双闭环直流调速系统设 计 学院:电子与电气工程学院 年级专业:2012级电气工程及其自动化(电力传动方向)姓名: 学号: 指导教师: 成绩:

电力拖动自动控制系统综合课程设计 设计任务书 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:kW 5.7P N =,V 400U N =,A 8.21I N = ,min /r 3000N =n , W 716.0R a =,电枢回路总电阻Ω=75.1R ,电枢电路总电感mH 60L =,电流允许 过载倍数5.1=λ,折算到电动机轴的飞轮惯量22m N 64.2GD ?=。励磁电流为1.77A 。 晶闸管整流装置放大倍数40K s =,滞后时间常数s 0017.0T s = 电流反馈系数)I 5.1/V 15(A /V 4587.0βN ≈= 电压反馈系数)/V 15(r m in/V 005.0αN n ≈?= 滤波时间常数s 002.0T oi =,s 01.0T on = V 15U U U cm *im *nm ===;调节器输入电阻Ω=K 40R o 。

设计要求:稳态指标:无静差; 动态指标:电流超调量00i 5≤σ;采用转速微分负反馈使转速超调量等于0。 目 录 1 概述 (1) 1.1问题的提出 ............................................................................................................ 1 1.2解决的问题 ............................................................................................................ 1 1.3实现目标要求设计 . (1) 2 主电路计算 (2) 2.1整流变压器的计算 .............................................................................................. 2 2.2晶闸管及其元件保护选择 (2) 3 直流双闭环调速系统设计 (8) 3.1转速和电流双闭环调速系统的组成 .............................................................. 8 3.2系统静态结构图及性能分析 ............................................................................ 9 3.3系统动态结构图及性能分析 .. (10)

直流电机双闭环调速系统设计要点

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

传动教材第2章转速电流双闭环直流调速系统和调节器的工程设计方法

第2章 转速、电流双闭环直流调速系统 和调节器的工程设计方法 2.1 转速、电流双闭环直流调速系统及其静特性 采用PI 调节的单个转速闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,单闭环系统就难以满足需要,这主要是因为在单闭环系统中不能控制电流和转矩的动态过程。电流截止负反馈环节是专门用来控制电流的,并不能很理想地控制电流的动态波形,图2-1a)。 在起动过程中,始终保持电流(转矩)为允许的最大值,使电力拖动系统以最大的加速度起动,到达稳态转速时,立即让电流降下来,使转矩马上与负载相平衡,从而转入稳态运行。这样的理想起动过程波形示于图2-1b 。 为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值dm I 的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。应该在起动过程中只有电流负反馈,没有转速负反馈,达到稳态转速后,又希望只要转速负反馈,不再让电流负反馈发挥作用。 2.1.1 转速、电流双闭环直流调速系统的组成 系统中设置两个调节器,分别调节转速和电流,如图2-2所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。 转速和电流两个调节器一般都采用PI 调节器,图2-3。两个调节器的输出都是带限幅 + TG n ASR ACR U *n + - U n U i U * i + - U c TA M + - U d I d UPE - M T 图2-2 转速、电流双闭环直流调速系统结构 ASR —转速调节器 ACR —电流调节器 TG —测速发电机 TA —电流互感器 UPE —电力电子变换器 内外 n i

转速、电流双闭环直流调速系统设计

运动控制课程设计 专业:自动化 班级: 姓名: 学号: 指导教师: 2015年07月 16 日

转速、电流双闭环直流调速系统设计 1.设计目的 一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态。为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。根据反馈控制规律,要控制某个量,只要引入这个量的负反馈。因此采用电流负反馈控制过程,起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。故采用转速、电流双闭环控制系统。 2.设计任务 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路;基本数据如下: (1)直流电动机:220V、160A、1460r/min、Ce=0.129Vmin/r,允许过载倍数λ=1.5; (2)晶闸管装置放大系数:K s=40; (3)电枢回路总电阻:R=0.5Ω; (4)时间常数:T l=0.03s,T m=0.19s; (5)电流反馈系数:β=0.042V/A; (6)转速反馈系数:α=0.0068Vmin/r; 试按工程设计方法设计双闭环系统的电流调节器和转速调节器,并用Simulink建立系统模型,给出仿真结果。 3.设计要求 根据电力拖动自动控制理论,按工程设计方法设计双闭环调速系统: (1)设计电流调节器的结构和参数,将电流环校正成典型I型系统; (2)分析电流环不同参数下的仿真曲线; (3)在简化电流环的条件下,设计速度调节器的结构和参数,将速度环校正成典型II型系统; (4)分析转速环空载起动、满载起动、抗扰波形图仿真曲线 (5)进行Simulink仿真,验证设计的有效性。 4.设计内容 4.1双闭环直流调速系统的组成

转速电流双闭环直流调速系统设计

《电力拖动自动控制系统》课程设计 设计报告 题目:转速电流双闭环直流调速系统设计 学院信息科学与工程学院 专业自动化 班级0603 学号 2 学生姓名杨明 指导老师潘炼 日期2009/7/2

转速电流双闭环直流调速系统设计 1. 设计题目 转速、电流双闭环直流调速系统设计 2. 设计任务 已知某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下: 1)直流电动机:160V、120A、1000r/min、C e=0.136Vmin/r,允许过载倍数λ=1.4 2)晶闸管装置放大系数:K s=30 3)电枢回路总电阻:R=0.4Ω 4)时间常数:T l=0.023s,T m=0.2s,转速滤波环节时间常数T on取0.01s 5)电压调节器和电流调节器的给定电压均为10V 试按工程设计方法设计双闭环系统的电流调节器和转速调节器,并用Simulink建立系统模型,给出仿真结果。 系统要求: 1)稳态指标:无静差 2)动态指标:电流超调量σi ≤5%;空载起动到额定转速时超调量σn ≤10% 3. 设计要求 根据电力拖动自动控制理论,按工程设计方法设计双闭环调速系统的步骤如下: 1)设计电流调节器的结构和参数,将电流环校正成典型I型系统; 2)在简化电流环的条件下,设计速度调节器的结构和参数,将速度环校正成典型II型系统; 3)进行Simulink仿真,验证设计的有效性。 4.设计内容 1)设计思路: 带转速负反馈的单闭环系统,由于它能够随着负载的变化而相应的改变电枢电压,以补偿电枢回路电阻压降的变化,所以相对开环系统它能够有效的减少稳态速降。 当反馈控制闭环调速系统使用带比例放大器时,它依靠被调量的偏差进行控制的,因此是有静差率的调速系统,而比例积分控制器可使系统在无静差的情况下保持恒速,实现无静差调速。 对电机启动的冲击电流以及电机堵转时的堵转电流,可以用附带电流截止负

双闭环直流调速系统的设计及其仿真

双闭环直流调速系统 的设计及其仿真 班级:自动化 学号: 姓名:

目录 1 前言?????????????????????????3 1.1 课题研究的意义??????????????????????3 1.2 课题研究的背景??????????????????????3 2 总体设计方案?????????????????????? 3 2.1 MATLAB 仿真软件介绍???????????????????3 2.2 设计目标????????????????????????? 4 2.3 系统理论设计?????????????????????? 5 2.4 仿真实验????????????????????????9 2.5 仿真结果???????????????????????10 3 结论???????????????????????12 4 参考文献???????????????????????13 1 前言 1.1 课题研究的意义 现代运动控制技术以各类电动机为控制对象,以计算机和其他电子装置为控制手段,以电力

电子装置为弱电控制强电的纽带,以自动控制理论和信息处理理论为基础,以计算机数字仿真和计算机辅助设计为研究和开发的工具。直调调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。所以加深直流电机控制原理理解有很重要的意义[1]。 1.2 课题研究的背景 电力电子技术是电机控制技术发展的最重要的助推器, 电力电机技术的迅猛发展

电力拖动自动控制系统第二章习题答案 (2)

第二章双闭环直流调速系统 2-1在转速、电流双闭环调速系统中,若要改变电动机的转速,应调节什么参数?改变转速调节器的放大倍数行不行?改变电力电子变换器的放大倍数行不行?改变转速反馈系数行不行?若要改变电动机的堵转电流,应调节系统中的什么参数? 答:改变电机的转速需要调节转速给定信号Un※;改变转速调节器的放大倍数不行,改变电力电子变换器的放大倍数不行。若要改变电机的堵转电流需要改变ASR的限幅值。 2-2 (1 (2 (1 (2 (3 (4 2-3是多少? 答:=βId=Ui,Uc=U d0 2-4如果转速、电流双闭环调速系统的转速调节器不是PI调节器,而是比例调节器,对系统的静、动态性能会有什么影响? 答:若采用比例调节器可利用提高放大系数的办法使稳态误差减小即提高稳态精度,但还是有静差的系统,但放大倍数太大很有可能使系统不稳定。 2-5在转速、电流双闭环系统中,采用PI调节器,当系统带额定负载运行时,转速反馈线突然断线,系统重新进入稳态后,电流调节器的输入偏差电压△Ui是否为0,为什么?

答:反馈线未断之前,Id=In,令n=n1,当转速反馈断线,ASR迅速进入饱和,Un※=Un※max,Uc↑,Id↑至Idm,Te>T l,n↑,Id↓,△Ui出现,Id↑至Idm,n↑,Id↓,此过程重复进行直到ACR饱和,n↑,Id↓,当Id=In,系统重新进入稳态,此时的速度n2>n1,电流给定为Un※max=Idmaxβ>电流反馈信号Un=Inβ,偏差△Ui不为0。 2-6在转速、电流双闭环系统中,转速给定信号Un※未改变,若增大转速反馈系数α,系统稳定后转速反馈电压Un是增加还是减少还是不变?为什么? 答:Un不变,因为PI调节器在稳态时无静差,即:Un※=Un,Un※未改变,则,Un也不变。 2-7 Unm*试求:(1 (2 解:(1 α=Unm* (2 2-8Uim=8V (1)Ui (2)Uc 解:(1 电流为 电流为 (2)Uc增加。 2-9在双闭环直流调速系统中,电动机拖动恒转矩负载在额定工作点正常运行,现因某种原因电动机励磁下降一半,系统工作情况将会如何变化?(λ=1.5) 答:设突发状况之前的磁通为?1,令此时的磁通为?2,之前的电磁力矩为Te1,此刻的电磁力矩为Te2,负载转矩恒为T l,电机励磁下降一半,则?2=0.5?1,Te2=Cm(?2)Id=0.5Te1<T l,n↓,Id↑甚至到Idm,Te2=Cm(?2)Idm=0.75Te1<T l,n会一直下降到0。

相关主题