搜档网
当前位置:搜档网 › 一元函数积分知识点完整版

一元函数积分知识点完整版

一元函数积分知识点完整版
一元函数积分知识点完整版

一元函数积分知识点完整版

牛顿—莱布尼兹定理为:

设)(x f 在],[b a 上连续,)(x F 是)(x f 在],[b a 上的一个原函数,则

)()()(a F b F dx x f b

a -=?

问题3: 已知?+=)

1ln(2)(x x

t dt e t x f ,求)('x f )0(≥x 一.考查奇偶函数和周期函数的积分性质

讲解:需要掌握对称区间上奇偶函数的定积分性质、周期函数的积分性质,学会用性质化简积分。 问题4:

设)(x f 在

]1,0[上连续,A dx x f =?20)cos (π,则

==?π

20)cos (dx x f I _______。 二.利用定积分的定义求某些数列极限

讲解:需要掌握把某些和项数列和积项数列求极限的问题转化为求解定积分的方法。关键是确定被积函数、积分区间及区间的分点。

常见的情形有:

∑?=∞→--+=n i n b a

n a b n a b i a f dx x f 1))((lim )( ∑?=∞→---+=n i n b a n a b n a b i a f dx x f 1

)))(1((lim )( 问题5:

求∑=∞→+=n i n i n n i n w 12tan lim

三.考察基本积分表

讲解:需要掌握基本初等函数的积分公式。

四.考察分项积分方法

讲解:利用不定积分(定积分)线性性质把复杂函数分解成几个简单函数的和,再求积分。 问题6:

求下列不定积分:

dx x x ?++2cos 1cos 12

五.考察定积分的分段积分方法

讲解:利用定积分的区间可加性把复杂的区间分解成几个简单区间的和,再求积分。

问题7:

计算以下定积分:

{}?-+22cos ,5.0min )1(ππdx x x

六.考察不定积分的分段积分方法

讲解:有时被积函数是用分段函数的形式表示的,这时应该采用分段积分法。

问题8:

(完整版)复变函数知识点梳理解读

第一章:复数与复变函数 这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。 一、复数及其表示法 介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。 二、复数的运算 高中知识,加减乘除,乘方开方等。主要是用新的表示方法来解释了运算的几何意义。 三、复数形式的代数方程和平面几何图形 就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。 四、复数域的几何模型——复球面 将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。 五、复变函数 不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。 六、复变函数的极限和连续性 与实变函数的极限、连续性相同。 第二章:解析函数

这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。 一、解析函数的概念 介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。 所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。二、解析函数和调和函数的关系 出现了新的概念:调和函数。就是对同一个未知数的二阶偏导数互为相反数的实变函数。而解析函数的实部函数和虚部函数都是调和函数。而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。 三、初等函数 和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。 第三章:复变函数的积分 这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。但是很多知识都和实变函数的知识是类似的。可以理解为实变函数积分问题的一个兄弟。 一、复积分的概念 复积分就是复变函数的积分,实质是两个实二型线积分。所以应该具有相应的实二型线积分的性质。复积分存在的充分条件是实部函数和虚部函数都连续。 二、柯西积分定理

第三章 一元函数积分学

第三章 一元函数积分学 一.不定积分 例1:设2 ln )1(22 2 -=-x x x f ,且x x f ln )]([=?,求?dx x )(?(答案: C x x +-+1ln 2) 例2:已知 x x sin 是)(x f 的一个原函数,求?dx x f x )('3(答案: C x x x x x +--cos 6sin 4cos 2) 例3:设???>≤=0 ,sin ,)(2x x x x x f ,求?dx x f )( 例4:设)(x F 是)(x f 的一个原函数,π4 2 )1(= F ,若当0>x 时,有) 1(arctan )()(x x x x F x f += ,求)(x f 。(答案:) 1(21)(x x x f += ) 例5:求? dx x x )1,,max(23 例6:求?dx e e x x 2arctan 二.定积分 例1:求极限?? ? ??+++++∞→n n n n 212111lim 例 2:设)(x f 在]1,0[上连续,且 )(1 =?dx x f ,试证明存在 0)1()()1,0(=-+∈ξξξf f 使。 例3:已知)0()1ln()(1 >+= ?x dt t t x f x ,求??? ??+x f x f 1)((答案:x 2ln 21)

例4:设函数)(x f 连续,且,arctan 21)2(2 0x dt t x tf x =-?已知1)1(=f ,求?2 1 )(dx x f 的 值。(答案: 4 3 ) 例5:已知22110,1,ln ,sin )(>≤<≤≤?? ? ??=x x x x x x x f 求?=x dt t f x I 0)()( 例6:求积分?≥-= x x dt t x g t f x I 0 )0()()()(,其中当0≥x 时x x f =)(,而 ?? ?? ? ≥ <≤=220,0,sin )(π πx x x x g 例7:设)(x f 在],[b a 上连续,且0)(>x f ,证明 ? b a dx x f )(2)() (1 a b dx x f b a -≥? 例8:设)('x f 在]1,0[上连续,求证 ? ??? ?? ? ??≤1 1 010)(,)('max )(dx x f dx x f dx x f 例9:设)(x f 在]1,0[上连续,且0)(≥x f ,0)1(=f ,求证: 存在?= ∈ξ ξξ0 )()()1,0(dx x f f 使 例10:设)(x f 是在),(+∞-∞内的周期函数,周期为T ,并满足 )),,(,()()()1(为常数其中L y x y x L y f x f +∞-∞∈?-≤-; 0)()2(0 =?T dx x f 求证:LT x f T x 2 1 )(max ] ,0[≤ ∈ 例11:设函数)(x f 在],[b a 上具有连续的二阶导数,证明在),(b a 内存在一点ξ,使得 )('')(24 12)()(3 ξf a b b a f a b dx x f b a -+??? ??+-=?

复变函数与积分变换精彩试题及问题详解

复变函数与积分变换试题(一) 一、填空(3分×10) 1.)31ln(i --的模 ,幅角 。 2.-8i 的三个单根分别为: , , 。 3.Ln z 在 的区域内连续。 4.z z f =)(的解极域为: 。 5.xyi y x z f 2)(22+-=的导数=')(z f 。 6.=?? ? ???0,sin Re 3z z s 。 7.指数函数的映照特点是: 。 8.幂函数的映照特点是: 。 9.若)(ωF =F [f (t )],则)(t f = F )][(1ω-f 。 10.若f (t )满足拉氏积分存在条件,则L [f (t )]= 。 二、(10分) 已知222 1 21),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为 解析函数,且f (0)=0。 三、(10分)应用留数的相关定理计算 ?=--2||6)3)(1(z z z z dz 四、计算积分(5分×2) 1.?=-2 ||) 1(z z z dz

2.? -c i z z 3 )(cos C :绕点i 一周正向任意简单闭曲线。 五、(10分)求函数) (1 )(i z z z f -= 在以下各圆环内的罗朗展式。 1.1||0<-

专升本-一元函数积分学

第四章 一元函数积分学 不定积分部分 一.原函数的概念 例1.下列等式成立色是( ) ()()().;A f x dx f x '=? ()()().;B df x dx f x =? ()()(). ;d C f x dx f x dx =? ()()()..D d f x dx f x =? 例2.下列写法是否有误,为什么? ()1 .ln c dx e e x x +=?(c 为任意正常数) ()2 ).0(1 3 3 2 ≠+=?c c dx x x ()3 .arccos arcsin 12 c x c x dx dx x +-=+=-? 例3.下列积分结果正确吗? ()211sin .cos sin ;2x xdx x C =+?√ ()21 2sin .cos cos ;2x xdx x C =-+?√ ()1 3sin .cos cos 2.2 x xdx x C =-+?√ 例3说明不定积分的结果具有形式上的多样性。 二.直接积分法 利用不定积分的性质及基本积分表,我们就可以计算较简单的函数的积分,这种方法称做直接积分法. 例4.求().arctan 3 1111113 2 2 24 2 4 c x x dx dx dx dx x x x x x x x ++-= + +-= ++-= +???? 例5.求.sin 21 2cos 212cos 12sin 2 c x x xdx dx dx x dx x +-=-=-=???? 例6.求.tan 44422csc sin cos sin 2 222c x c xdx x dx x x dx +-===??? 例7.已知某个函数的导数是x x cos sin +,又知当2 π=x 时,这函数值为2,求 此函数. 解:因为() .sin cos cos sin c x x dx x x ++-=+?, 所以,可设().sin cos c x x x f ++-=

复变函数与积分变换重要知识点归纳

复变函数复习重点 (一)复数的概念 1.复数的概念:z = x ? iy , x, y 是实数,x = Rez,y = lmz.r-_i. 注:一般两个复数不比较大小,但其模(为实数)有大小 2.复数的表示 1)模:z =y/x2+y2; 2)幅角:在z = 0时,矢量与x轴正向的夹角,记为Arg z (多值函数);主值arg z是位于(-二,二]中的幅角。 3)arg z与arctan y之间的关系如下: x y 当x 0, argz=arctan工; x [ y y - 0,arg z = arctan 二当x : 0, x y y :: 0,arg z = arctan 「愿 L x 4)三角表示:z = z COST i sinv ,其中二-arg z ;注:中间一定是“ +"号 5)指数表示:z = z e旧,其中日=arg z。 (二)复数的运算 仁加减法:若z1= x1iy1, z2= x2 iy2,贝寸乙 _ z2 = % _ x2i 比 _ y2 2.乘除法: 1 )若z^x1 iy1 ,z2=x2iy2,则 ZZ2 二XX2 —y』2 i X2% X』2 ; 乙x iy1 % iy1 X2 —iy2 xg yy ?- 丫2为 -- = --------- = ----------------------- = -------------- T i -------------- Z2 x? iy2 X2 iy2 x? - iy? x;y;x;y f 2)若乙=乙e°,z2= z2e°, _则 3.乘幂与方根e i "'2 ; 土評匀) Z2 Z2

1)若z =|z (cos日+isin 日)=|z e旧,则z"=上"(cosnT +i sin 用)=上"d吩。 2)若z =|z (cos日+isin 日)=|ze吩,贝U 阪=z n.'cos日+2" +i si肆+2" )(k =0,1,2[|I n—1)(有n个相异的值)l n n丿 (三)复变函数 1?复变函数:w = f z,在几何上可以看作把z平面上的一个点集D变到w平面上的一个点集G的映射. 2?复初等函数 1)指数函数:e z=e x cosy - isin y ,在z平面处处可导,处处解析;且e z= e z。 注:e z是以2二i为周期的周期函数。(注意与实函数不同) 3)对数函数:Lnz=lnz i(argz 2^:)(k=0, _1,_2[|[)(多值函数); 主值:In z = ln z +iargz。(单值函数) * 1 Lnz的每一个主值分支In z在除去原点及负实轴的z平面内处处解析,且Inz z 注:负复数也有对数存在。(与实函数不同) 3)乘幂与幂函数:a b= e bLna(a = 0);z b= e bLnz(z = 0) 注:在除去原点及负实轴的z平面内处处解析,且z b二bz b‘。 iz -iz iz -iz e -e e e sin z cosz 4)三角函数:sin z ,cos z ,t gz , ctgz = 2i 2 cosz si nz sin z,cos z 在z 平面内解析,且sin z 二cosz, cosz =—si nz 注:有界性sin z兰1, cosz兰1不再成立;(与实函数不同) z -z z - z e -e e +e 4)双曲函数shz ,chz二 2 2 shz奇函数,chz是偶函数。shz, chz在z平面内解析,且shz 二chz, chz = shz。 (四)解析函数的概念 1 ?复变函数的导数

一元函数积分学的应用

一元函数积分学的应用 一元函数积分学研究的是研究函数的整体性态,一元函数积分的本质是计算函数中分划的参数趋于零时的极限。 一元积分主要分为不定积分 ?dx x f )(和定积分? b a dx x f )(。化为函数 图像具体来说,不定积分是已知导数求原函数,也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C 的导数也是f(x)(C 是任意常数)。所以f(x)积分的结果有无数个,是不确定的。而定积分就是求函数f(X)在区间[a,b]中图线下包围的面积,可以说是不定积分在给定区间的具体数值化。因为积分在其它方面应用时一般都有明确的区间,所以本文主要研究定积分的各种应用。 积分的应用十分巧妙便捷,能解决许多不直观、不规则的或是变化类型的问题。故其主要应用在数学上的几何问题和物理上的各种变量问题和公式的证明以及解决一些实际生活问题。 微元法建立积分表达式 在应用微积分于实际问题时,首先要建立积分表达式,一般情况下,只要具备都是给定区间上的非均匀连续分布的量和都具有对区间的可加性这两个条件就都可以用定积分来描述(以下的讨论都是建立在这两个条件下,因此不再提示此条件)。 而建立积分表达式的方法我们一般用微元法。其分为两个步骤:(1)任意分割区间[]b a ,为若干子区间,任取一个子区间[]dx x x +,,求Q

在该区间上局部量的Q ?的近似值dx x f dQ )(=;(2)以dx x f )(为被积式,在],[b a 上作积分即得总量Q 的精确值 ??==b a b a dx x f dQ Q )(。(分割,近似,求和,取极限) 在实际应用中,通过在子区间],[dx x x +上以“匀”代“非匀”或者把子区间],[dx x x +近似看成一点,用乘法所求得的近似值就可以作为Q ?所需要的近似值,即为所寻求的积分微元dx x f dQ )(= 。 定积分在几何中的应用 在几何中,定积分主要应用于平面图形的面积、平面曲线的弧长、已知平行截面面积函数的立体体积、旋转体的侧面积。下面我们来分类讨论: 一、 平面图形的面积 求图形面积是定积分最基本的应用,因为定积分的几何意义就是在给定区间内函数曲线与x 轴所围成图形的面积。而求面积时会出现两种情况:直角坐标情形和极坐标情形。 1、直角坐标情形 在求简单曲边图形(能让函数图像与之重合)的面时只要建立合适的直角坐标系,再使用微元法建立积分表达式,运用微积分基本公式计算定积分,便可求出平面图形的面积。如设曲 y O

复变函数与积分变换 复旦大学出版社 习题六答案

习题六 1. 求映射1w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2 2 2 2 11i=+i i x y w u v z x y x y x y == = - +++ 2 2 1x x u x y ax a = == +, 所以1w z = 将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 2 2 2 2 1i x y w z x y x y = =- ++ 2 22 2 2 2 x y kx u v x y x y x y = =- =- +++ v ku =- 故1w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则 2 2 2 2 ,u v y x u v u v = = ++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12 w > (以(12 ,0)为圆心、12 为半径的圆) 3. 求w =z 2在z =i 处的伸缩率和旋转角,问w =z 2将经过点z =i 且平行于实轴正向的曲线的切线方向映成w 平面上哪一个方向?并作图.

一元函数积分知识点完整版

一元函数积分相关问题 前言: 考虑到学习的效率问题,我在本文献中常常会让一个知识点在分隔比较远的地方出现两次。这种方法可以让你在第二次遇到同样的知识点时顺便复习下这个知识点,同时第二次出现这个知识点时问题会稍微升华点,不做无用的重复。 一.考查原函数与不定积分的概念和基本性质 讲解:需要掌握原函数与不定积分的定义、原函数与不定积分的关系,知道求不定积分与求微分是互逆的关系,理解不定积分的线性性质。 问题1: 若)(x f 的导函数是x sin ,则所有可能成为)(x f 的原函数的函数是_______。 二.考查定积分的概念和基本性质 讲解:需要掌握定积分的定义与几何意义,了解可积的充分条件和必要条件,掌握定积分的基本性质。 定积分的基本性质有如下七点: 1、线性性质 2、对区间的可加性 3、改变有限个点的函数值不会改变定积分的可积性与积分值 4、比较定理(及其三个推论) 5、积分中值定理 6、连续非负函数的积分性质 7、设)(x f 在],[b a 上连续,若在],[b a 的任意子区间],[d c 上总是有 ? =d c dx x f 0)(,则当 ],[b a x ∈时,0)(≡x f 问题2: 设? = 2 )sin(sin π dx x M ,?=20 )cos(cos π dx x N ,则有() (A )N M <<1 (B )1<

分的关系,了解初等函数在定义域内一定存在原函数但不一定能积出来,需要重点掌握牛顿—莱布尼兹公式及其推广。 其中变限积分的求导方法为: 设)(x f 在],[b a 上连续,)(x ?和)(x ψ在],[βα上可导,当],[βα∈x 时, b x x a ≤≤)(),(ψ?,则? =) () ()(x x dt t f y ?ψ在],[βα上可以对x 求导,且 )('))(()('))((x x f x x f dx dy ψψ??-= 牛顿—莱布尼兹定理为: 设)(x f 在],[b a 上连续,)(x F 是)(x f 在],[b a 上的一个原函数,则 )()()(a F b F dx x f b a -=? 问题3: 已知 ? +=) 1ln(2)(x x t dt e t x f ,求)('x f )0(≥x 四.考查奇偶函数和周期函数的积分性质 讲解:需要掌握对称区间上奇偶函数的定积分性质、周期函数的积分性质,学会用性质化简积分。 问题4: 设)(x f 在]1,0[上连续, A dx x f =? 2 )cos (π ,则==? π 20 )cos (dx x f I _______。 五.利用定积分的定义求某些数列极限 讲解:需要掌握把某些和项数列和积项数列求极限的问题转化为求解定积分的方法。关键是确定被积函数、积分区间及区间的分点。 常见的情形有: ∑? =∞ →--+ =n i n b a n a b n a b i a f dx x f 1))((lim )( ∑? =∞ →---+ =n i n b a n a b n a b i a f dx x f 1 )))(1((lim )( 问题5: 求∑ =∞ →+=n i n i n n i n w 1 2tan lim 六.考察基本积分表 讲解:需要掌握基本初等函数的积分公式。 七.考察分项积分方法

第三章-一元函数积分学

第三章 一元函数积分学 §3-1 不定积分 不定积分是计算定积分、重积分、线面积分和解微分方程的基础,要求在掌握基本积分法的基础上,更要注重和提高计算的技巧。 一、基本概念与公式 1. 原函数与不定积分的概念 2. 不定积分与微分的关系(互为逆运算) 3. 不定积分的性质 4.基本积分表 2222 22 312 22 3 2max{1}d .,1 max{1,}1,11, , 111max{1,}d d 3 11max{1,}d 1d 11 max{1,}d d . 3x x x x x x x x x x x x x x C x x x x x C x x x x x x C ?<-? =-≤≤??>?<-==+-≤≤==+>==+???????1求,因 当时 ;当时 ; 当时 例解 ()()3111321 11232 31lim lim 3,1lim lim 323 ,232 133 max{1,}d 1 1.2 1 33 x x x x x C x C x C x C C C C C x C x x x x C x x C x -+ - +→-→-→→??? +=+ ????? ? ???+=+ ?????? =-+??? ?=+?? ?-+<-???=+-≤≤???++>?? ? 由原函数的连续性,有 得 故 ,,,

二、不定积分的基本方法 1. 第一类换元法(凑微分法) ()d ()[()]d []d [].f u u F u C f x x x f x x F x C ?????=+'()=()()=()+???若,则 2. 第二类换元法 ()10[]()()d []d ()[]. x t t x x t t f t t G t f x x f t t t G t C G x C ?????????-1=() =-''=()()≠()()'()()=+()+? ? 令代回 若是单调可导函数,且,又具有原函数,则有换元公式 3. 分部积分法 ()()d ()()()()d d d . u x v x x u x v x u x v x x u v uv v u ''=-=-????或 4. 有理函数的积分法 化有理真分式为部分分式. 5. 三角函数有理式的积分 (sin cos )d ()tan 2 R x x x R u v u v x t =?对于,(其中,表示关于,的有理函数),可用“万能代换”化为有理函数的积分. 三、题解示例

复变函数科普知识

复变函数科普知识 1.简介复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现 了负数开平方的情况。在复变函数 复变函数很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。 2.历史复变函数 复变函数复变函数论产生于十八世纪。1774年,欧拉在他 的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为

复变函数与积分变换期末考试复习知识点

复习要点 一题型 1、填空题(每题3分,共18分) 2、单项选择题(每题3分,共21分) 3、计算题(每题6分,共36分) 4、解答题(4小题,共25分) 二知识点 第一章复数与复变函数 1、会求复数的各种表示式(一般式、三角式、指数式)。 一般式:z=x+yi 三角式:z=r(cosθ+isinθ) 指数式:z=re iθ 2、会求复数(各种表示式)的模、辐角、辐角主值。 3、掌握复数的四则运算、共轭运算、乘幂运算、方根运算。 4、理解区域、有界域、无界域、单连通域与多连通域等概念。 5、会用复变数的方程来表示常用曲线及用不等式表示区域。 6、理解复变函数的概念。 7、了解复变函数的极限与连续性的概念,会求常见的复变函数的极限。 例:1.1;1.2 习题一:1.2(2)(3);1.3;1.5 第二章解析函数 1、理解可导与解析的联系与区别(在一点;在一个区域)。 对于点:解析→可导→连续对于区域:解析?可导 2、会判别常见函数的解析性,会求常见函数的奇点。

3、了解柯西—黎曼方程。 4、掌握各类初等函数(指数函数、对数函数、幂函数、三角函数)的定义、性质。 例:1.4;2.1;3.1;3.2 习题二:2.3(1)(2)(3);2.4;2.9(1)(2)(3);2.10;2.12(1)(3) 第三章复变函数的积分 1、熟悉复积分的概念及其基本性质。 2、了解复积分计算的一般方法。 3、会求常见的各类积分(包括不闭路径、闭路径)。 本章的主要方法如下,但要注意适用的积分形式。 (1)牛顿—莱布尼茨公式。 (2)柯西积分定理。 (3)柯西积分公式。 (4)高阶导数公式。 (5)复合闭路定理。 注意:上述方法中的(3)(4)(5)可与第五章中的留数定理的应用结合起来复习。 例:1.1;2.1;2.2;3.1;4.1 习题三:3.1(1);3.3;3.4;3.5;3.6;3.7 第四章级数 1、理解复数项级数的相关概念(收敛、发散、绝对收敛、条件收敛)。 2、会判常见复数项级数的敛散性,包括判绝对收敛和条件收敛。 3、熟悉幂级数的概念,会求幂级数的收敛半径。

成人高考一元函数积分学整理.

一元函数积分学 【知识要点】 1、理解原函数与不定积分的概念及其关系,掌握不定积分的性质。 2、熟练掌握不定积分的基本公式。 3、熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换。 4、熟练掌握不定积分的分部积分法。 5、掌握简单有理函数不定积分的计算。 6、理解定积分的概念及其几何意义,了解函数可积的条件 7、掌握定积分的基本性质 8、理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。 9、熟练掌握牛顿—莱布尼茨公式。 10、掌握定积分的换元积分法与分部积分法。 11、 . 理解无穷区间的广义积分的概念,掌握其计算方法。 12、掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。 1不定积分 定义函数 (x f 的全体原函数称为函数 (x f 的不定积分 , 记作?dx x f (, 并称?微积分号, 函数 (x f 为被积函数, dx x f (为被积表达式, x 为积分变量。因此 ? +=C x F dx x f ( (, 其中 (x F 是 (x f 的一个原函数, C 为任意常数(积分常数。基本积分公式(要求熟练记忆 (1 ?=C dx 0 (2 1(1

11 -≠++=+?a C x a dx x a a . (3 C x dx x +=? ln 1. (4 C a a dx a x x += ?ln 1 1, 0(≠>a a (5 C e dx e x x +=? (6 ?+-=C x xdx cos sin (7 ?+=C x xdx sin cos (8 C x x +=?tan cos 1 2 . (9 C x x +-=?cot sin 1

复变函数与积分变换重要知识点归纳

复变函数与积分变换重 要知识点归纳 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。 (1) i 解:2 cos sin 2 2 i i e i π ππ==+ (2) -1 解:1cos sin i e i πππ-==+ (3) 13i + 解:()/31322cos /3sin /3i i e i πππ+==+ (4) 1cos sin i αα-+ 解: 2 221cos sin 2sin 2sin cos 2sin (sin cos ) 2 2 2 2 2 2 2sin cos()sin()2sin 222222 i i i i i e παα α α α α α αααπαπαα ?? - ??? -+=+=+? ?=-+-= ??? (5) 3z 解:()3333cos 3sin 3i z r e r i θθθ==+ (6) 1i e + 解:()1cos1sin 1i i e ee e i +==+ (7) 11i i -+ 解: 3/4 11cos 3/4sin 3/411i i i i e i i i πππ--==-==+++ 二、计算下列数值 (1) a ib + 解: 1ar 2ar 2 2 22 4 21ar 2 2421ar 2242 b b i ctg k i ctg k a a b i ctg a b i ctg a a i b a b e a b e a b e a b e ππ?? ?? ++ ? ? ?? ?? += += +?+?=? ?-+? (2) 3 i 解:6 226 36346323 2332 2322 i k i i i i k i e i i e e e e i π ππππππππ?? ??++ ? ???????+ ?????+ ??? ?=+ ?? ??====-+? ??=-?

复变函数与积分变换重要知识点归纳

复变函数与积分变换重要知 识点归纳 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换复习重点

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1)模:22 z x y =+; 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

高数一元函数积分学习题及答案

第四章 不定积分 一、是非题: 1.已知()211 arcsin x x -='π+,则?π+=-x dx x arcsin 112. 错 2. 连续函数的原函数一定存在. 对 3. ()()?? =dx x f d dx x f dx d . 错 4. ax y ln =和x y ln =是同一函数的原函数. 对 ()2x x e e y -+=和()2x x e e y --=是同一函数的原函数. 对 5. ()()??=dx x f k dx x kf (k 是常数) 错 二、填空题: 1.()()? ='dx x f x f (C x f +)(ln ). 2.()?=''dx x f x (()C x f x f x x f xd +-'='? )()( ). 3.知()()?+=C x F dx x f ,则()?=+dx b ax f (C b ax F a ++)(1),b a ,为常数. 4.已知 ()?+=C e dx x f x ,则()=??dx x x f sin cos ( C e x +-cos ). 5.已知()[]x dx x f sin ='?,则()=x f (x sin ). 6. 设()x f 、()x f '连续,则() ()[]=+'?dx x f x f 21([]C x f +)(arctan ). 7. 设()x f 的一个原函数为x e -,则()ln f x dx x =?( 1C x + ). 8. 函数(21ln(1)2x C ++)是2 1x x +的原函数. 9. 设()x f x e =,则()ln f x dx x '=?(x C +). 三、选择填空: 1.已知()x F 是()x f 的一个原函数,C 为任意常数,下列等式能成立的是( a ) a .()()?+=C x F x dF b .()()? ='x F dx x F

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞ ∞或00型,)()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

复变函数与积分变换重要知识点归纳

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模: z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数) ;主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

相关主题