搜档网
当前位置:搜档网 › 润滑油乳化原因分析精选文档

润滑油乳化原因分析精选文档

润滑油乳化原因分析精选文档
润滑油乳化原因分析精选文档

润滑油乳化原因分析精

选文档

TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

润滑油乳化原因分析

机油形成乳状液必须具有三个必要条件:一是必须有互不相溶(或不完全相溶)的两种液体;二是两种混合液中应有乳化剂(能降低界面张力的表面活性剂)存在;三是要有形成乳化液的能量,如强烈的搅拌、循环、流动等。

水分、激烈搅拌、乳化剂,均能引起机油乳化。其中,水分的存在和激烈搅拌是产生乳化的主要原因。

1. 机油中水分的存在,会加速油质的老化及产生乳化;同时会与油中添加剂作用,促使其分解,导致设备锈蚀。因此找到机油中进水的主要原因也就是找到了油质乳化的主要原因,下面分析造成油中进水的主要原因,在工作实践中发现造成油中进水的主要原因有一下几个方面:

a. 轴封径向间隙调整过大,轴封漏汽沿轴窜入轴承室,造成油中带水。机组检修时,为了避免在启动过程中高速转动的轴系因过临界转速振动或转子热膨胀而碰磨轴封尖齿。一般在调整轴封时增大了轴封间隙。在机组正常运行中影响了轴封的严密性,造成了轴封漏汽沿轴窜入轴承室,这是油中进水的根本原因。

b. 轴封齿倒伏,密封作用降低造成油中进水。在轴封径向间隙调整过程中,考虑转子膨胀及轴系振动不全面,使轴封径向间隙过小,令机组在启动过程中因转子膨胀与轴系振动造成轴封尖齿与转子碰磨,尖齿倒伏,密封作用降低,造成轴封漏汽,使水沿轴窜入轴承室。

c.轴封进汽联箱供汽压力过大,使轴封室成为正压,造成轴封漏气。

d.轴封抽汽器抽气压力不足,抽气管堵塞,造成负压不足,使水汽沿轴窜出,造成轴封漏汽。

e. 盘车齿轮或靠背轮转动鼓风的抽吸作用,造成轴承箱内局部负压,吸入蒸汽。另外主油箱排烟风机出力太大,使轴承室负压增大,使轴封漏汽,更易进入润滑油系统。

f. 汽缸结合面变形、密封不严密,造成水汽泄漏,进入轴承室,使油中带水。

g.运行参数异常导致冷油器冷却水侧压力高压油侧压力,并且冷油器泄漏。

2. 油中溶有空气,特别是在高温下,会加速油的氧化变质。空压机机运行中,因其油品气化变质而产生的环烷酸皂、胶体等物质都是乳化剂,使油更容易乳化。

3. 机油的乳化,与油品中的添加剂性能亦有关系。机油添加剂(如抗氧化剂和防锈剂),大都是具有一定表面活性的化合物或混合物。这些物质的分子结构中,一端是具有亲油性的非极性基团,另一端是具有一定表面活性的亲水性极性基团。虽然它们都溶解于油而不溶解于水,但在一定转速下极性基团对水就具有一定的亲合能力,增强了油水分离的难度,促进油质乳化。

4. 激烈搅拌。在空压机高速旋转时,油和水被激烈而充分的搅拌,呈乳浊液态。此时,上述亲水的极性基团有了与水充分亲合的机会,当亲合力很大时,就会与水牢固的结合在一起。又由于亲油性的非极性基团能溶于油中,从而通过这种物质的作用使水和油结合在一起。因此,这时水就不能与油分离,即产生乳化现象。

三、防止机油乳化的措施:

润滑高工黄工前面,对于机油乳化给机组运行带来严重后果以及产生乳化的原因都进行了充分地论述。因此,防止机油乳化应从压缩机机组设备的设计、制造、安装、运行维护、检修、以及油品和添加剂质量等方面着手,层层把关。防止轮机油乳化的措施总结归纳为一下几点:

1. 防止油系统进水

预防和消除机油系统进水,是防止机油乳化的重要措施。为此,首先要确保产品设计和制造质量,一是汽封装置结构设计合理、零部件加工符合工艺标准

2. 排除油中水分

在大型空压机运行时,应随机投入油净化装置,以便及时对机组润滑用油和调节保安装置的压力油进行油水分离和杂质过滤。目前应用得比较广泛的YJG型油净化器,由沉淀箱、过滤箱、贮油箱、排油烟机、自动抽水器和精密滤油器等组成。这种油净器由于具有较大油容积,对油中水分、杂质的清除兼有重力分离、过滤与吸附净化作用,净化效率高,且运行安全可靠。此外,安装在油箱上的排油烟机应与空压机同时运行,并连续不断的抽走油中气体和水蒸汽,使其不能在油箱内凝结;同时,轴承箱上的通气孔(排气管)应畅通,避免轴承内产生负压而吸入蒸汽、湿气或凝结水珠。

3. 清除油管路清洗后的残液

在机组安装或大修中,如用热水或蒸汽冲洗油管路、冷油器油侧或油系统上的滤油器等部件的油垢,应在清洗后用压缩空气吹扫可能存留的残液或水珠,确信干燥后再将管接头封好待装复。

4. 保证机油质量

对于购进的机油,其质量应符合GB2537或GB11120-89标准,并应具备良好的粘附性、氧化安定性、防锈性、抗起泡沫,以及抗乳性能及酸值指标。对于运行中的机油,除定期进行全面的检测外,平时亦应注意有关项目的监督和取样检测,发现问题及时处理。

5. 油中添加抗乳化剂

为延长油的使用寿命和提高油的抗乳化性能,可根据运行中机油的油质情况,向油中添加抗乳化剂,以破坏油水界面上的乳化膜,将水释放出,达到除水目的。这里需要指出的是,所加入的添加剂应符合质量标准,尽可能降低或除去添加剂中亲水性能较强的成份,达到或高于汽轮机油标准所规定的抗乳化性能指标。目前在我国东北地区正在添加一种名为GPE15S-2(聚氧乙烯聚氧丙稀甘油硬脂酸脂)破乳化剂,该破乳化剂的优点是它可以在常温下直接溶于油中,不需要任何有机助溶剂,添加量约为12毫克/升。

2_L_ AYDaS??

6. 定期工作中的油箱放水,滤油工作,以及取样,化学分析,都应该引起足够的重视

润滑油的主要性能指标是什么

润滑油的主要性能指标是什么? 润滑油的主要性能指标是什么? 满意答案 相关答案 运动黏度,闪点,倾点,针入度,从这些数据上判定邮品的api质量等级和sae 黏度等级。一般润滑油外包装上会标示,比如API SM SAE5w40,就表示该油品质量级别是sm,黏度等级是5w30 2010-1-16 16:49 润滑油的主要指标有:粘度、粘度指数、倾点和凝点、闪点和燃点、灰分、残炭值。 1、粘度 粘度就是在一定温度下润滑油流动的速度,它会随着温度的变化而变化。一般国际上采用40℃和100℃时的粘度作为标准。粘度是各种润滑油分类分级的指标,对质量鉴别和确定有决定性意义。 2、粘度指数 粘度指数是表示油品随温度变化这个特性的一个约定量值。粘度指数越高,表示油品的粘度随温度变化越小。 3、倾点和凝点 倾点是在规定的条件下被冷却的试样能流动时的最低温度,凝点是试样在规定的条件下冷却到停止移动时的最高温度,均以℃表示。倾点或凝点是一个条件试验值,并不等于实际使用的流动极限。 4、闪点 润滑油的闪点是润滑油的贮存、运输和使用的一个安全指标,同时也是润滑油的挥发性指标。闪点低的润滑油,挥发性高,容易着火,安全性差,润滑油挥发性高,在工作过程中容易蒸发损失,严重时甚至引起润滑油粘度增大,影响润滑油的使用。重质润滑油的闪点如突然降低,可能发生轻油混入事故。从安全角度考虑,石油产品的安全性是根据其闪点的高低而分类的:闪点在45℃以下的为易燃品,闪点在45℃以上的产品为可燃品。 5、燃点 燃点又叫着火点,是指可燃性液体表面上的蒸汽和空气的混合物与火接触而发生火焰能继续燃烧不少于5s时的温度。可在测定闪点后继续在同一标准仪器中测定。可燃性液体的闪点和燃点表明其发生爆炸或火灾的可能性的大小,对运输、储存和使用的安全有极大关系。 6、润滑油的灰分 润滑油的灰分,是润滑油在规定的条件下完全燃烧后,剩下的残留物(不燃物)。润滑油的灰分主要是由润滑油完全燃烧后生成的金属盐类和金属氧化物所组成。含有添加剂的润滑油的灰分较高。润滑油中灰分的存在,使润滑油在使用中积碳增加,润滑油的灰分过高时,将造成机械零件的磨损。 7、残炭值 润滑油中的沥青质,胶质及多环芳烃的叠合物是形成残炭的主要物质。因此残炭

破乳化原因分析

汽轮机油破乳化度超标的原因分析及处理|| 全科论文中心-职称论文| 毕业论文|免费论文|各学科专业论文 PH计(酸度计)2008-07-04 08:55:41 阅读19 评论0 字号:大中小 (拉克玛依电厂新疆拉克玛依834008) 摘要:着重分析汽轮机油破乳化性能劣化的原因,并针对劣化的汽轮机油进行试验添加破乳化剂等处理,最终使劣化的汽轮机油乳化性能合格,不仅收到较好的经济效益,而且为劣化油处理积累了宝贵的经验 关键词:汽轮机油破乳化性能油品乳化破乳化剂 火力发电厂的汽轮机润滑油作为汽轮发电机组润滑与调速系统的工作介质,在生产检修使用的各个环节都存在着外界表面活性物质的侵入的可能,长期在高温剧烈搅拌下的情况下运行,以及油品的老化磨损水汽的泄漏等原因,产生劣化产物,从而引起油品的乳化汽轮机油一旦乳化,不但失去润滑和冷却散热等作用,而且给设备带来极大的危害我厂作为火力发电厂,在2005-2006年中发现汽轮机油破乳性能劣化的现象 1 汽轮机油破乳化性能劣化的原因 由于油品乳化对机组影响较大其乳化的机理如下油品发生乳化必须具备三个条件:油中含有与油不互溶的物质(如水);含有能降低油水界面张力的表面活性物质;高速循环流动或搅拌这三个条件很容易被运行汽轮机油满足 一般认为油中存在超标的水分是破乳化性能劣化的主要原因,对汽轮机油水分正常但破乳化性能超标,感到不可理解实际上,水分的存在主要是给破乳化性能劣化提供了条件,并不是破乳化性能劣化的根本原因,表面活性物质的存在才是引起汽轮机油破乳化度不合格的关键因素表面活性物质是一种两亲分子,具有亲油和亲水的性质,在汽轮机油中混入了水份和表面活性物质后,表面活性物质会显蓍降低油水界面的张力,并富集在油的界面层,在有水分存在,且受到循环流动高速搅拌的情况下,便发生乳化此时,表面活性物质吸附在油水两相界面上,以亲油亲水基团使油和水连接,使水滴可以稳定地分散于油中,使油水不易分离 当然,过量水分的存在会加速油品抗氧剂的损失,增加金属的腐蚀,加速油品的劣化,从而使得油品破乳化性能下降例如我厂#12机,当测油品中水分为5444ppm时,其破乳化度为24min;但在后期,通过过滤除去大部分水分,油中水分含量为46ppm时,其破乳化度却上升为130min 2 我厂油品乳化情况介绍 2.1 2005年9月5日,检查发现#12机油品乳化不透明,油中含有大量乳状水,但此时油的破乳化度仍合格,并接近新油标准一个月后分析发现:破乳化时间超标准虽经昼夜滤油处理,油中的乳状水分基本被滤除,油品也基本呈透明状态,但由于油质劣化,油品的破乳化时间超标准2006年元月24日,进行了破乳化剂的添加,效果良好;但当#3燃机故障时长达三个月的静置后,油品的破乳化时间再次超标,于5月18日再次添加破乳化剂 2.2 在2006年2月,进行正常的油质全分析时发现:#7#10机汽轮机油破乳化时间超标,分别是:105min89min,其它指标均在合格范围内,且油品外状透明,无乳状水,进行水分含量测定,发现油品的水分含量也不大同年5月的油质全分析时,发现#9机汽轮机油也发生了同样的问题3 油品乳化原因分析 3.1 #12机油品乳化的主要原因 油系统中由于泄漏进入了大量的水分;油箱设计容积过小,油的循环倍速过高,使得油品没有足够的时间沉降;同时前期加入的新油破乳化时间本身就不合格,为20min这三种因素同时存在,

润滑油抗乳化性能测定方法

一、方法摘要 在专用分液漏斗中,加人405毫升试样和45毫升蒸馏水。在82℃温度下以一定的速度搅拌5分钟,静置5小时后测量,并记录从油中分离出来的水的体积、乳化液的体积及油中水的百分数。 二、仪器与材料 1仪器 1.1加热浴,浴的大小及深度应至少能浸人两个分液漏斗,并使加热浴液体能浸到分液漏斗500毫升刻度标记处。此加热浴应能保持82±1 ℃,并能牢固地夹住分液漏斗,在油和水混合时,能使分液漏斗的垂直中心线与搅拌器的垂直轴线相吻合。 1.2搅拌器、分液漏斗、离心机,离心管。 水浴:其深度可以使离心管浸到100毫升刻线处,恒温50土1 ℃. 移液管:50毫升。 量筒:50和100毫升。 2.材料 蒸馏水:离子交换水或二次蒸馏水。 3.试剂 3.1清洗容剂三氯乙烷,化学纯(吸人或口服是有害的,能刺激眼睛,高浓度能引起昏厥或死亡)。 3.2甲苯:分析纯。 3.丙酮:化学纯。 3.石油醚:60~90℃,分析纯。 四、准备工作 4.1甲苯饱和洛液的制备 向试验用甲苯中加人1%(体积)的蒸馏水,摇动后放人50±1℃水浴中,15分钟时摇动第二次,再经15分钟摇动第三次,每次摇动30秒,然后置于水浴中静置待用。 分被漏斗的清洗用清洗溶剂清洗,以除去油膜或液膜,接着用丙酮、自来水冲洗净。然后将漏斗浸入铬酸洗液中,取出后先用自来水,后用蒸馏水冲洗千净。 注,可以用石油醚代替肩洗咨剂三氯乙烷,但有争议时,仍应用三氯乙娘作滴洗洛剂。 .搅拌器的清洗反复把搅拌器垂直地浸人清洗洛剂中,并使搅拌器高速运转,以清洗搅拌器,然后将其放入空气干燥筒中进行干燥,使洛剂在使用前挥发。 五、试验步骤 5.1将加热浴中的被体加热至82±1℃,并在整个试验过程中保持此温度。 5.2将在室温下的试样直接倒人分液漏斗至405毫升处,将分液漏斗放人加热浴中,使其温度达到82±1℃,然后在室温下量取45毫升蒸馏水加人分液漏斗中。再将搅拌器浸人分液漏斗,使批拌器底端与漏斗中心线最底部相距25毫米,并使搅拌器垂直轴线与漏斗中心线相吻合。在25~30秒内,慢慢地把搅拌器马达转速升到4500±500转/分,包括起动时间在内共运转5分钟。然后从油-水混合物中提起搅拌器并使其向分液漏斗滴液5分钟。取出搅拌器,进行清洗。 5.3停止搅拌5小时后,从分被漏斗中心线距油-水混合物液面以下51毫米处,用50毫升移液管吸取50毫升试样,排入装有50毫升甲苯饱和容液的离心管中,塞好管塞,充分摇匀后放入50±1℃水浴中10分钟。 5.4将离心管从水浴中取出,放人离心机对称两边的耳轴环内,建立一个平衡状态,使两边重量差不大于0.5克,并以500~800相对离心力的速度离心10分钟。读数并记录每个离心管底部水分的体积。不需搅拌再把离心管重新放人离心机,重复操作直到相邻两次离心后同

分析空压机润滑油乳化形成的原因

https://www.sodocs.net/doc/3a15708662.html, 浅析空压机滑油乳化形成的原因 根据空压机的结构,滑油中的水可能有两个来源,一是缸套冷却水泄漏,一是曲拐箱内空气凝水。 滑油与水本来不会乳化;但若有某些具有两亲性质的物质吸附并富集在油水界面上,就可能改变界面状态(降低界面张力),增加其表面活性,一种液体离散为许多微粒分散于另一种液体中,从而导致乳化。这些能增加两种液体表面活性并使它们乳化的物质称为乳化剂。乳化,指两种液体充分混和成为乳状液。能导致滑油与水乳化的乳化剂种类很多,而且导致滑油与水乳化所需乳化剂的量很少,很难确定该乳化剂的成分,只能从导致滑油乳化的水分来源分析。 经打开油底壳反复检查,未发现缸套密封圈破损和缸套裂纹漏水,可排除缸套冷却水漏泄。空压机机壳内的空气冷凝水――设:夏季海面空气压力0MPa(同标准大气压力,以下压力均为表压力),夏季海面相对湿度p=60%(般高于60%),夏季机舱平均空气温度f =30(夏季机舱平均气温一般都高于30)。 由标准大气压下湿空气焓熵可知,从空气相对湿度60%和夏季机舱平均空气温度30丈,冷却到开始凝水的相对湿度100%,是一条空气含湿量不变的垂线,B点对应的大气露点温度td是22;再根据压力露点和大气露点换算,大气露含湿最d某轮主空压机滑油乳化故障分析标准大气压下空气焓熵图斜线对应的压力分别是0、0.1、0.3、0.5、0.7。 如所周知,离心分离的原理是待净化燃油,经过高速旋转的诸多分离片夹层被分离:水和杂质沿上分离片的下平面被甩出最后积聚到泥渣空间;分离水沿顶盘与分离筒盖间经水叶轮泵出;净化后的燃油,经顶盘内部的液位环(LEVELRING)达到出油腔,形成一条随分离筒高速旋转的液体环带,其外边缘的燃油在离心动能作用下进入出油叶轮孔道增容(减速)扩压,从净油出口管排出。 作为分水机,使用与燃油密度适应的比重环作为分杂机,使用最小直径比重环(分杂环theclarifierdisc,口径66mm)和口径116mm的液位环。No.2重油分油机作为分水机运行时,较长时间持续下述异常:从出水口玻璃观察镜看到分离水变黑和乳化,表明有油排出;常有分油机出口排油低压报警;统计分析燃油出渣率高达2%,超过供油商提供的常规出渣率(约1%)。 显然,N.2重油分油机的该故障,不是排渣口跑油,而是排水口跑油且不稳定。鉴于该故障持续较长时间,先后多次检查和调整未能消除。这次接手处理此故障的思路是,列出导致排压力表实测,最高达到0.2MPa)。 根据前面利用和的分析,若曲拐箱内相对湿度60%空气压力达到0.2MPa,大气露点温度td=22丈,按对应曲拐箱压力0.2MPa的斜线,可查得压力露点温度Td是38丈,高出缸套冷却水温度(30丈)更多,曲拐箱凝水会更多。设备投入使用的前几年,缸套/活塞环磨损少,窜气少,能及时排出,曲拐箱压力不高,所以凝水少。随着缸套/活塞环磨损增加,窜气多了,又不能及时排出,导致曲拐箱压力增高,具备了生成凝水的条件。取下原透气口单向阀的球,油底壳滑油换新,使用500小时滑油无乳化。由此证实以上分析正确。 可手动调节减少冷却海水流量;或者就近从其他设备冷却海水出水引一路作为空压机冷却水。纠正措施改进透气口装置。封堵曲拐箱原透气口,新装透气弯管,开口处加装一个铁丝网罩(据个人经验建议近孔1mmx 1mm)以防杂物被吸入,增强透气效果,防止曲拐箱压力过高。

汽轮机油破乳化度超标的原因分析及处理

汽轮机油破乳化度超标的原因分析及处理 作者:郭霞丛淑萍时间:2008-1-27 (拉克玛依电厂新疆拉克玛依834008) 摘要:着重分析汽轮机油破乳化性能劣化的原因,并针对劣化的汽轮机油进行试验、添加破乳化剂等处理,最终使劣化的汽轮机油乳化性能合格,不仅收到较好的经济效益,而且为劣化油处理积累了宝贵的经验。 关键词:汽轮机油破乳化性能油品乳化破乳化剂 火力发电厂的汽轮机润滑油作为汽轮发电机组润滑与调速系统的工作介质,在生产、检修、使用的各个环节都存在着外界表面活性物质的侵入的可能,长期在高温、剧烈搅拌下的情况下运行,以及油品的老化、磨损、水、汽的泄漏等原因,产生劣化产物,从而引起油品的乳化。汽轮机油一旦乳化,不但失去润滑和冷却散热等作用,而且给设备带来极大的危害。我厂作为火力发电厂,在2005-2006年中发现汽轮机油破乳性能劣化的现象。 1 汽轮机油破乳化性能劣化的原因 由于油品乳化对机组影响较大其乳化的机理如下。油品发生乳化必须具备三个条件:油中含有与油不互溶的物质(如水);含有能降低油水界面张力的表面活性物质;高速循环流动或搅拌。这三个条件很容易被运行汽轮机油满足。 一般认为油中存在超标的水分是破乳化性能劣化的主要原因,对汽轮机油水分正常但破乳化性能超标,感到不可理解。实际上,水分的存在主要是给破乳化性能劣化提供了条件,并不是破乳化性能劣化的根本原因,表面活性的存在才是引起汽轮机油破乳化度不合格的关键因素物质。表面活性物质是一种两亲分子,具有亲油和亲水的性质,在汽轮机油中混入了水份和表面活性物质后,表面活性物质会显蓍降低油水界面的张力,并富集在油的界面层,在有水分存在,且受到循环流动、高速搅拌的情况下,便发生乳化。此时,表面活性物质吸附在油水两相界面上,以亲油亲水基团使油和水连接,使水滴可以稳定地分散于油中,使油水不易分离。 当然,过量水分的存在会加速油品抗氧剂的损失,增加金属的腐蚀,加速油品的劣化,从而使得油品破乳化性能下降。例如我厂#12机,当测油品中水分为5444ppm时,其破乳化度为24min;但在后期,通过过滤除去大部分水分,油中水分含量为46ppm时,其破乳化度却上升为130min。 2 我厂油品乳化情况介绍 2.1 2005年9月5日,检查发现#12机油品乳化、不透明,油中含有大量乳状水,但此时油的破乳化度仍合格,并接近新油标准。一个月后分析发现:破乳化时间超标准。虽经昼夜滤油处理,油中的乳状水分基本被滤除,油品也基本呈透明状态,但由于油质劣化,油品的破乳化时间超标准。2006年元月24日,进行了破乳化剂的添加,效果良好;但当#3燃机故障时长达三个月的静置后,油品的破乳化时间再次超标,于5月18日再次添加破乳化剂。 2.2 在2006年2月,进行正常的油质全分析时发现:#7、#10机汽轮机油破乳化时间超标,分别是:105min、89min,其它指标均在合格范围内,且油品外状透明,无乳状水,进行水分含量测定,发现油品的水分含量也不大。同年5月的油质全分析时,发现#9机汽轮机油也发生了同样

汽轮机润滑油相关指标及讲解

汽轮机油指标: 美国航空航天工业联合会(AIA)1984年1月发布的NAS1638标准

倾点 倾点是用来衡量润滑油等低温流动性的常规指标,同一油品的倾点比凝点略高几度,过去常用凝点,国际通用倾点。 倾点或凝点偏高,油品的低温流动性就差。人们可以根据油品倾点的高低,考虑在低温条件下运输、储存、收发时应该采取的措施,也可以用来评估某些油品的低温使用性能。 但评估多级内燃机油、车辆齿轮油的低温性能时,应以低温动力粘度、边界泵送温度、成沟点为主要参数。 物理意义;倾点是反映油品低温流动性的好坏的参数之一,倾点越低,油品的低温流动性越好。 检测标准:GB/T3535-2006,该标准与ISO 3016-1994等效 燃料油倾点的定义 燃料油有一个技术指标叫做倾点[1],单位是℃。一般来讲所谓的燃料油倾点就是指它能够流动的最低温度。 我们都知道,燃料油随着温度的降低,流动性会越来越差,甚至达到某一温度时它就会凝固而失去流动性。通常讲,燃料油在低温度下的流动性有两个影响因素:一个燃料油的粘度随温度下降会增高;另外一个是燃料油中原来呈液态的石蜡在温度下降到一定程度后会以固体的结晶形式出现。所以我们平时说的倾点有时也称之为“含蜡倾点”。根据定义描述我们可以看出,倾点越高,自然温度下该燃料油的流动性就越差。我们在实际中也可以通过添加适量的倾点下降剂来改善燃料油倾点。由于燃料油很多都是要经过长途运送才能达到目的地,所以说倾点也是非常重要的一个技术指标。

闪点 闪点是可燃性液体贮存、运输和使用的一个安全指标,同时也是可燃性液体的挥发性指标。闪点低的可燃性液体,挥发性高,容易着火,安全性较差。 石油产品,闪点在45℃以下的为易燃品,如汽油、煤油;闪点在45℃以上 的为可燃品,如柴油、润滑油。挥发性高的润滑油在工作过程中容易蒸发损失,严重时甚至引起润滑油粘度增大,影响润滑油的使用。 一般要求可燃性液体的闪点比使用温度高20~30℃,以保证使用安全和减 少挥发损失。 影响因素 闪点的高低,取决于可燃性液体的密度,液面的气压,或可燃性液体中是否混入轻质组分和轻质组分的含量多少。可燃性液体使用过程中若闪点突然降低,可能发生轻油混油事故或水解(对某些合成油而言),必须引起注意。 可燃液体的闪点随其浓度的变化而变化。 闪点的高低与油的分子组成及油面上压力有关,压力高,闪点高。 闪点是防止油发生火灾的一项重要指标。在敞口容器中,油的加热温度应低 于闪点10℃;在压力容器中加热则无此限制。 当可燃性液体液面上挥发出的燃气与空气的混合物浓度增大时,遇到明火可形成连续燃烧(持续时间不小于5秒)的最低温度称为燃点。燃点高于闪点。 从防火角度考虑,希望油的闪点、燃点高些,两者的差值大些。而从燃烧角度考虑,则希望闪点、燃点低些,两者的差值也尽量小些。 化合物闪点查询方式: 化工空间网可以按照名称、简称、CAS号查询化合物闪点。[1] 临界点 临界点是指石油产品在规定条件下,加热到它的蒸汽与火焰接触发生瞬间闪火时的最低温度。油品越轻,闪点越低。 当油面上油气与空气的混合物浓度增大时,遇到明火可形成连续燃烧(持续时间不小于5秒)的最低温度称为燃点。燃点高于闪点。 危险等级 油品的危险等级是根据闪点来划分的,闪点在45℃以下的叫易燃品;45℃ 以上的为可燃品。从闪点可判断油品组成的轻重,鉴定油品发生火灾的危险性。安全性质 闪点是表示石油产品蒸发倾向和安全性质的项目,闪点越高越安全。在储存 使用中禁止将油品加热到它的闪点,加热的最高温度,一般应低于闪点20~30℃。

从萃取实验中产生乳化现象引发的思考

从萃取实验中产生乳化现象引发的思考 【摘要】近年来随着精细化工、生命科学和材料科学等新兴科学的发展,现代分离手段得到广泛应用,促使分离科学的理论日臻完善,技术水平不断提高,逐步发展成为一门相对独立的学科。萃取作为一种经典的分离方法,无可厚非的在分离科学领域占有一席之地。然而在萃取实验中常常会出现乳化现象,本文简单介绍乳化现象,并分析乳化现象产生的原因及其消除方法,希望文中的观点能够引起读者的共鸣。 【关键词】萃取实验乳化现象萃取剂 萃取是对于液态混合物,我们可以利用混合物中一种溶质在互不相溶的溶剂里溶解度不同,用一种溶剂把溶质从它另一溶剂的所组成的溶液里提取出来的方法;它的本质是利用萃取剂将物质由亲水性转化成疏水性,最终达到分离的目的。 在演示人教版必修Ⅰ课本中的CCl4萃取水中I2的实验时,有时候我们会发现在两相交界面出现一层乳浊液,可能大家对这一现象也比较困惑,我查阅了大量的中学化学教参后均对这一现象未作涉及。很明显,我们仅仅从萃取的定义无法得出在萃取实验中是否会在两相交界处出现一层乳浊液,但是乳浊液的出现必然会影响实验的萃取效率。那么是什么原因造成这种现象?有没有办法能够消除或者尽量减少乳浊液的出现?本文首先介绍什么是乳化现象,然后重点介绍乳化现象产生的原因及其消除方法,希望对大家关于这点的理解有些许帮助。 一、什么是乳化现象 液-液萃取的过程实际上是一个液相中的溶质经过物理或者化学作用转移到另一相或者两相中重新分配的过程,也就是说制备不稳定乳浊液的过程。 正常的液-液萃取过程形成的乳浊液是不稳定的,当外力消失后,混合液依靠物质自身的界面张力和比重差进行凝固和分散,如果两相混合后形成稳定的乳浊液,在澄清室里长时间不能澄清,分散带逐渐加厚,甚至充满整个澄清室,则萃取槽的正常操作被破坏,萃取无法进行,出现这种现象就称为萃取过程中产生了乳化现象。 二、乳化现象产生的原因及其消除 萃取过程中有能成为乳化剂的表面物质的存在是乳化形成的主要原因。换句话说,表面活性物质的存在,是乳化的必要条件,界面膜的强度和紧密程度是乳化的充分条件。因此,寻找萃取体系中各个组分谁是乳化剂就成为问题的关键所在。虽然产生第三相的原因很复杂,但是可能的原因主要有:(1)萃取剂在有机相的溶解度太小;(2)萃取物在有机相中的溶解度太小;(3)另外一种萃取物的形成;(4)界面有污物等。针对CCl4萃取水中I2,我又进行了一系列的萃取实验,结果也不同程度的发现在两相交界处出现一层乳浊液或者有第三相(两层有机

工业润滑油使用中常见问题和解决办法(精)

工业润滑油使用中常见问题和解决办法 一、液压油常见问题及解决办法 1、液压油颗粒污染造成的原因是什么?有何危害?防止的办法有哪些? (1 原因 液压油颗粒污染造成的原因有二: 一是外来带入的,二是工作过程中产生的。见下表 外来的产生的 1、经过油箱呼吸孔把大气的尘埃带入 1、通过运动部件磨损产生的金属颗粒, 粉末 2、运输、储运过程中混入的 2、液压油化学变化产生的油泥、沉淀等 3、液压系统元件内存在的 3、密封、垫片与液压油不相适应而产生的 (2危害 A 粘结,堵塞过滤器,伺服阀阀孔 B 增大泵和运动部件的磨损 C 加速油的老化变质 D 堵塞吸油粗滤器,使泵发生气蚀 (3防止办法 A 油箱密封好,防尘,或安装带有空气过滤器的呼吸孔 B 成品油储运过程中一定要防尘,防水

C 系统中必须装有过滤装置及时清除污染颗粒, 最好采用带指示信号的滤器, 油箱底部最好安装磁性捕集器。 D 安装并定期检查,清洗泵吸入的粗滤器。 E 在油缸和推杆密封处加防护罩,或吹气防尘。 2、相同粘度的矿物液压油可以随意互用吗? 不能。因为虽有相同的粘度,但种类差甚远。要求用抗磨液压油的高压系统,绝不能用 L-HH 或 L-HL 油替代不然就会引起设备油泵过早报废及运行故障, 在寒区严寒区液压系统要求使用的 L-HV 与 L-HS 油也不能用同粘度级的 L-HM 油来代用,否则会产生冷启动困难等问题。 二、齿轮油问题和解决办法 1、齿轮失效的主要形式是什么? 齿轮失效的主要形式有断齿、磨损、点蚀、胶合。 2、导致工业齿轮油变质的因素有哪些? 内部原因是基础油的安定性有一定限度, 随储存, 使用时间的推移发生变质, 为改善油品综合性能加入的各种添加剂在使用中逐步消耗发生变质,一般来说, 这种变质是很缓慢的,往往需要 2年或更长的时间。 3、工业齿轮油变质的现象是什么? ①外观的变化。颜色变深变混。产生乳化有明显的磨粒,机械杂质和油泥。②粘度变化含粘度指数改进剂的油, 由于机械剪切造成粘度下降, 而油品氧化及乳化油泥造成粘度上升 ③酸值变化在含高酸值添加剂的油品中, 使用初期酸值下降表明添加剂的消耗后期酸值上升是氧化产生酸性产物的结果。

汽轮机润滑油相关指标及讲解

汽轮机润滑油相关指标及讲解

————————————————————————————————作者:————————————————————————————————日期: ?

汽轮机油指标: 指标 参数 序号 运动粘度(40℃)mm 2/s: 28.8-35.2 1 闪点 不低于180℃ 2 倾点 不高于-7℃ 3 酸值 不大于0.3m gK OH/g 中和1克中含有相关酸所需氢氧化钾 4 杂质 不高于NAS8级 5 水份 100mg/L 6 抗乳化性(54℃),15min 不大于40-37 -3 40ml :40ml 15分钟 7 泡沫特性(24℃)1 5min 600/0 泡沫倾向/泡沫稳定性 )(ml / ml) 8 氧化安定性 不小于1500 氧化后酸值( 氢氧化 钾) 9 液相锈蚀试验 无锈 10 腐蚀试验(铜片,100℃,3h ) 1 11 空气释放值(5 0℃) 不大于5 m in 美国航空航天工业联合会(AI A)1984年1月发布的N AS1638标 准 NAS1683:每100ml 内最大颗粒数 单位:微米 直径 级数 5-15 15-2 5 25-50 50-100 100以上 00 125 22 4 1 0 0 250 44 8 2

1 500 8916 3 1 2 1000 178 32 6 1 3 2 4 4 4 58 5 8 6 16 0 16 7 32 18032 8 64 5 360 64 9 128 0 720 128 1 6 1 12 12 576 01024 倾点 倾点是用来衡量润滑油等低温流动性的常规指标,同一油品的倾点比凝点略高几度,过去常用凝点,国际通用倾点。 倾点或凝点偏高,油品的低温流动性就差。人们可以根据油品倾点的高低,考虑在低温条件下运输、储存、收发时应该采取的措施,也可以用来评估某些油品的低温使用性能。

油墨乳化原因

1 胶印油墨产生乳化的原因 油墨主要由树脂、矿油及颜料组成。其中的树脂主要是松香和植物油改性的酚醛树脂,另外也使用石油树脂、醇酸树脂、聚氨酯树脂。常用的颜料包括偶氮色淀型的红色颜料、双偶氮型的黄色颜料、酞菁蓝及炭黑。胶印油墨还含有填料和助剂。 油墨在印刷时有一个与印刷药水(润版液)直接接触的过程,此时油墨中的极性物质由于亲水会导致油墨产生乳化。这些极性物质来自油墨各组分中的极性基团,即树脂、颜料、填料及助剂中的酯键、醚键、酰胺键,各种氨基、酸根及其盐等。胶印油墨的水墨平衡性(俗称抗乳化性、抗水性)在很大程度上会影响印刷质量。胶印油墨的过度乳化会给印刷带来实地密度降低、网点扩大、油墨流动性变差、转移性变差、堆版、浮赃等毛病。如何控制油墨乳化率,一直是胶版印刷行业普遍关心的问题。 2 胶印油墨各组分乳化作用分析 胶印油墨所使用的矿油是非极性物质,不易导致油墨乳化;胶印油墨所使用的树脂不可避免的含有酯键和醚键,具有一定的亲水作用,会导致油墨一定程度的乳化;胶印油墨所使用的填料,例如碳酸钙,是强极性物质,极易导致油墨乳化,但填料在制备过程中已经过亲油处理,亲水性有所降低:胶印油墨中所使用的助剂,例如催干剂、抗结皮剂等等,都是极性物质,也极易导致油墨乳化,但它们在油墨中的用量毕竟有限。相对而言,在胶印油墨的各组分中,有机颜料导致油墨乳化的可能性较大,这不仅是因为有机颜料分子中还有极性

基团,而且颜料在水相中制备,制备过程还添加各种表面活性剂,这些极性物质的存在都能导致胶印油墨的乳化。 胶印油墨所使用的红色颜料一般为偶氮色淀颜料,例如PR57、PR53、PR49等。这些颜料实际上都是有机酸的金属盐(钙盐、钡盐等),具有很强的极性,另外,在颜料的合成过程中还会大量的使用松香皂,然后通过添加金属盐溶液(例如氯化钙、氯化钡)的形式使松香沉淀。大量松香酸盐的存在会使颜料极性明显增加,这种极性是导致油墨乳化的重要因素。 胶印油墨经常使用的黄色颜料一般为双偶氮颜料,如PY12,其分子结构是对称的,理论上对外不显示极性;胶印油墨所使用的蓝色颜料,一般为酞菁蓝PB15:3,其分子结构也是对称的,理论上对外也不显示极性。在PY12和PB15:3的合成过程中,表面活性剂以及酸、碱、盐的使用不可避免,而这些物质无法通过水洗完全去除。另外,由于水中含有钙、镁等金属离子(水的硬度越高,钙、镁离子的含量就越高),这些物质在颜料的干燥过程中都会残留下来,最终成为导致油墨乳化的因素之一。由于PYI2和PB15:3本身为非极性物质,所以相对而言,黄颜料和蓝颜料引起的乳化比红颜料轻微得多。胶印油墨使用的黑色颜料是炭黑,炭黑是无机颜料,本身是非极性的,但炭黑表面含有少量的羧基、醌基和酚羟基等极性基团,也能导致一定程度的乳化。由此可以看出,在四色版胶印油墨中红色油墨最容易乳化。要降低油墨的乳化值,首先要解决红色油墨的乳化问题。 3 目前降低油墨乳化植的常用方法

润滑剂与润滑油牌号详解

润滑剂与润滑油牌号详解 0前言 随着科学技术的发展,机械设备对润滑剂的质量要求越来越高。我国及世界各国为了满足机械设备的润滑要求,已经制订了一些润滑剂产品的新技术标准,生产出了一批润滑剂新产品。因此,及时掌握润滑剂的新技术标准及其应用范围,对设备的润滑管理是非常必要的。 本文对润滑剂的新、旧国家标准作了系统的介绍,并对各类产品的技术指标及其应用作了必要的叙述,便于设备润滑管理人员了解润滑剂的基本知识,并能按照各类机械设备的特点和新旧情况,正确选择新、旧牌号的润滑材料,搞好设备的润滑管理,延长设备的使用寿命。 随着改革开放的不断深入,进口设备日益增多,本文对目前比较通用的国外润滑剂产品标准及其与国内标准的对应关系也作了必要的介绍,有利于设备润滑管理人员选择所规定的油品或选择合适的代用油品,既能保证设备润滑的需要,又能节约成本,提高经济效益。 1润滑剂的分组、命名和代号 1987年,我国颁布了GB498—87《石油产品及润滑剂的总分类》,根据石油产品的主要特征对石油产品进行分类,其类别名称分为燃料、溶剂和化工原料、润滑剂和有关产品、蜡、沥青、焦等六大类。其类别名称的代号取自反映各类产品主要特征的英文名称的第一个字母,见表1。 表1石油产品的总分类 由表1可知,润滑剂和有关产品的代号为英文字母“L”。 1.1润滑剂的分组及组别代号 国家标准GB498—87颁布的同年,我国颁布了GB7631.1—87《润滑剂和有关产品(L)类的分类第一部分:总分组》。该标准根据尽可能地包括润滑剂和有关产品的应用场合这一原则,将润滑剂分为19个组。其组别名称和代号见表2。 GB7631.1—87根据GB498—87《石油产品及润滑剂的总分类》的规定而制定,系等效采用ISO6743/0—1981《润滑剂、工业润滑油和有关产品(L类)的分类—第0部分:总分组》,它代替了GB500—65。其组别代号见表2。表2润滑剂和有关产品的分组 压缩机油(包括冷冻机和齿轮泵) 主轴、轴承和离合器油 每组润滑剂根据其产品的主要特性、应用场合和使用对象再详细分类。产品的主要特性是指:润滑油的粘度、防锈、防腐、抗燃、抗磨等理化性能;润滑脂的滴点、锥入度、防水、防腐等理化性能。产品的应用场合主要指机械使用条件的苛刻程度,例如,齿轮油分为工业开式齿轮油、工业闭式齿轮油、车辆齿轮油。车辆齿轮油又分普通车辆齿轮油、中负荷车辆齿轮油和重负荷车辆齿轮油等。产品的使用对象主要是指机械的种类和结构特点。例如,内燃机油分为汽油机油、二冲程汽油机油和柴油机油等。 1.2润滑剂的命名 润滑剂的命名,一般形式如下: 润滑剂的牌号主要有润滑油的牌号和润滑脂的牌号两大类。 1.2.1润滑油的牌号及选用 润滑油的牌号大部分是以某一温度下运动粘度的中心值或范围来划分的。如工业齿轮油是以40℃时运动粘度的中心值划分,车辆齿轮油则以100℃时运动粘度范围划分。 粘度是润滑油运动时油液内部摩擦阻力大小的量度。粘度过大的润滑油不能流到配合间隙很小的两摩擦表面之间,因而不能起到润滑作用;若粘度过小,润滑油易从需润滑的部位挤出,同样起不到润滑作用。因此,机械所用润滑油的粘度必须适当。润滑油的粘度随温度而变化,温度升高则粘度变小,温度降低则粘度增大。因此,选用润滑油必须考虑机械设备工作环境的温度变化。夏季用的油,其粘度可比冬季大一些。 1.2.2润滑脂的牌号及选用 润滑脂的牌号是以某一温度(25℃)下其锥入度范围的系列号来表示的。锥入度系列号又称稠度等级。润滑脂的稠度等级(牌号)见表3。 润滑油的粘度等级、润滑脂的稠度等级按GB3141—82《工业用润滑油粘度分类》的规定进行分级。 表3润滑脂稠度等级 润滑脂的锥入度是鉴定润滑脂稠度常用的指标。锥入度值是在规定质量、规定温度(25℃)下标准圆锥体按自由落体垂直穿入装在标准脂杯内的润滑脂,经过5秒钟所达到的深度,其单位为1/10mm。锥入度值反映润滑脂的软硬程度。当圆锥体穿入润滑脂中越深,则锥入度越大,表示该润滑脂越稀;反之,锥入度越小,润滑脂就越硬。润滑脂锥入度值一般随温度而变化,温度升高,锥入度值变大;反之,则变小。

常用润滑油使用技术经验介绍

润滑油使用技术 近年来,海上各油矿在润滑油的使用上存在一些不规范现象,对油品的性能、型号不甚了解,甚至还发生了一些与润滑油有关的设备事故。尤其是对进口油如何用国产油替代心中无底。为此,为一线润滑油使用者进行一次润滑油料知识方面的讲座是很有必要的。 一、润滑油的作用: 1、润滑作用:减少机械的摩擦阻力,提高机械效率和有效功率,降低机械磨损、延长机械使用寿命。 2、冷却作用:利用润滑油在系统内不断地循环将摩擦、燃烧热量带山,防止机械产生过热。 3、保护作用:润滑油粘附在机械表面,使其与空气、水等隔离,防止金属生锈。 4、密封作用:在一些机械的间隙中保持一定厚度的润滑油膜,可以防止漏气、漏水、漏油。 5、清洁作用:利用润滑油的循环过滤,可将摩擦表面的灰尘、积碳金属削等机械杂质过滤清除。 6、液压阻尼作用:润滑油将冲击振动的机械能转变为液压能,起缓冲减振作用。 二、润滑油的基本性能: 1、润滑性:最薄油膜强度是3一6.5Mpa;粘度要适当。

2、流动性:流动性的好坏直接影响润滑作用和冷却作用。流动性与凝点有关、与粘度有关。 ** 凝点:润滑油凝点的测量是在某一预定的温度时,将油装入试管并倾斜45度角,经1分钟后油面不流动,此预定的温度就是凝点。如这预定的温度不合适,就继续预定实验。 ** 降凝剂可改变凝点。 3、氧化安定性:抗氧化性能是随着温度升高而降低的。高温会使酸值升高、粘度变小后再急剧增大会使机件加速磨损。一般3O℃以下安定;50℃可见明显氧化;15O℃剧烈进行;450℃可出现胶状物、酸性物、氧化物等并形成沉淀。 ** 添加抗氧化剂可提高氧化安定性。 4、腐蚀性:一般都要加抗腐剂。 三、润滑油的理化指标: 1、粘度:液体受外力作用而移动时,液体分子间产生内摩擦力的性质,称为粘度。 (1)、动力粘度:面积为1平方厘米的两层液面相距1厘米、以每秒1厘米的速度相对移动所显示的阻力为1达因的液体粘度值为1泊(1泊=100厘泊),用符号ηt表示动力粘度。 (2)、运动粘度:在相同温度下,液体的动力粘度与

润滑油乳化原因分析精选文档

润滑油乳化原因分析精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

润滑油乳化原因分析 机油形成乳状液必须具有三个必要条件:一是必须有互不相溶(或不完全相溶)的两种液体;二是两种混合液中应有乳化剂(能降低界面张力的表面活性剂)存在;三是要有形成乳化液的能量,如强烈的搅拌、循环、流动等。 水分、激烈搅拌、乳化剂,均能引起机油乳化。其中,水分的存在和激烈搅拌是产生乳化的主要原因。 1. 机油中水分的存在,会加速油质的老化及产生乳化;同时会与油中添加剂作用,促使其分解,导致设备锈蚀。因此找到机油中进水的主要原因也就是找到了油质乳化的主要原因,下面分析造成油中进水的主要原因,在工作实践中发现造成油中进水的主要原因有一下几个方面: a. 轴封径向间隙调整过大,轴封漏汽沿轴窜入轴承室,造成油中带水。机组检修时,为了避免在启动过程中高速转动的轴系因过临界转速振动或转子热膨胀而碰磨轴封尖齿。一般在调整轴封时增大了轴封间隙。在机组正常运行中影响了轴封的严密性,造成了轴封漏汽沿轴窜入轴承室,这是油中进水的根本原因。 b. 轴封齿倒伏,密封作用降低造成油中进水。在轴封径向间隙调整过程中,考虑转子膨胀及轴系振动不全面,使轴封径向间隙过小,令机组在启动过程中因转子膨胀与轴系振动造成轴封尖齿与转子碰磨,尖齿倒伏,密封作用降低,造成轴封漏汽,使水沿轴窜入轴承室。 c.轴封进汽联箱供汽压力过大,使轴封室成为正压,造成轴封漏气。 d.轴封抽汽器抽气压力不足,抽气管堵塞,造成负压不足,使水汽沿轴窜出,造成轴封漏汽。 e. 盘车齿轮或靠背轮转动鼓风的抽吸作用,造成轴承箱内局部负压,吸入蒸汽。另外主油箱排烟风机出力太大,使轴承室负压增大,使轴封漏汽,更易进入润滑油系统。 f. 汽缸结合面变形、密封不严密,造成水汽泄漏,进入轴承室,使油中带水。 g.运行参数异常导致冷油器冷却水侧压力高压油侧压力,并且冷油器泄漏。 2. 油中溶有空气,特别是在高温下,会加速油的氧化变质。空压机机运行中,因其油品气化变质而产生的环烷酸皂、胶体等物质都是乳化剂,使油更容易乳化。 3. 机油的乳化,与油品中的添加剂性能亦有关系。机油添加剂(如抗氧化剂和防锈剂),大都是具有一定表面活性的化合物或混合物。这些物质的分子结构中,一端是具有亲油性的非极性基团,另一端是具有一定表面活性的亲水性极性基团。虽然它们都溶解于油而不溶解于水,但在一定转速下极性基团对水就具有一定的亲合能力,增强了油水分离的难度,促进油质乳化。

超级万能乳化剂

超级万能乳化剂 ******能极大提高洗衣粉、洗洁精、洗衣液、洗手液等各种除油剂、清洗剂的除油、去污、增泡效果 ******一种原料能独立生产几十种产品,功效一流。 ******替代现有的乳化剂、清洗剂让你成本下降30--70%,效果大幅提高。 ******无论是有机油和无机油类都是即刻乳化,功效非凡。 超级万能乳化剂,是成都恒丰宏业洗涤剂厂最新研发的专门用于花生油、菜子油、色拉油、玉米油、牛油、羊油、猪油、茶子油、棕榈油、植物油、混合油、石油、石油附产品、润滑油、机械油、矿物油、离合油、齿轮油、刹车油、机油、油墨、脱模油、压缩机油,冷冻机油,真空泵油、内燃机油、柴油机油、汽油机油、船舶用油、轴承油、导轨油、液压油、液力传动油、金属加工油、电器绝缘油、电动工具油、热传导油、防锈油、汽轮机油、精油、淬火油、拉伸油、燃料油、其他场合用油等各种有机油和无机油类的乳化和清洗,有下列特点: 一、特别的功能作用 1、超级万能乳化功能,能将工业油、矿物油、无机油、有机油、食用油、动物油、植物油等混合的复合油脂与水和其他两种或多种互不相溶的物质乳化成为均匀分散体系的具有表面活性的单一或复合性化学物质。不需要反应釜、乳化机和其他加温加热设备,具有国际领先水平。 2、超级自动溶解功能,能自动溶解石油、石油附产品、润滑油、机械油、矿物油、离合油、齿轮油、刹车油、机油、油墨、脱模油、压缩机油,冷冻机油,真空泵油、内燃机油、柴油机油、汽油机油、船舶用油、轴承油、导轨油、液压油、液力传动油、金属加工油、电器绝缘油、电动工具油、热传导油、防锈油、汽轮机油、精油、淬火油、拉伸油、燃料油、其他场合用油等无机油类。整个溶解过程是自动完成,不需要设备。具有国际领先水平。 3、超级自动渗透功能,自动穿透物质坚韧外层,直接渗透到核心。具有国际领先水平。

润滑油乳化原因分析

润滑油乳化原因分析 机油形成乳状液必须具有三个必要条件: 一是必须有互不相溶(或不完全相溶)的两种液体;二是两种混合液中应有乳化剂(能降低界面张力的表面活性剂)存在;三是要有形成乳化液的能量,如强烈的搅拌、循环、流动等。 水分、激烈搅拌、乳化剂,均能引起机油乳化。其中,水分的存在和激烈搅拌是产生乳化的主要原因。 1.机油中水分的存在,会加速油质的老化及产生乳化;同时会与油中添加剂作用,促使其分解,导致设备锈蚀。因此找到机油中进水的主要原因也就是找到了油质乳化的主要原因,下面分析造成油中进水的主要原因,在工作实践中发现造成油中进水的主要原因有一下几个方面: a.轴封径向间隙调整过大,轴封漏汽沿轴窜入轴承室,造成油中带水。机组检修时,为了避免在启动过程中高速转动的轴系因过临界转速振动或转子热膨胀而碰磨轴封尖齿。一般在调整轴封时增大了轴封间隙。 在机组正常运行中影响了轴封的严密性,造成了轴封漏汽沿轴窜入轴承室,这是油中进水的根本原因。 b.轴封齿倒伏,密封作用降低造成油中进水。在轴封径向间隙调整过程中,考虑转子膨胀及轴系振动不全面,使轴封径向间隙过小,令机组在启动过程中因转子膨胀与轴系振动造成轴封尖齿与转子碰磨,尖齿倒伏,密封作用降低,造成轴封漏汽,使水沿轴窜入轴承室。 c.轴封进汽联箱供汽压力过大,使轴封室成为正压,造成轴封漏气。 d.轴封抽汽器抽气压力不足,抽气管堵塞,造成负压不足,使水汽沿轴窜出,造成轴封漏汽。 e.盘车齿轮或靠背轮转动鼓风的抽吸作用,造成轴承箱内局部负压,吸入蒸汽。另外主油箱排烟风机出力太大,使轴承室负压增大,使轴封漏汽,更易进入润滑油系统。

f.汽缸结合面变形、密封不严密,造成水汽泄漏,进入轴承室,使油中带水。 g.运行参数异常导致冷油器冷却水侧压力高压油侧压力,并且冷油器泄漏。 2.油中溶有空气,特别是在高温下,会加速油的氧化变质。空压机机运行中,因其油品气化变质而产生的环烷酸皂、胶体等物质都是乳化剂,使油更容易乳化。 3.机油的乳化,与油品中的添加剂性能亦有关系。机油添加剂(如抗氧化剂和防锈剂),大都是具有一定表面活性的化合物或混合物。这些物质的分子结构中,一端是具有亲油性的非极性基团,另一端是具有一定表面活性的亲水性极性基团。虽然它们都溶解于油而不溶解于水,但在一定转速下极性基团对水就具有一定的亲合能力,增强了油水分离的难度,促进油质乳化。 4.激烈搅拌。在空压机高速旋转时,油和水被激烈而充分的搅拌,呈乳浊液态。此时,上述亲水的极性基团有了与水充分亲合的机会,当亲合力很大时,就会与水牢固的结合在一起。又由于亲油性的非极性基团能溶于油中,从而通过这种物质的作用使水和油结合在一起。因此,这时水就不能与油分离,即产生乳化现象。 三、防止机油乳化的措施: 润滑高工黄工前面,对于机油乳化给机组运行带来严重后果以及产生乳化的原因都进行了充分地论述。因此,防止机油乳化应从压缩机机组设备的设计、制造、安装、运行维护、检修、以及油品和添加剂质量等方面着手,层层把关。防止轮机油乳化的措施总结归纳为一下几点: 1.防止油系统进水 预防和消除机油系统进水,是防止机油乳化的重要措施。为此,首先要确保产品设计和制造质量,一是汽封装置结构设计合理、零部件加工符合工艺标准 2.排除油中水分

萃取乳化原因分析

萃取乳化原因分析 1、萃取原液: A:萃取原液过滤不干净,当料液过滤不完全(500目过滤还有渣)时,一旦与有机相接触时,就会形成吸附微粒,有的固体颗粒本身还带有电荷,从而使形成的微粒加大或者相互凝聚,那么在料液混合时会形成油包水或者水包油,在澄清又因为密度介于油水之间而得不到快速的分离,从而形成严重的夹带影响萃取质量与萃取系统的正常运行。 B:萃取原液含有胶体物质,当料液中含有硅、铝、絮凝剂等胶体物质时,也会形成相互包裹乳化不分相,既增加了体系的粘度,又使有机相混合不充分、澄清分离发生困难,严重者还会导致有机相有效负载降低。 C:萃取原液中含有氧化剂,当料液中还含有高锰酸根、氯酸根等强氧化剂时,一旦与有机相接触就会使萃取剂发生分解变质,形成聚合、离解、断键等,产生相间污物,打破有机相的组成平衡,从而导致乳化不分相。 乳化特点:由以上原因造成的乳化大都发生在萃原液与有机相开始接触的萃取槽。 处理方法:A、B原因造成的乳化,将原液进行吸附过滤即可;C原因造成的乳化,将原液进行亚硫酸钠还原处理,然后在过滤干净即可 2、相平衡失调: 在萃取操作过程中,我们常常会根据生产需要对系统进行调整,在调整时有时会因为操之过急或者缺乏经验而将原液或者有机相在短时间内作出较大调整,从而打破萃取系统原有的平衡,使部分或者全部的混合室出现断相或者相逆转(油连续与水连续的颠倒),从而形成油水不分(乳化),使料液或者有机相局部打循环,如果处理不及时还会有漫槽的危险。。 乳化特点:混合室断相或者相逆转。 处理方法:停机静置一段时间,然后从新开机(建议)。 3、皂化过度: 一般的萃取剂(有机相)在进行萃取之前都要进行皂化,以提高金属交换值。

相关主题