搜档网
当前位置:搜档网 › 专题:函数定义域的求法及常见题型 (定稿)

专题:函数定义域的求法及常见题型 (定稿)

专题:函数定义域的求法及常见题型 (定稿)
专题:函数定义域的求法及常见题型 (定稿)

专题一:函数定义域的求法及常见题型

一、函数定义域求法

(一)常规函数

函数解析式确定且已知,求函数定义域。其解法是根据解析式有意义所需条件,列出关于自变量的不等式或不等式组,解此不等式(或组),即得函数定义域。

例1.求函数的定义域。

解:要使函数有意义,则必须满足

由①解得或。③

由②解得或④

③和④求交集得且或x>5。

故所求函数的定义域为(-∞,-11)U(-11,-3] U(5,+∞)。

注意点:分母、偶次方根被开方数,多条件求交集,定义域写法,仅可写成区间或集合形式,不能写成不等式。

例2.求函数的定义域。

解:要使函数有意义,则必须满足

由①解得③

由②解得④

由③和④求公共部分,得

故函数的定义域为(-4,-π] U(0,π]。

提示点:③和④怎样求公共部分?

(二)抽象函数

1.有关概念

定义域:函数y=f(x)的自变量x的取值范围,可以理解为函数y=f(x)图象向x轴投影的区间;凡是函数的定义域,永远是指自变量x的取值范围;

对应法则:通过“工厂”或“模具”观点进行类比,以此深入理解函数

()

y f x

=

的对应法则“f”。把

函数

()

y f x

=

的对应法则“f”看作“工厂”或“模具”,把自变量“x”的取值看作“原料”,把相应

函数值“y”看作“成品”。该观点注重“原料”以怎样的形式组装成“成品”,而不管“原料”是否为“初级产品”,从而避免了当所给函数的“原料”不是某个单一字母的情形时,找不到或不好找函数的对应法则。

如(1)已知函数f(x)的定义域是[0,4],求函数f(2x+1)的定义域;(2)已知函数f(2x+1)的定义域是[0,4],求函数f(x)的定义域。

可以把f(x)看成工厂的生产加工,f是加工工序,x是原料。

(1)中f(x)的原料就是初级产品,所以原料或初级产品满足的条件就是[0,4];在f(2x+1)中,初级产品是2x+1,它必须满足[0,4],由此求出f(2x+1)的原料x满足的条件(即自变量)。

因为(2)中f(2x+1)的定义域是[0,4],即原料x满足[0,4],变成初步产品2x+1,那么初步产品的限制条件就成了[1,9], 所以f(x)的原材料就是 [1,9],这样好不好理解?

值域:函数y=f(x)的因变量y的取值范围,可以理解为函数y=f(x)图象向y轴投影的区间;

显函数:俗称常见函数,函数解析式是明确的,例如:y=f(x)=2x2+3x-5;

隐函数:俗称抽象函数,函数解析式是不明确的,就用y=f(x)表示,具体f(x)是什么内容是隐藏的;

复合函数:如果说y=f(x)是一个简单的抽象函数,那么把自变量x用一个函数g(x)来代替,就称y=f(g(x))为复合的抽象函数,习惯上称y=f(t)是外函数,t=g(x)为内函数。

2.四种类型

题型一:已知抽象函数y=f(x)的定义域为[m,n],如何求复合抽象函数y=f(g(x))的定义域?

思路分析:本题型是已知y=f(x)的自变量x的范围,求y=f(g(x))的自变量x的范围,其中的关键是,后者的g(x)相当于前者的x。

解决策略:求不等式m≤g(x)≤n的解集,即为y=f(g(x))的定义域

例题3.已知函数y=f(x)的定义域[0,3],求函数y=f(3+2x)的定义域

解:令t=3+2x,∵y=f(x)的定义域[0,3],∴y=f(t)的定义域也为[0,3],即t=3+2x∈[0,3],

说明:内函数g(x)=3+2x,通过令t=3+2x做了一个换元,此处换元不能写为令x=3+2x。原因是y=f(x)中的x与y=f(3+2x)的x虽然长得一样,但是意义不同,如果令x=3+2x,则等号两边的x就是一模一样了,x只能为-3了。

强化训练:

1.已知函数y=f(x)的定义域[-1,5],求函数y=f(3x-5)的定义域;

2.已知函数y=f(x)的定义域[1/2,2],求函数y=f(log2x)的定义域;

3.已知的定义域为[-2,2],求的定义域。

题型二:已知复合抽象函数y=f(g(x))定义域[m,n],如何求抽象函数y=f(x)的的定义域?

思路分析:本题型是已知y=f(g(x))的自变量x的范围,求y=f(x)的自变量x的范围,其中的关键是,前者的g(x)相当于后者的x。

解决策略:求内函数t=g(x)在区间[m,n]的值域(t的取值范围),即为y=f(x)的定义域

例题4.已知函数y=f(2x-1)的定义域[0,3],求函数y=f(x)的定义域.

解:∵y=f(2x-1)的定义域[0,3],∴0≤x≤3,令t=2x-1,∴t=2x-1∈[-1,5]

故,函数y=f(t)的定义域为t∈[-1,5],

故,函数y=f(x)的定义域为x∈[-1,5]

说明:函数y=f(x)与y=f(t)是同一个函数,与单个自变量是x还是t无关。另外,题型二是题型一的逆向题目。

强化训练:

1.已知函数y=f(x2-2x+2)的定义域[0,3],求函数y=f(x)的定义域.

2.已知函数y=f[lg(x+1)]的定义域[0,9],求函数y=f(x)的定义域.

题型三:已知复合抽象函数y=f(g(x))定义域[m,n],如何求复合抽象函数y=f(h(x))定义域的定义域?

思路分析:本题型是已知y=f(g(x))的自变量x的范围,求y=f(h(x))的自变量x的范围,其中的关键是,前者的g(x)相当于后者的h(x),故先求出“桥梁”函数y=f(x)的定义域。

解决策略:用题型二的方法根据y=f(g(x))定义域求y=f(x)的定义域,用题型一的方法根据y=f(x)的定义域求y=f(h(x))的定义域

例题5.已知函数y=f(2x-1)的定义域[0,3],求函数y=f(3+x)的定义域.

解:∵y=f(2x-1)的定义域[0,3],∴0≤x≤3,令t=2x-1,∴t=2x-1∈[-1,5]

故,函数y=f(t)的定义域为t∈[-1,5],

故,函数y=f(x)的定义域为x∈[-1,5]

令t=3+x,则t=3+x∈[-1,5]

故,函数y=f(3+x)定义域为[-4,2]

说明:题型三其实是题型一与题型二的综合而已,会了前两个题型,第三个题型自然就会了。

强化训练:

1.已知函数y=f(x+1)的定义域[-2,3],求函数y=f(2x-1)的定义域.

2.已知函数y=f(2x)的定义域[-1,1],求函数y=f(log2x)的定义域.

3. 已知f(x+1)的定义域为[-1/2,2],求f(x2)定义域。

题型四:已知f(x)的定义域,求与f(x)相关四则运算型函数的定义域。

思路分析:若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集。解题策略:先求出各个函数的定义域,再求交集。

例6.已知f(x)的定义域为[-3,5],求φ(x)=f(-x)+f(2x+5)定义域。

强化训练:

1.已知f(x)的定义域为(0,5],求g(x)=f(x+a)f(x-a)定义域,其中-1﹤a≦0。

二、与函数定义域相关的变形题型

(一)逆向型

即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R,求参数的范围问题通常是转化为恒成立问题来解决。

例7.已知函数的定义域为R,求实数m的取值范围。

分析:函数的定义域为R,表明,使一切x∈R都成立,由项的系数是m,所以应分m=0或进行讨论。

解:当m=0时,函数的定义域为R;

当时,是二次不等式,其对一切实数x都成立的充要条件是

综上可知。

评注:不少学生容易忽略m=0的情况,希望通过此例解决问题。

例8.已知函数的定义域是R,求实数k的取值范围。

解:要使函数有意义,则必须≠0恒成立,因为的定义域为R,即无实数

①当k≠0时,恒成立,解得;

②当k=0时,方程左边=3≠0恒成立。

综上k的取值范围是。

定义域非实数,求法。

(二)参数型

对于含参数的函数,求定义域时,必须对分母分类讨论。

例9.已知的定义域为[0,1],求函数的定义域。

解:因为的定义域为[0,1],即。故函数的定义域为下列不等式组的解集:

,即

即两个区间[-a,1-a]与[a,1+a]的交集,比较两个区间左、右端点,知

(1)当时,F(x)的定义域为;

(2)当时,F(x)的定义域为;

(3)当或时,上述两区间的交集为空集,此时F(x)不能构成函数。

(三)隐含型

有些问题从表面上看并不求定义域,但是不注意定义域,往往导致错解,事实上定义域隐含在问题中,例如函数的单调区间是其定义域的子集。因此,求函数的单调区间,必须先求定义域。

例10.求函数的单调区间。

解:由,即,解得。即函数y的定义域为(-1,3)。

函数是由函数复合而成的。

,对称轴x=1,由二次函数的单调性,可知t在区间上是增函数;在区间上是减函数,而在其定义域上单调增;

,所以函数在区间上是增函

数,在区间上是减函数。

(四)实际问题型

这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要加倍注意,并形成意识。

例11.将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函数的定义域。

解:设矩形一边为x,则另一边长为于是可得矩形面积。

由问题的实际意义,知函数的定义域应满足

故所求函数的解析式为,定义域为(0,)。

例12.用长为L的铁丝弯成下部为矩形上部为半圆的框架,如图,若矩形底边长为2x,求此框架围成的面积y与x的函数关系式,并求定义域。

解:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,如图。因为CD=AB=2x,所以,所以,

根据实际问题的意义知

故函数的解析式为,定义域(0,)。

函数定义域的类型和求法

函数定义域的类型和求法 本文介绍函数定义域的类型和求法,目的在于使学生全面认识定义域,深刻理解定义域,正确求函数的定义域。现举例说明。 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数的定义域。 解:要使函数有意义,则必须满足 由①解得或。③ 由②解得或④ ③和④求交集得且或x>5。 故所求函数的定义域为。 例2 求函数的定义域。 解:要使函数有意义,则必须满足 由①解得③

由②解得④ 由③和④求公共部分,得 故函数的定义域为 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知的定义域,求的定义域。 其解法是:已知的定义域是[a,b]求的定义域是解,即为所求的定义域。 例3 已知的定义域为[-2,2],求的定义域。 解:令,得,即,因此,从而,故函数的定义域是。 (2)已知的定义域,求f(x)的定义域。 其解法是:已知的定义域是[a,b],求f(x)定义域的方法是:由,求g(x)的值域,即所求f(x)的定义域。 例4 已知的定义域为[1,2],求f(x)的定义域。

解:因为。 即函数f(x)的定义域是。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数的定义域为R求实数m的取值范围。 分析:函数的定义域为R,表明,使一切x∈R都成立,由项的系数是m,所以应分m=0或进行讨论。 解:当m=0时,函数的定义域为R; 当时,是二次不等式,其对一切实数x都成立的充要条件是综上可知。 评注:不少学生容易忽略m=0的情况,希望通过此例解决问题。 例6 已知函数的定义域是R,求实数k的取值范围。 解:要使函数有意义,则必须≠0恒成立,因为的定义域为R,即 无实数 ①当k≠0时,恒成立,解得;

函数定义域几种类型及其求法

函数定义域几种类型及其求法 河北省承德县一中 黄淑华 一、已知函数解析式型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1、求函数8315 22-+--=x x x y 的定义域。 解:要使函数有意义,则必须满足?????≠-+≥--0 8301522x x x 即???-≠≠-<>11535x x x x 且或 解得1135-≠-<>x x x 且或 即函数的定义域为{}1135-≠-<>x x x x 且或。 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能用常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的定义域,一般有两种情况。 (一)已知)(x f 的定义域,求[])(x g f 的定义域。 其解法是:已知)(x f 的定义域是],[b a 求[])(x g f 的定义域是解b x g a ≤≤)(,即为所求的定义域。 例2、已知)(x f 的定义域为]2,2[-,求)1(2-x f 的定义域。 解:22≤≤-x ,2122≤-≤-∴x ,解得33≤≤- x 即函数)1(2-x f 的定义域为{}33≤≤-x x (二)已知[])(x g f 的定义域,求)(x f 的定义域。 其解法是:已知[])(x g f 的定义域是],[b a 求)(x f 的定义域的方法是:b x a ≤≤,求)(x g 的值域,即所求)(x f 的定义域。 例3、已知)12(+x f 的定义域为]2,1[,求)(x f 的定义域。 解:21≤≤x ,422≤≤∴x ,5123≤+≤∴x 。 即函数)(x f 的定义域是{}53|≤≤x x 。

高中一年级的函数定义域的求法

高一的函数定义域的求法 . 已知f(x),求f[g(x)],例如已知f(x)的定义域为(1,2),求f (2x+5)的定义域: 已知f[g(x)],求f(x),例如已知f(2x+5)的定义域为(1,2),求f(x)的定义域: 已知f(x),求f[g(x)],例如已知f(x)=x+1,求f(2x+5)的解析式:已知f[g(x)],求f(x),例如已知f(2x+5)=x+1,求f(x)的解析式: 已知函数y=f(x+1)定义域是[-2,3],则y=f(2x-1)的定义域是

若函数y=f(x)的定义域为[-2,2],则求函数y=f(x+1)+f (x-1)的定义域. 若函数y=f(x)的定义域为〔-1,1〕,求函数y=f(x+1/4)·f(x-1/4)的定义域 若函数y=f(x)的定义域是0,2,则函数g(x)=f(2x)/x-1的定义域是多少?

若函数y=f[x]的定义域是【-2,4】,则函数g[x]=f[x]+f[-x]的定义域是多少? 若函数y=f(x)的定义域是0,2,则函数g(x)=f(2x)/x-1的定义域是多少?

1、这类题,就是把g(x)看成一个整体y,f(x)和f(y)的定义域是一样的,得出y的围后再求解x的定义域。 f(x)的定义域是(1,2),令y=2x+5,则f(2x+5)=f(y) ,y的定义域是(1,2),所以1<2x+5<2 1<2x+5<2 -2

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 整理:河南省郸厂城县才源高中 王保社 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴) (1 )(x f x f = - 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数 (4)f(x)·f(2x-x 2 )=f[x+(2x-x 2 )]=f(-x 2 +3x)又1=f(0), f(x)在R 上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

函数定义域 教案

课 题:函数定义域 教学目的: 1.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法; 2.培养抽象概括能力和分析解决问题的能力; 教学重点:“区间”、“无穷大”的概念,定义域的求法 教学难点:正确求分式函数、根式函数定义域 授课类型:新授课 教学过程: 一、复习引入: 函数的三要素是:定义域、值域和定义域到值域的对应法则;对应法则是函数的核心(它规定了x 和y 之间的某种关系),定义域是函数的重要组成部分(对应法则相同而定义域不同的映射就是两个不同的函数);定义域和对应法则一经确定,值域就随之确定 二、讲解新课: 求函数定义域的基本方法 我们知道,根据函数的定义,所谓“给定一个函数”,就应该指明这个函数的定义域和对应法则(此时值域也往往随着确定),不指明这两点是不能算给定了一个函数的,那么为什么又在给定函数之后来求它的定义域呢?这是由于用解析式表示函数时,我们约定:如果不单独指出函数的定义域是什么集合,那么函数的定义域就是能使这个式子有意义的所有实数x 的集合.有这个约定,我们在用解析式给出函数的对应法则的同时也就给定了定义域,而求函数的定义域就是在这个意义之下写出使式子有意义的所有实数组成的集合. 例1 求下列函数的定义域: ① 21)(-=x x f ;② 23)(+=x x f ;③ x x x f -++=211)(. 分析:函数的定义域通常由问题的实际背景确定如果只给出解析式)(x f y =,而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数x 的集合 解:①∵x-2=0,即x=2时,分式 21-x 无意义, 而2≠x 时,分式2 1-x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-3 2时,根式23+x 无意义, 而023≥+x ,即3 2-≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2-≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式 x -21 同时有意义,∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ???≠-≥+0201x x ? ? ??≠-≥21x x ∴这个函数的定义域是: {x |1-≥x 且2≠x } 强调:解题时要注意书写过程,注意紧扣函数定义域的含义.由本例可知,求函数的定义域就是根

抽象函数习题精选精讲1

含有函数记号“ ()f x ”有关问题解法 由于函数概念比较抽象,学生对解有关函数记号 ()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地 掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出 ()f x ,这也是证某些公式或等式常用的方法,此法解培养学生 的灵活性及变形能力。 例1:已知 ( )211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴ 2()1x f x x -= - 2.凑合法:在已知 (())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁, 还能进一步复习代换法。 例2:已知 33 11()f x x x x +=+,求 ()f x 解:∵ 22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11 ||||1|| x x x x +=+≥ ∴ 23()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设 ()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22 222()24ax bx a c x x +++=++比较系数得2()4 1321 ,1,2222 a c a a b c b +=??=?===??=? ∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵ ()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵ ()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴ lg(1),0 ()lg(1),0x x f x x x +≥?=? --

1求函数定义域类型几方法(word版)

函数定义域的类型及求法 一、已知解析式型(所有同学一定要会的) 二、含参问题(很重要) 三、抽象函数(复合函数)的定义域 1已知()f x 的定义域,求[]()f g x 的定义域 其解法是:若()f x 的定义域为a x b ≤≤,则在[]()f g x 中,()a g x b ≤≤,从中解得x 的取值范围即为[] ()f g x 的定义域.

例1 已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 分析:该函数是由35u x =-和()f u 构成的复合函数,其中x 是自变量,u 是中间变量,由于()f x 与()f u 是同一个函数,因此这里是已知15u -≤≤,即1355x --≤≤,求x 的取值范围. 解:()f x 的定义域为[]15-,,1355x ∴--≤≤,41033x ∴≤≤. 故函数(35)f x -的定义域为41033?????? ,. 2、已知[]()f g x 的定义域,求()f x 的定义域 其解法是:若[]()f g x 的定义域为m x n ≤≤,则由m x n ≤≤确定的()g x 的范围即为()f x 的定义域. 例2 已知函数2(22)f x x -+的定义域为[] 03,,求函数()f x 的定义域. 分析:令222u x x =-+,则2(22)()f x x f u -+=, 由于()f u 与()f x 是同一函数,因此u 的取值范围即为()f x 的定义域. 解:由03x ≤≤,得21225x x -+≤≤. 令222u x x =-+,则2(22)()f x x f u -+=,15u ≤≤. 故()f x 的定义域为[]15,. 3,已知[]()f g x 的定义域,求[()]f h x 的定义域 其解法是:若[]()f g x 的定义域为m x n ≤≤,则由m x n ≤≤确定的()g x 的取值范围即为()h x 的取值范围,由()h x 的取值范围即可求出 [()]f h x 的定义域x 的取值范围。 例2 已知函数(1)f x +的定义域为[]15-,,求(35)f x -的定义域. 分析:令1,35u x t x =+=-,则(1)(),(35)()f x f u f x f t +=-=, (),()f u f t 表示的是同一函数,故u 的取值范围与t 相同。 解:()f x 的定义域为[]15-,,即15x ∴-≤≤016x ∴+≤≤。 056x ∴-≤3≤

高中函数定义域和值域的求法总结(十一种)

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ? ??>-≥②①0x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而 3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。 (2)已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求 g(x)的值域,即所求f(x)的定义域。 例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 解:因为51x 234x 222x 1≤+≤≤≤≤≤,,。 即函数f(x)的定义域是}5x 3|x {≤≤。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围。 分析:函数的定义域为R ,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴) (1 )(x f x f = - 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数 (4)f(x)·f(2x-x 2 )=f[x+(2x-x 2 )]=f(-x 2 +3x)又1=f(0), f(x)在R 上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0

(完整版)1求函数定义域类型几方法(word版)

函数定义域的类型及求法 、已知解析式型(所有同学一定要会的) 即给出函数的解析式的定义域求袪,苴解袪是由解析式有意义列出关于自变量的不等 式或不等式组■解此不等式(或组)即得原函数的定义域° Jx 1 - 2x - 1^ 例求函数p 二 _ 的定文域. I - 15 >0 f Y > 5或丫 < -3 解*要使函数有意5C 则必须满足] ' - 即J ”工+引―8工0 [工疋5且工工―11 解得r > §或斗< 且里工一11 即口数的定义域为{工r > 5或藍丈-3且工上-11 } o 二、含参问题(很重要) 例乳已知函数$ = J 沁亍一6沁一澈十8的定义境为E 求实数战的取值范围° 分析;函数的定文域为R ,表明他:-6林亠用十S 乙0 ,使一切工E R 都成立,由厂 项的系數是刖,所以应分刪=0或旳黑0进行讨论d 解.讨论. ① 当也二0时,函数的定义域为R ; ② 当用=0时,mx ■ - 6)KX + M ? -F X > 0杲二次不等式,其对一切实数X 都成立的充 综上可知;0 £ m 玉1 ° 三、抽象函数(复合函数)的定义域 1已知f(x)的定义域,求f g(x)的定义域 其解法是:若f (x)的定义域为a < x < b ,则在f g(x)中,a < g(x) < b ,从中解得x 的取值范 要条件是.

围即为f g(x)的定义域. 例1 已知函数f(x)的定义域为1,,求f(3x 5)的定义域. 分析:该函数是由u 3x 5和f(u)构成的复合函数,其中x是自变量,u是中间变量,由于f(x)与f (u)是同一个函数,因此这里是已知 1 < u < 5,即K 3x 5 < 5,求x的取值范围. 4 10 解:Q f(x)的定义域为1,, 1 < 3x 5 < 5,4< x < 10. 3 3 故函数f(3x 5)的定义域为-,10. 3 3 2、已知f g(x)的定义域,求f (x)的定义域 其解法是:若f g(x)的定义域为m < x< n,则由m< x < n确定的g(x)的范围即为f (x)的定义域. 2 例2已知函数f(x 2x 2)的定义域为0,3,求函数f(x)的定义域. 分析:令u x2 2x 2,则f(x2 2x 2) f(u), 由于f(u)与f(x)是同一函数,因此u的取值范围即为f(x)的定义域. 解:由0 < x < 3,得 1 < x2 2x 2 < 5 . 令u x2 2x 2,贝y f (x2 2x 2) f (u),1< u < 5 . 故f (x)的定义域为1,. 3,已知f g(x)的定义域,求f[h(x)]的定义域 其解法是:若f g(x)的定义域为m < x < n,则由m < x < n确定的g(x)的取值范围即为h(x) 的取值范围,由h(x)的取值范围即可求出f[h(x)]的定义域x的取值范围。 例2 已知函数f(x 1)的定义域为1,,求f(3x 5)的定义域. 分析:令u x 1,t 3x 5,则f(x 1) f(u), f(3x 5) f(t), f (u), f (t)表示的是同一函数,故u的取值范围与t相同。 解:Q f(x)的定义域为1,,即K x < 5 0 < x 1 < 6。

高中函数定义域的求法

例1,求下列分式的定义域。 2 求函数y =23-x +30323-+x x ) (的定义域 解:(1)依题意可得,须是分母不能为零并且该根式也必须有意义,则 解得 x ≥3或x <2 因此函数的定义域为{X ︱x ≥3或x <2}。 (2) 要使函数有意义,则?????≠+≠-≥-. 03032023x x x ,,所以原函数的定义域为{x|x ≥32,且x ≠32}. 评注:对待此类有关于分式、根式的问题,切记关注函数的分母与被开方数即可,两者要同时考虑,所求“交集”即为所求的定义域。 例2,求下列关于对数函数的定义域 例1 函数x x y --=312log 2的定义域为 。 分析:对数式的真数大于零。 解:依题意知:0312>--x x 即0)3)(12(>--x x 解之,得321<--x x 已包含03≠-x 的情况,因此不再列出。 例3、⑴已知f(x)的定义域为[-1,1],求f(2x-1)的定义域。 (2)已知f(x)的定义域为[0,2],求函数f(2x-1)的定义域。 (3)已知f(x)的定义域为[0,2],求f(x 的平方)的定义域。 (4)已知f(2x-1)的定义域为(-1,5],求函数f(x)的定义域。 (5)已知f(2x-5)的定义域为(-1,5],求函数f(2-5x)的定义域。 例4,将长为a 的铁丝折成矩形,求矩形的面积y 关于一边长x 的函数解析式,并求函数的定义域。 总的来说,中学阶段研究的函数都还只是函数领域中的皮毛而已。但是不要因为这样,就高兴的太早了。毕竟还有很多同学对这方面一窍不通。对于每一个确定的函数,,其定义域是确定的,为了更明确、更深刻地揭示函数的本质,就产生了求函数定义域的问题。要全面认识定义域,深刻理解定义域,在实际寻求函数的定义域时,应当遵守下列规则: (1) 分式的分母不能为零; (2) 偶次方根的被开方数应该为非负数; (3) 有限个函数的四则运算得到新函数其定义域是这有限个函数的定义域交集(作 除法时还要去掉使除式为零的x 值); 的定义域求函数265)(:12-+-= x x x x f 020652≠-≥+-x x x

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

(完整版)几种复合函数定义域的求法

配凑法就是在)]([x g f 中把关于变量x 的表达式先凑成)(x g 整体的表达式,再直接把)(x g 换成x 而得)(x f 。 f(x -1x )=x 2+1x 2,函数f(x)的解析式 换元法就是先设t x g =)(,从中解出x (即用t 表示x ),再把x (关于t 的式子)直接代入)]([x g f 中消去x 得到)(t f ,最后把)(t f 中的t 直接换成x 即得)(x f ,这种代换遵循了同一函数的原则。 f(x +1)=x 2 +x,函数f(x)的解析式: 复合函数的定义域 复合函数的定义 一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数. 例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x , 22(())3()53(1)538f g x g x x x =+=++=+ 问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。)说明: ⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。 ⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。 ⑶))((x g f 与))((x f g 表示不同的复合函数。 设函数53)(,32)(-=+=x x g x x f ,求))(()),((x f g x g f 复合函数的定义域求法 .已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。

高中数学必修一函数概念定义域值域教学方案

高中数学必修一函数概念定义域值域教学方案(总16页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

函数的概念 函数的定义: 设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的函数,记作)(x f y =, x ∈A 其中x 叫自变量,x 的取值范围A 叫做函数)(x f y =的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)((?B )叫做函数y=f(x)的值域. 对函数概念的理解需注意以下几点: ①函数首先是两个数集之间建立的对应,A 、B 都是非空数集,因此定义域(或值域)为空集的函数不存在。 ②对于x 的每一个值,按照某种确定的对应关系f ,都有唯一的y 值与它对应,这种对应应为数与数之间的一一对应或多一对应 ③认真理解()x f y =的含义:()x f y =是一个整体,()x f y =并不表示f 与x 的乘积,它是一种符号,它可以是解析式,也可以是图像,也可以是表格 ④函数符号)(x f y =表示“y 是x 的函数”,有时简记作函数)(x f . 【例1】判断下列对应能否表示y 是x 的函数: (1)x y =;(2)x y =;(3)2x y =;(4)x y =2;(5)122=+x y ;(6)122=-x y 。 【练1】判断下列图象能表示函数图象的是( ) (A)

区间的概念和记号 设a,b∈R ,且aa,x≤b,x

专题:函数定义域的求法及常见题型 (定稿)

专题一:函数定义域的求法及常见题型 一、函数定义域求法 (一)常规函数 函数解析式确定且已知,求函数定义域。其解法是根据解析式有意义所需条件,列出关于自变量的不等式或不等式组,解此不等式(或组),即得函数定义域。 例1.求函数的定义域。 解:要使函数有意义,则必须满足 由①解得或。③ 由②解得或④ ③和④求交集得且或x>5。 故所求函数的定义域为(-∞,-11)U(-11,-3] U(5,+∞)。 注意点:分母、偶次方根被开方数,多条件求交集,定义域写法,仅可写成区间或集合形式,不能写成不等式。 例2.求函数的定义域。 解:要使函数有意义,则必须满足 由①解得③ 由②解得④ 由③和④求公共部分,得 故函数的定义域为(-4,-π] U(0,π]。 提示点:③和④怎样求公共部分? (二)抽象函数 1.有关概念 定义域:函数y=f(x)的自变量x的取值范围,可以理解为函数y=f(x)图象向x轴投影的区间;凡是函数的定义域,永远是指自变量x的取值范围; 对应法则:通过“工厂”或“模具”观点进行类比,以此深入理解函数 () y f x = 的对应法则“f”。把

函数 () y f x = 的对应法则“f”看作“工厂”或“模具”,把自变量“x”的取值看作“原料”,把相应 函数值“y”看作“成品”。该观点注重“原料”以怎样的形式组装成“成品”,而不管“原料”是否为“初级产品”,从而避免了当所给函数的“原料”不是某个单一字母的情形时,找不到或不好找函数的对应法则。 如(1)已知函数f(x)的定义域是[0,4],求函数f(2x+1)的定义域;(2)已知函数f(2x+1)的定义域是[0,4],求函数f(x)的定义域。 可以把f(x)看成工厂的生产加工,f是加工工序,x是原料。 (1)中f(x)的原料就是初级产品,所以原料或初级产品满足的条件就是[0,4];在f(2x+1)中,初级产品是2x+1,它必须满足[0,4],由此求出f(2x+1)的原料x满足的条件(即自变量)。 因为(2)中f(2x+1)的定义域是[0,4],即原料x满足[0,4],变成初步产品2x+1,那么初步产品的限制条件就成了[1,9], 所以f(x)的原材料就是 [1,9],这样好不好理解? 值域:函数y=f(x)的因变量y的取值范围,可以理解为函数y=f(x)图象向y轴投影的区间; 显函数:俗称常见函数,函数解析式是明确的,例如:y=f(x)=2x2+3x-5; 隐函数:俗称抽象函数,函数解析式是不明确的,就用y=f(x)表示,具体f(x)是什么内容是隐藏的; 复合函数:如果说y=f(x)是一个简单的抽象函数,那么把自变量x用一个函数g(x)来代替,就称y=f(g(x))为复合的抽象函数,习惯上称y=f(t)是外函数,t=g(x)为内函数。 2.四种类型 题型一:已知抽象函数y=f(x)的定义域为[m,n],如何求复合抽象函数y=f(g(x))的定义域? 思路分析:本题型是已知y=f(x)的自变量x的范围,求y=f(g(x))的自变量x的范围,其中的关键是,后者的g(x)相当于前者的x。 解决策略:求不等式m≤g(x)≤n的解集,即为y=f(g(x))的定义域 例题3.已知函数y=f(x)的定义域[0,3],求函数y=f(3+2x)的定义域 解:令t=3+2x,∵y=f(x)的定义域[0,3],∴y=f(t)的定义域也为[0,3],即t=3+2x∈[0,3], 说明:内函数g(x)=3+2x,通过令t=3+2x做了一个换元,此处换元不能写为令x=3+2x。原因是y=f(x)中的x与y=f(3+2x)的x虽然长得一样,但是意义不同,如果令x=3+2x,则等号两边的x就是一模一样了,x只能为-3了。 强化训练: 1.已知函数y=f(x)的定义域[-1,5],求函数y=f(3x-5)的定义域; 2.已知函数y=f(x)的定义域[1/2,2],求函数y=f(log2x)的定义域; 3.已知的定义域为[-2,2],求的定义域。 题型二:已知复合抽象函数y=f(g(x))定义域[m,n],如何求抽象函数y=f(x)的的定义域? 思路分析:本题型是已知y=f(g(x))的自变量x的范围,求y=f(x)的自变量x的范围,其中的关键是,前者的g(x)相当于后者的x。 解决策略:求内函数t=g(x)在区间[m,n]的值域(t的取值范围),即为y=f(x)的定义域 例题4.已知函数y=f(2x-1)的定义域[0,3],求函数y=f(x)的定义域.

反函数典型例题

反函数求值 例1、设有反函数,且函数与 互为反函数,求的值. 分析:本题对概念要求较强,而且函数不具体,无法通过算出反函数求解,所以不妨试试“赋值法”,即给变量一些适当的值看看能得到什么后果. 解:设,则点在函数的图象上,从而点 在函数的图象上,即.由反函数定义有,这样即有,从而. 小结:利用反函数的概念,在不同式子间建立联系,此题考查对反函数概念的理解,符号间关系的理解. 两函数互为反函数,确定两函数的解析式 例2 若函数与函数互为反函数,求 的值. 分析:常规思路是根据已知条件布列关于的三元方程组,关键是如何 布列如果注意到g(x)的定义域、值域已知,又与g(x)互为反函数,其定义域与值域互换,有如下解法: 解:∵ g(x)的定义域为且,的值域为 . 又∵g(x) 的定义域就是的值域, ∴. ∵g(x) 的值域为 , 由条件可知的定义域是 , , ∴. ∴.

令, 则即点(3,1) 在的图象上. 又∵与g(x) 互为反函数, ∴ (3,1) 关于的对称点(1,3) 必在g(x)的图象上. ∴ 3=1+ , . 故 . 判断是否存在反函数 例3、给出下列函数: (1); (2); (3); (4); (5) . 其中不存在反函数的是__________________. 分析:判断一个函数是否有反函数,从概念上讲即看对函数值域内任意一个 ,依照这函数的对应法则,自变量总有唯一确定的值与之对应,由于这种判断难度较大,故通常对给出的函数的图象进行观察,断定是否具有反函数. 解: (1) ,(2)都没有问题,对于(3)当时,和 ,且 . 对于(4)时,和 .对于(5)当时,和 . 故(3),(4),(5)均不存在反函数. 小结:从图象上观察,只要看在相应的区间内是否单调即可. 求复合函数的反函数

相关主题