搜档网
当前位置:搜档网 › 软岩力学特性试验

软岩力学特性试验

软岩力学特性试验
软岩力学特性试验

软岩力学特性试验

软岩是一种特定环境下的具有显著塑性变形的复杂岩石力学介质,其基本力学理论和方法迫切需要深入研究。

软岩问题一直是困扰隧道运行和建设的重大难题之一。每年约有800万米的巷道在软弱围岩中开掘,随着开挖深度的增加,软岩问题愈趋严重,直接影响工程安全生产,危及人身安全。

通过可学的试验判定软岩两个基本力学属性:软化临界荷载和软化临界深度,从而判断是否属于软岩工程,杜宇转雀帝实施工程设计极为重要。

软岩的基本属性

软岩之所以能产生显著塑性变形的原因,是因为软岩中的泥质成分和结构面控制了软岩的工程力学特性,一般说来,软岩具有可塑性,膨胀性,崩解性,分散性,流变性,触变性和离子交换性。

可塑性

可塑性是指软岩在工程力的作用下形成变形,去掉工程力之后这种变形不能恢复的性质。低应力软岩、高应力软岩和节理化软岩的可塑性机理不同,低应力软岩的可塑性是由软岩中泥质成分的亲水性和结构面扩容共同引起的。

节理化软岩的可塑性变形是由于软岩中的缺陷和结构面扩容共同引起的,与粘土的矿物成分吸水软化的机制没有关系。描述结构面扩容,一般用塑性扩容内变量θp,这方面的研究尚待进一步深入。高应力软岩的可塑性变形机制比较复杂,前述两种机制(结构面扩容机制和粘土矿物吸水软化机制)可同时存在。

膨胀性

软岩在力的作用下或在水的作用下体积增大的现象,称为软演的膨胀性。根据产生的膨胀钉激励,膨胀性可分为内部膨胀性,外部膨胀性和应力扩容膨胀性三种。

内部膨胀是指水分子进入晶胞间而发生的膨胀。在常温下观察蒙脱石的层间水状态,则可见到其层间成平行水分子并有规则的层面排列。和水继续作用,则水分子层相继在层间平等堆积,扩大层间距离。

外部膨胀性是极化水分子进入颗粒与颗粒之间产生的膨胀性。因为粘土矿物都是层状硅酸盐,所以其表面积主要是底表面积。也就是说,水主要存在于小薄片之间,并使其膨胀,这种膨胀性称为外部膨胀性。

扩容膨胀性是软岩受力后其中的微裂隙扩展、贯通而产生的体积膨胀现象,故亦称应力扩容膨胀性。如果说内部膨胀是指层间膨胀、外部膨胀是指粒间膨胀的话,扩容膨胀则是集合间体系或更大的微裂隙的受力扩容。

崩解性

低应力软岩和高应力软岩、节理化软岩的崩解机理是不同的。低应力软岩的崩解性是软岩中的粘土矿物集合体在与水作用使膨胀应力不均匀分布造成崩裂现象;高应力软岩和节理化软岩的崩解性则主要表现为在航道工程力的作用下,由于裂隙发育的不均匀造成局部张应力集中引起的向空间崩裂、片帮现像。

流变性

岩石特性的时间效应是由岩石材料的性质所决定的,尤其是软岩。从广义来说,岩石的力学特性也就是岩石的流变力学特性。软岩是一种流变材料,具有流变特性的材料的力学性状行为时流变学的研究范畴。流变性又称粘性,是指物体受力变形过程于时间有关的变形性质。软岩的流变性包括弹性后效、流动、结构面的闭合和滑移变形。流动又可分为粘性流动和塑性流动。

易扰动性

软岩的易扰动性系指由于软岩软弱、裂隙发育、吸膨胀等特性,导致软岩抗外界环境扰动的能力极差。对卸荷松动、施工震动、邻近巷道施工等扰动极为敏感,而且具有吸湿膨胀软化、暴露风化的特点。

软岩的多轴力学特性及其对拱坝的影响

摘要与单轴试验相比,在多轴条件下,软岩(尤其是遇水软化的砾岩)的强度和刚度均有所提高。尝试利用多轴非线性模型,将砾岩在多轴应力条件下的试验成果应用于实际工程,使仿真计算结果更接近实际情况。由于考虑了围压对岩石刚度有提高的影响,非线性计算结果更安全一些,但这不足以弥补砾岩因泡水降低弹模带来的影响。此外,通过对比双轴与常规三轴试验成果,得出在低围压应力区可用双轴试验结果代替三轴试验结果的结论,既简化了试验又便于量测。

1引言

拱坝结构中,无论是坝体混凝土还是拱座岩石,承受单一的单轴受压、受拉或纯剪力的情况是极少的,事实上它们都处于双轴和三轴应力状态⑴。

国内外多轴试验表明,在双轴[2?4]和三轴[5]受压条件下,材料的强度和刚度均有所提高[6’7]。通常对于拱坝拱座处的坚硬岩石来说,强度的提高是次要的,因为其应力基本处于低应力区;但对软岩基础上的拱坝则需分析岩石强度、遇水软化的拱座基岩在多轴应力下的变形和力学参数的变化,以及它对坝体的应力分布会产生什么影响,这些正是拱坝设计者迫切想知道的.

目前,拱坝仿真应力计算中,通常做法是根据单轴试验结果拟合计算参数,并将叠加原理应用于多轴的情况[9]。力学模型是线弹性模型,并没有考虑应力状态对这些参数的非线性影响,这和实际情况有一定差别。本文结合新疆某拱坝,根据坝区软弱砾岩多轴压缩试验成果,考虑其变形和强度都随应力状态变化的影响,进行非线性仿真计算,通过比较,得出一些有价值的结论

2工程背景

新疆某水利枢纽工程,是一项以灌溉为主,兼有防洪、发电和改善生态环境等综合效益的中型水利工程。其主坝为碾压混凝土拱坝,坝高109 m,厚高比0.28。在主坝设计中,采用在坝肩设人工短缝、拱冠设中缝、下游面设人工短缝等措施,以降低坝体的刚度,达到改善坝体应力的目的[4]。

坝址区出露侏罗系中、上统和白垩系下统地层,为一套连续沉积的河湖相碎屑岩,产出状态以中厚层?块状为主,层理发育,具有明显的沉积韵律。其中,对拱坝结构影响最大的是侏罗系上统客拉扎组,它分为上下2段:下段岩石为泥、铁及钙质混合胶结,呈棕红色,强度较低,厚度58 m;上段岩石为钙质胶结,呈青灰色,强度较高,厚度50.5 m。室内试验表明,坝区岩体尤其是泥、铁及钙质混合胶结的红色砾岩遇水软化,具有

显著的受力大变形和非线性特征,是本文研究的主要对象。

3试验及成果

4.1试验仪器及选用试件

根据试验机以及加载方式的不同,将多轴压缩试验分为双轴和常规三轴两部分。

双轴压缩试验所用装置是CSS-283型混凝土、岩石双轴徐变试验机。该试验机为长春试验机研究所与清华大学水利系共同设计,并由前者开发制造出来的。主要由主机(图1)、电控箱和计算机控制处理系统三大部分组成。采用机电伺服机构提供垂直与水平方向的荷载,试验机加载能力:垂直方向为500 kN(压),水平方向为300 kN(压);采用差动式位移传感器测量垂直和水平方向变形,测量分辨率达到0.1 pm。加载时,荷载加载速率控制

在1.0 MPa/min 以内。

图1双轴徐变试验机主机

常规三轴试验用国冢地震地壳应力研究所常规三轴仪完成。其最大轴压为5 000 kN,最大围压可达'50 MPa。轴向荷载的加载速率控制在0.4 MPa/s 以内。米用的辅助设备有传感器、动态应变仪、函数记录仪等。

砾岩试件由坝区运回的岩样制成。双轴试验机所用试件由切割机切割而成,试件尺寸:'00 mmx '00 mmx'00 mm;常规三轴试件尺寸:小45 mmx '20 mm。干燥试件,在自然环境下干燥;泡水试件,在双轴试验中是泡水7?'4 d,常规三轴试验中是在负压罐内用清水泡水' d。

4.2试验成果

无论是常规三轴试验还是定侧压双轴试验,试验结果都显示出加载向和侧压向的变形都与侧压荷载大小有关。

4.2.'定侧压双轴试验成果(未计入侧压初始应变量)

图2,3为双轴试验中,不同定侧压条件下,干燥、泡水棕红色砾岩应力-应变关系曲线图。从图中可以得出以下结论:

(')随着侧压的升高,无论是加载向应变q,还是侧向应变&均减少。这一情况对于干燥、泡水2种状态是一致的。

(3)泡水后,泡水砾岩变模显著下降,如3图中所示泡水试件,在侧压为0 MPa时,变模值只有2 000 MPa,与干燥状态的变模值14 600 MPa相比相差甚多。

4.2.2常规三轴试验与定侧压双轴试验成果比较图4,5为加载向变模增长系数f'与侧压%关系曲线图。f'的定义见式(2),它表示侧压对加载向变模的影响。

由图4可知,干燥状态下,棕红色砾岩的变模随侧压的增加而增大,但增大趋势较平缓。另外可以看出,双轴试验与常规三轴试验结果较接近。也就是说在干燥状态(干燥状态下红色砾岩抗压强度50?60 MPa)、低应力水平下,双轴试验可以代替常规三轴试验。比较图4,5可以发现,侧压对泡水岩石影响较大,侧压为4 MPa时,泡水状态f'可达1.8,而相同条件下,干燥状态f'只有'.'。其次,比较图5 中的双轴与常规三轴试验结果可知,常规三轴试验结果显示出f'随着侧压的增加而增大;而双轴试验结果则不这样,随着侧压的增加,f'增长平缓,侧压为3和4 MPa条件下的f'值差别不大。所以,可以得出在中、高应力区,双轴试验中侧压的作用没有常规三轴试验中围压的作用大的结论

5 计算及成果

图 6 为新疆某工程1 335 m 高程平面拱圈网格

剖分图。计算以横河向为x 轴(指向左岸为正),顺河向为y 轴(逆水流方向为正)。为保证计算精度,共划分单元280 个,节点344 个。并选用A,B,C 和D四个控制点的位移和应力进行分析。如图所示:A点位于拱座岩石内部;B 点位于拱座处混凝土与岩石胶结面上;C和D点分别位于拱冠的上下游面处。

(1) 在水压荷载作用下,几种工况对岩石内部点(A 点)应力影响不大,基本为-0.8~-0.6 MPa;但几种工况条件下,位移值有一定差别:泡水状态与干燥状态位移之比约为7∶1,与变模倒数之比相近。

(2) 干燥状态与泡水状态两者最大的区别就是拱冠处下游面x 方向的拉应力。采用线弹性模型计算时:干燥状态下,由于基岩的刚度较大,拱座变形小,所以,拱冠处下游面(C 点) x 方向的拉应力只有0.29 MPa;泡水后,基岩刚度变小,拱座变形大,导致C 点拉应力迅速增大,达1.93 MPa,C 点向下游的变位也由原来的20.6 mm 增大到47.8 mm。

(3) 采用非线性模型的目的,是为了在仿真计算中,考虑拱座基岩的刚度随围压增大而增大的特性。干燥状态下,采用非线性模型和采用线弹性模型,两者结果相差不大;泡水后,是否考虑围压的影响对结果影响很大,如C 点的拉应力由原来的1.9MPa 下降到1.3 MPa,即由原来的不安全状态转变为较安全状态,虽然其值还是远大于干燥状态下拉应力值。

结论

本文尝试利用多轴非线性模型,将砾岩在多轴应力条件下的试验成果应用于实际工程,使仿真计算结果更接近实际情况。与线弹性计算结果相比,由于考虑了围压对岩石刚度有提高的影响,非线性计算结果更安全一些。另外,本文还进行了岩石在干燥、泡水两种状态下的对比,结果说明虽然由于围压的作用,软岩的强度和刚度均有一定程度的提高,但其提高幅度较小。相比而言,软岩在泡水之后,其变模只有干燥时的1/7左右。所以,在泡水软化的软弱基础上修建拱坝,更应该注意坝肩的防渗处理,降低坝肩浸润线,保持和加大部分坝肩岩体的干燥,这样做不仅有利于坝肩稳定,而且也可大大改善坝体应力。

岩石力学实验作业

采矿09-5

赵晓

0901020533

2012-05-07

岩石力学研究进展报告

岩石力学研究新进展报告 姓名:XXX 学号:XXXXXXXX 专业:岩土工程

岩石力学研究新进展报告 1 引言 时光如白驹过隙,一学期的《XXXXX》课程在不知不觉间结课了。这一学期的学习,使我在岩石力学方面有了很大的启发,特别是分形理论在岩石力学中的应用令我神往。下面我对岩石力学研究的新进展做简要报告。 岩石力学可以作为固体力学的一个新分支,用以研究岩石材料的力学性能和岩石工程的特殊设计方法。岩石力学经过近50年的发展,在土木工程、水利工程、采矿工程、石油工程、国防工程等领域都得到了广泛的应用,随着科学技术的进步,岩石力学涉及的领域会进一步扩大。岩石力学是一门内涵深,工程实践性强的发展中学科。岩石力学面对的是“数据有限”的问题,输入给模型的基本参数很难确定,而且没有多少对过程(特别是非线性工程)的演化提供信息的测试手段。另一方面,对岩体的破坏机体还不能准确的解释。岩石力学所涉及的力学问题是多场(应力场、温度场、渗流场、甚至还存在电磁场等)、多相(固、液、气)影响下的地质构造和工程构造相互作用的耦合问题。这就表明,工程岩体的变形破坏特征是极为复杂的,其大多数是高度非线性的。目前,岩石力学的许多数学模型是不准确和不完整的,可以广泛接受和适用的概化模型并不多。基于此,近年来,多种数值方法、细观力学、断裂与损伤力学、系统科学、分形理论、块体理论等在岩石力学中的应用以及各种人工智能、神经网络、遗传算法、进化算法、非确定性数学等域岩石力学的交叉学科的兴起,为我们提供了全新和有效的思维方式和研究方法,更能激发研究者的创新精神,这也为突破岩石力学的确定性研究方法提供了强有力的理论基础[1]。 本报告主要对分形岩石力学、块体岩石力学、断裂与损伤岩石力学和岩石细观力学四部分的研究新进展做简要报告。由于时间和精力有限(最近导师安排的任务非常多,而且要准备英语和政治期末考试),每部分内容除第一大段的研究新进展综述外,只对近几年的三篇比较好的文献做分析说明,包括两篇中文学术论文和一篇外文学术论文,这12篇学术论文我都比较仔细的看了。以后若有机会和时间,我会在导师和各位老师同学的不吝赐教下,努力做岩石力学的创新性研究,届时会在文献综述部分查阅和介绍更多最新以及更优秀的文献。 2 分形岩石力学 从古至今,岩石已成为人们熟知的工程材料,它是由矿物晶粒、胶结物质和大量各种不同阶次、不规则分布的裂隙、薄弱夹层等缺陷构成,是一种成分和结构高度复杂的孔隙体。岩石力学经过近50年的发展,人们尝试用各种数学力学方法研究和描述岩石复杂的自然结构性状和物理力学性质,提出了多种岩石力学分析和计算方法,为解决实际工程中的岩石力学问题创造了条件。19世纪70年代Mandelbrot创立分形几何学,提出了一种定量研究和描述自然界中极不规则且看似无序的复杂结构、现象或行为的新方法,从此分形几何学广泛地应用于自然科学研究的各个领域,并且在经济学等社会科学也有很巧妙的应用。19世纪80年代,分形几何学开始应用于岩石力学研究,开始形成分形岩石力学这一门新兴交叉学科。人们逐渐发现岩石力学领域中的分形现象相当普遍,不仅岩石的自然结构性状、缺陷几何形态、分布以及地质结构产状、断层几何形态、分布都观察到分形特征或分形结构,而且岩石体强度、变形、破断力学行为以及能量耗

软岩的工程地质特性研究

随着地下工程建设规模不断扩大,在城乡建设、水电、交通、矿山、港口以及国防军事等领域都涉及软岩问题,而国家西部大开发的战略实施,大量的交通、能源与水利工程在西部的兴建,地下工程软弱围岩的稳定性和支护方法更已成为地下工程中迫切需要解决的问题。在我国天生桥、二滩、小浪底、乌江构皮滩、瀑布沟等大型水电工程中,均存在软弱岩体的流变性及围岩的稳定性问题;许多煤矿开采时间较长,由于资源开采深度的增加,使一些生产矿井软岩巷道大变形、大地压、难支护的工程问题更加突出;在软岩地区修建的桥隧工程中,围岩的稳定性同样是工程设计和施工中的重点和难点,且常常由于围岩地质条件多变,围岩、支护结构失稳事故时有发生,给人民生命财产造成巨大损失。 1 软岩的概念及其物理力学特征 1.1 软岩的概念 关于软岩的定义,总括起来,大体上可分为描述性定义、指标化定义和工程定义3类。1984年12月在昆明召开的煤矿矿山压力名词讨论会,将软岩界定为“强度低、孔隙度大、胶结程度差、受构造面切割及风化影响显著或含有大量膨胀性粘土矿物的松、散、软、弱岩层”,并从地质岩体分类的角度指出该类岩石的常见种类多为泥岩、页岩、粉砂岩和泥质矿岩,是天然形成的复杂的地质介质。这是一种典型的描述性定义方式。而到了1990年至1993年间,国际岩石力学学会逐步将软岩明确定义为单轴抗压强度( c)在0.5~25MPa之间的一类岩石。虽然此种包含具体指标的定义方式考虑了岩石的物理力学性质,但这种分类仍然属于从地质角度定义软岩的范畴,未考虑施工条件和使用环境的差异,将该定义用于工程实践中会出现一些矛盾。如地下硐室所处深度足够的浅,地应力水平足够的低,则单轴抗压强度小于25MPa的岩石也不会产生软岩的特征,工程实践中,采用比较经济的一般支护技术即可奏效;相反,单轴抗压强度大于25MPa的岩石,当其工程部位所处的深度足够的深、地应力水平足够的高,也可以产生软岩的大变形、大地压和难支护的现象。因此,地质软岩的定义用于工程实践时往往产生歧义。 近些年,工程软岩的概念被提了出来,它是指在工程力作用下能产生显著塑性变形的工程岩体。如果说目前流行的软岩定义强调了软岩的软、弱、松、散等低强度的特点,那么工程软岩的定义不仅重视软岩的强度特性,而且强调软岩所承受的工程力荷载的大小,强调从软岩的强度和工程力荷载的对立统一关系中分析、把握软岩的相对性实质。 工程软岩要满足的条件是:

岩石力学性质试验

岩石力学性质试验 一、岩石单轴抗压强度试验 1.1概述 当无侧限岩石试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 在测定单轴抗压强度的同时,也可同时进行变形试验。 不同含水状态的试样均可按本规定进行测定,试样的含水状态用以下方法处理: (1)烘干状态的试样,在105~1100C下烘24h。 (2)饱和状态的试样,使试样逐步浸水,首先淹没试样高度的1/4,然后每隔2h分别升高水面至试样的1/3和1/2处,6h后全部浸没试样,试样在水下自由吸水48h;采用煮沸法饱和试样时,煮沸箱内水面应经常保持高于试样面,煮沸时间不少于6h。 1.2试样备制 (1)试样可用钻孔岩芯或坑、槽探中采取的岩块,试件备制中不允许有人为裂隙出现。按规程要求标准试件为圆柱体,直径为5cm,允许变化范围为4.8~5.2cm。高度为10cm,允许变化范围为9.5~10.5cm。对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径比必须保持=2:1~2.5:1。 (2)试样数量,视所要求的受力方向或含水状态而定,一般情况下必须制备3个。 (3)试样制备的精度,在试样整个高度上,直径误差不得超过0.3mm。两端面的不平行度最大不超过0.05mm。端面应垂直于试样轴线,最大偏差不超过0.25度。 1.3试样描述 试验前的描述,应包括如下内容: (1)岩石名称、颜色、结构、矿物成分、颗粒大小,胶结物性质等特征。 (2)节理裂隙的发育程度及其分布,并记录受载方向与层理、片理及节理裂隙之间的关系。 (3)测量试样尺寸,并记录试样加工过程中的缺陷。 1.4主要仪器设备 钻石机、锯石机、磨石机或其他制样设备。 游标卡尺、天平(称量大于500g,感量0.01g),烘箱和干燥箱,水槽、煮沸设备。 压力试验机。压力机应满足下列要求: (1)有足够的吨位,即能在总吨位的10%~90%之间进行试验,并能连续加载且无冲击。 (2)承压板面平整光滑且有足够的刚度,其中之一须具有球形座。承压板直径不小于试样直径,且也不宜大于试样直径的两倍。如大于两倍以上时需在试样上下端加辅助承压板,辅助承压板的刚度和平整光滑度应满足压力机承压板的要求。 (3)压力机的校正与检验应符合国家计量标准的规定。

岩石力学试验报告-2010

长沙理工大学 岩石力学试验报告 年级班号姓名同组姓名实验日期月日理论课教师:指导教师签字:批阅教师签字: 实验一 实验二 实验三 实验四 实验五 实验六 实验七

试验一、岩石单向抗压强度的测定 一、试验的目的: 测定岩石的单轴抗压强度Rc。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 本次试验主要测定天然状态下试样的单轴抗压强度。 二、试样制备: 1、试料可用钻孔岩心或坑槽探中采取的岩块。在取料和试样制备过程中,不允许人为裂隙出现。 2、本次试验采用圆柱体作为标准试样,直径为5cm,允许变化范围为4.8~5.4cm,高度为10cm,允许变化范围为9.5~10.5cm。 3、对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径之比宜为2.0~2.5。 4、制备试样时采用的冷却液,必须是洁净水,不许使用油液。 5、对于遇水崩解、溶解和干缩湿胀的岩石,应采用干法制样。 6、试样数量:每组须制备3个。 7、试样制备的精度。 (1)在试样整个高度上,直径误差不得超过0.3mm。 (2)两端面的不平行度,最大不超过0.05mm。 (3)端面应垂直于试样轴线,最大偏差不超过0.25。 三、试样描述: 试验前的描述,应包括如下内容: 1、岩石名称、颜色、结构、矿物成分、颗粒大小,风化程度,胶结物性质等特征。 2、节理裂隙的发育程度及其分布,并记述受载方向与层理、片理及节理裂隙之间的关系。 3、量测试样尺寸,检查试样加工精度,并记录试样加工过程中的缺陷。 试件压坏后,应描述其破坏方式。若发现异常现象,应对其进行描述和解释。 四、主要仪器设备:

地下水和围压对软岩力学性质影响的试验研究

第26卷第11期岩石力学与工程学报V ol.26 No.11 2007年11月Chinese Journal of Rock Mechanics and Engineering Nov.,2007 地下水和围压对软岩力学性质影响的试验研究 郭富利,张顶立,苏洁,肖丛苗 (北京交通大学隧道及地下工程教育部工程研究中心,北京 100044) 摘要:常规三轴压缩试验一直是认识岩石在复杂环境(如地下水丰富和高地应力)下力学性质的主要手段,因此, 利用XTR01–01型微机控制电液伺服岩石三轴试验仪研究在不同饱水时间和不同围压下软岩强度的变化规律, 就宜万铁路堡镇隧道高地应力大变形段中所揭示的黑色炭质页岩设计了不同饱水状态下的三轴试验方案,并进行 了三轴力学性质测试,描述了软岩在饱水时间为1个月的全应力–应变曲线特征,重点探讨了围压和饱水状态对 软岩强度的影响规律,详细分析了二者对软岩强度变化的作用机制及特点。最后,根据围岩动态演化规律,结合 试验研究结论,提出高地应力软弱围岩的支护原则。 关键词:岩石力学;饱水软岩;力学性质软化;三轴试验;支护原则 中图分类号:TU 452 文献标识码:A 文章编号:1000–6915(2007)11–2324–09 EXPERIMENTAL STUDY ON INFLUENCES OF GROUNDWATER AND CONFINING PRESSURE ON MECHANICAL BEHA VIORS OF SOFT ROCKS GUO Fuli,ZHANG Dingli,SU Jie,XIAO Congmiao (Tunnel and Underground Engineering Research Center of Ministry of Education,Beijing Jiaotong University,Beijing100044,China) Abstract:Baozhen tunnel is the only soft rock tunnel and the key project in the Yichang—Wanzhou Railway. The very complex geological environments,such as high earth stress,deep-buried rich groundwater,very weak and cracked rock masses and asymmetric pressure along the rock strata,make self-stability of the tunnel unfavorable. During tunnel construction,the high deformation rate,intense and long-time deformation are the basic characteristics. At the same time,the deformation shows asymmetrical features and uniformities. Through analyzing the causes of large deformation,it is deemed that groundwater and high earth stress are the critical factors causing large deformation. So using XTR01–01 microcomputer electro-hydraulic servo-controlled triaxial test instrument to study the change law of soft rock strength under different saturated time and confining pressure is significant to assure the design, construction and operation safety of tunnel. The mechanical behaviors of black macker that is widely distributed in Baozhen tunnel are discussed by designing a series of triaxial compressive tests under different saturated times;and research on variation laws of mechanical properties under different confining pressures and saturated times is carried out,describing complete stress-strain curve of macker(saturated time is 1 month) with different confining pressures. The variation laws along with confining pressure and saturated time are analyzed. In addition,the mechanism and relationship between confining pressure,saturated time and strength are researched. Finally,according to dynamic evolution law of adjacent rock,the supporting principles for large deformation in weak rock and high earth stress are put forward. Key words:rock mechanics;water-saturated soft rocks;softening of mechanical properties;triaxial test;supporting principles 收稿日期:2007–06–18;修回日期:2007–07–26 基金项目:国家高技术研究发展计划(863)项目(2006AA11Z119) 作者简介:郭富利(1976–),男,2003年毕业于太原理工大学采矿工程专业,现为博士研究生,主要从事岩石力学试验方面的研究工作。E-mail:guofuli1@https://www.sodocs.net/doc/3e16286430.html,

填料塔的基本特点

填料塔的基本特点 一、填料塔结构 填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。在填料的上方安装填料压板,以限制填料随上升气流的运动。液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。 二、填料的类型及性能评价 填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料; 填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优; 2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低; 3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。 三、填料塔设计基本步骤 1.根据给定的设计条件,合理地选择填料; 2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸; 3.计算填料层的压降; 4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。 四、填料塔设计 1.填料的选择 填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。应尽量选用技术资料齐备,适用性能成熟的新型填料。对性能相近的填料,应根据它的特点进行技术经济评价,使所选用的填料既能满足生产要求,又能使设备的投资和操作费最低。 (1)填料种类的选择 填料的传质效率要高:传质效率即分离效率,一般以每个理论级当量填料层高度表示,即HETP值; 填料的通量要大:在同样的液体负荷下,在保证具有较高传质效率的前提下,应选择具有较高泛点气速或气相动能因子的填料; 填料层的压降要低:填料层压降越低,塔的动力消耗越低,操作费越小;对热敏性物系尤为重要; 填料抗污堵性能强,拆装、检修方便。 (2)填料规格的选择

岩石力学数值试验实验报告

岩石力学数值试验实验报告 姓名:郑周立学号: 1108010103 班级:采矿111班指导教师:左宇军 同组人:郑周立、周义现、胡斌、朱红伟、高言、 王坤 实验名称:圆孔对岩石力学性质影响的数值加载 试验 2014年5月16日

圆孔对岩石力学性质影响的数值加载试验 一、实验目的: 1.通过对RFPA2D学习,知道RFPA2D基本使用方法。 2.了解RFPA2D模拟试验的条件和RFPA2D的基本功能。 3.通过操作端部效应对岩石力学性质影响的数值实验,了解每一步操作以及岩石破裂过程,最终完成实验得到结果。 二、实验原理: RFPA-2D是一种基于有限元应力分析和统计损伤理论的材料破裂过程分析数值计算方法,是一个能够模拟材料渐进破裂直至失稳全过程的数值试验工具。 三、 1、试样尺寸: 100mm*51mm 2、基元数: 100*51 3、应力分析模式: 平面应变 4、圆孔:半径10mm 5、加载方式:单轴压缩 6、加载条件:竖向位移加载 7、均质度m=2 8、加载量:每步0.002mm

9、实验内容: (1)、应力-应变曲线; (2)、强度; (3)、破坏模式 四、实验内容: (一)、操作步骤: 第一步启动RFPA,新建模型建立存放的根目录 第二步划分网格,单击在弹出的窗口中设置模型的大小,单击确定第三步选择施加荷载模式... (二)实验结果 弹性模量图 第1步

第4步(开始破坏) 第7步(开始横向破坏) 第32步(彻底破坏) 第200步

最大剪应力图第1步

第4步(开始破坏) 第33步(彻底破坏) 第200步 最大主应力图

岩石力学试验报告

岩石力学实验指导书及实验报告 班级 姓名 山东科技大学土建学院实验中心编

目录 一、岩石比重的测定 二、岩石含水率的测定 三、岩石单轴抗压强度的测定 四、岩石单轴抗拉强度的测定 五、岩石凝聚力及内摩擦角的测定(抗剪强度 试验) 六、岩石变形参数的测定 七、煤的坚固性系数的测定

实验一、岩石比重的测定 岩石比重是指单位体积的岩石(不包括孔隙)在105~110o C 下烘至恒重的重量与同体积4o C 纯水重量的比值。 一、仪器设备 岩石粉碎机、瓷体或玛瑙体、孔径0.2或0.3毫米分样筛、天平(量0.001克)、烘箱、干燥器、沙浴、比重瓶。 二、试验步骤 1、岩样制备:取有代表性的岩样300克左右,用机械粉碎,并全部通过孔径0.2(或0.3)毫米分样筛后待用。 2、将蒸馏水煮沸并冷却至室温取瓶颈与瓶塞相符的100毫升比重瓶,用蒸馏水洗净,注入三分之一的蒸馏水,擦干瓶的外表面。 3、取15g 岩样(称准到0.001克)得g 借助漏斗小心倒入盛有三分之一蒸馏水的比重瓶中,注意勿使岩样抛撒或粘在瓶颈上。 4、将盛有蒸馏水和岩样的比重瓶放在沙浴上煮沸后再继续煮1~1.5小时。 5、将煮沸后的比重瓶自然冷却至室温,然后注入蒸馏水,使液面与瓶塞刚好接触,注意不得留有气泡,擦干瓶的外表面,在天平上称重得g 1。 6、将岩样倒出,比重瓶洗净,最后用蒸馏水刷一遍,向比重瓶内注满蒸馏水,同样使液面与瓶塞刚好接触,不得留有气泡,擦干瓶的外表面,在天平上称重得g 2。 三、结果:按下式计算: s d g g g g d 1 2-+= 式中:d ——岩石比重; g ——岩样重、克; g 1——比重瓶、岩样和蒸馏水合重、克; g 2——比重瓶和满瓶蒸馏水合重、克; d s ——室温下蒸馏水的比重、d s ≈1

中南大学ANSYS上机实验报告

ANSYS上机实验报告 小组成员:郝梦迪、赵云、刘俊 一、实验目的和要求 本课程上机练习的目的是培养学生利用有限单元法的商业软件进行数值计算分析,重点是了解和熟悉ANSYS的操作界面和步骤,初步掌握利用ANSYS建立有限元模型,学习ANSYS分析实际工程问题的方法,并进行简单点后处理分析,识别和判断有限元分析结果的可靠性和准确性。 二、实验设备和软件 台式计算机,ANSYS10.0软件 三、基本步骤 1)建立实际工程问题的计算模型。实际的工程问题往往很复杂,需要采用适当的模型在计算精度和计算规模之间取得平衡。常用的建模方法包括:利用几何、载荷的对称性简化模型,建立等效模型。 2)选择适当的分析单元,确定材料参数。侧重考虑一下几个方面:是否多物理耦合问题,是否存在大变形,是否需要网格重划分。 3)前处理(Preprocessing)。前处理的主要工作内容如下:建立几何模型(Geometric Modeling),单元划分(Meshing)与网格控制,给定约束(Constraint)和载荷(Load)。在多数有限元软件中,不能指定参数的物理单位。用户在建模时,要确定力、长度、质量及派生量的物理单位。在建立有限元模型时,最好使用统一的物理单位,这样做不容易弄错计算结果的物理单位。建议选用kg,N,m,sec;常采用kg,N,mm,sec。 4)求解(Solution)。选择求解方法,设定相应的计算参数,如计算步长、迭代次数等。 5)后处理(Postprocessing)。后处理的目的在于确定计算模型是否合理、计算结果是否合理、提取计算结果。可视化方法(等值线、等值面、色块图)显

岩石物理力学性质试验规程 第23部分:岩石点荷载强度试验(标准状

I C S19.020 D00 中华人民共和国地质矿产行业标准 D Z/T0276.23 2015 代替D Y-94 岩石物理力学性质试验规程 第23部分:岩石点荷载强度试验 R e g u l a t i o n f o r t e s t i n g t h e p h y s i c a l a n dm e c h a n i c a l p r o p e r t i e s o f r o c k P a r t23:T e s t f o r d e t e r m i n i n g t h e p o i n t l o a d s t r e n g t ho f r o c k 2015-02-04发布2015-04-01实施中华人民共和国国土资源部发布

D Z/T0276.23 2015 前言 D Z/T0276‘岩石物理力学性质试验规程“分为31个部分: 第1部分:总则及一般规定; 第2部分:岩石含水率试验; 第3部分:岩石颗粒密度试验; 第4部分:岩石密度试验; 第5部分:岩石吸水性试验; 第6部分:岩石硬度试验; 第7部分:岩石光泽度试验; 第8部分:岩石抗冻试验; 第9部分:岩石耐崩解试验; 第10部分:岩石膨胀性试验; 第11部分:岩石溶蚀试验; 第12部分:岩石耐酸度和耐碱度试验; 第13部分:岩石比热试验; 第14部分:岩石热导率试验; 第15部分:岩石击穿电压和击穿强度试验; 第16部分:岩石体积电阻率和表面电阻率试验; 第17部分:岩石放射性比活度试验; 第18部分:岩石单轴抗压强度试验; 第19部分:岩石单轴压缩变形试验; 第20部分:岩石三轴压缩强度试验; 第21部分:岩石抗拉强度试验; 第22部分:岩石抗折强度试验; 第23部分:岩石点荷载强度试验; 第24部分:岩石声波速度测试; 第25部分:岩石抗剪强度试验; 第26部分:岩体变形试验(承压板法); 第27部分:岩体变形试验(钻孔变形法); 第28部分:岩体强度试验(直剪试验); 第29部分:岩体强度试验(承压板法); 第30部分:岩体锚杆载荷试验; 第31部分:岩体声波速度测试三 本部分为D Z/T0276的第23部分三 本部分按照G B/T1.1 2009给出的规则起草三 本部分代替D Y-94‘岩石物理力学性质试验规程20.点荷载强度试验“三本部分与D Y-94相比,主要技术变化如下: 增加了 术语和定义 原理 两章; 增加了软岩试验时D值的测量说明; Ⅰ

岩石力学实验指导书

岩石力学实验指导书

岩石力学实验指导书 修订版 王宝学杨同张磊编

北京科技大学 土木与环境工程学院 2008 年3 月 3

试验是岩石力学课程教学的重要环节,目的在于辅助课堂教学,直观培养学生的知识结构和动手能力。本指导书是根据我校“2005年教学大纲”,并结合我校的实验条件而编写,主要内容有:1、岩石天然含水率、吸水率及饱和吸水率试验;2、岩石比重试验; 3、岩石密度试验; 4、岩石耐崩解试验 5、岩石膨胀试验; 6、岩石冻融试验; 7、岩石单轴抗压强度试验, 8、岩石压缩变形试验, 9、岩石抗拉强度试验(巴西法),10、岩石抗剪强度试验(变角剪法),11、岩石三轴压缩及变形试验,12、岩石弱面抗剪强度试验,13、岩石点载荷指数测定试验,14、岩石纵波速度测定试验,15、岩石力学伺服控制刚性试验;16、岩石声发射试验。 本指导书的内容主要参照《水利水电工程岩石试验规程》(SL264-2001);《水利电力工程岩石试验规程》DLJ204-81,SLJ2-81;同时参考了国际岩石力学会《岩石力学试验建议方法》,中华人民共和国国家标准《岩石试验方法标准》以及《露天采矿手册》等,由于我们水平有限,文中如有不当之处,欢迎读者批评指正。 编者:王宝学、杨同、张磊 2007年12月

岩石物理性质试验 (1) 一、岩石天然含水率、吸水率及饱和吸水率试验 (1) 二、岩石比重(颗粒密度)试验 (5) 三、岩石密度试验 (10) 四、岩石耐崩解试验 (17) 五、岩石膨胀试验 (20) 六、岩石冻融试验 (28) 岩石力学性质试验 (33) 七、岩石单轴抗压强度试验 (33) 八、岩石压缩变形试验 (39) 九、岩石抗拉强度试验(巴西法) (46) 十、岩石抗剪强度试验(变角剪切) (51) 十一、岩石三轴压缩及变形试验 (56) 十二、岩石弱面剪切强度试验 (68) 十三、点载荷指数的测定 (75) 十四、岩石纵波速度测定 (78) 十五、岩石力学伺服控制刚性试验 (80) 十六、岩石声发射试验 (86)

岩层实验报告

中国矿业大学矿业工程学院实验报告

《岩层控制》实验报告 实验一矿山岩体力学实验 注:包括岩石抗拉、抗压、抗剪三个内容。 岩石的抗拉强度试验 一、实验目的与要求 岩石在单轴拉伸载荷作用下达到破坏时所能承受的最大拉应力称为岩石的单轴抗拉强度。由于进行直接拉伸实验在准备试件方面要花费大量的人力、物力和时间,因此采用间接拉伸实验方法来测试岩石的抗拉强度。劈裂法是最基本的方法。 二、实验仪器 (1)钻石机或车床,锯石机,磨石机或磨床。 (2)劈裂法实验夹具,或直径2.0mm钢丝数根。 (3)游标卡尺(精度0.02mm),直角尺,水平检测台,百分表架和百分表。(4)材料实验机。 三、实验原理 图3-1显示的是在压应力作用下,沿圆盘直径y-y的应力分布图。在圆盘边缘处,沿y-y方向(σy)和垂直y-y(σx)方向均为压应力,而离开边缘后,沿y-y方向仍为压应力,但应力值比边缘处显著减少,并趋于平均化;垂直y-y方向变成拉应力。并在沿y-y的很长一段距离上呈均匀分布状态。虽然拉应力的值比压应力值低很多,但由于岩石的抗拉强度很低,所以试件还是由于x方向的拉应力而导致试件沿直径的劈裂破坏,破坏是从直径中心开始,然后向两端发展,反映了岩石的抗拉强度比抗压强度要低得多的事实。 χy r/R 0.5 -0.5x σyσx y 压缩拉伸应力值/MPa 160120804040 图3-1 劈裂实验应力分布示意图四、实验内容

(1) 了解试件的加工机具、检测机具,规程对精度的要求及检测方法; (2) 学会材料实验机的操作方法及拉压夹具的使用方法; (3) 学会间接测试岩石抗压强度及数据处理方法。 五、 实验步骤 (1) 测定前核对岩石名称和岩样编号,对试件颜色、颗粒、层理、裂隙、风 化程度、含水状态机加工过程中出现的问题进行描述,并填入记录表1-1内。 (2) 检查试件加工精度,测量试件尺寸,填入记录表内。 (3) 选择材料实验机度盘时,一般应满足下式:0.2 P 0< P max <0.8P 0 (4) 通过试件直径两端,沿轴线方向画两条互相平行的线作为加载基线。把试件放入夹具内,夹具上、下刀刃对准加载基线,用两侧夹持螺钉固定好试件,或用两根直径2.0mm 的钢丝放在加载基线上,钢丝间用橡皮筋固定。 (5) 把夹好试件的夹具或夹好钢丝的试件放入材料实验机的上、下承压板之间,使试件的中心线和材料实验机的中心线在一条直线上。 (6)开动材料实验机,施加数百牛载荷后,松开夹具两侧夹持螺钉,然后以0.03~0.05MPa/s 的速度加载,直至试件破坏。 (7)记录破坏载荷,对破坏后的试件进行摄影或描述。 六、 注意事项 (1) 记录试件的完整状态, (2) 选择合适的材料实验机及合适的实验机度盘值, (3) 夹具对试件的加载方向要与试件的轴线在一平面上, (4) 选择合适的加载速率。 七、 数据处理 表1-1 计算试件单向抗拉强度: R 1= 102?DL P π=5.98MPa 式中 R 1—试件的抗拉强度,MPa ; P —试件破坏载荷,kN; D —试件直径,cm; L —试件厚度,cm 。 八、误差分析 (1)试件自身各方面的影响; (2)系统误差;

岩石力学实验方案

实验方案 实验一单轴压缩试验 一、实验得目得 以白垩系软岩为研究对象,设置不同得冻结温度,分别对岩样进行一次冻融循环,并测定其冻融前后得单轴抗压强度与杨氏弹性模量,且绘出应力—应变曲线。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受得载荷称为岩石得单轴抗压强度,即式样破坏时得最大载荷与垂直与加载方向得截面积之比. 本次试验主要测定饱与状态下试样得单轴抗压强度。 二、试样制备 (1)样品可用钻孔岩芯或在坑槽中采取得岩块,在取样与试样制备过程中,不允许发生人为裂隙。 (2)试样规格:经过钻取岩芯、岩样尺寸切割、岩样打磨几道工序制备成直径5cm、高10cm得圆柱体。 (3)试样制备得精度应満足如下要求: a沿试样高度,直径得误差不超过0.03cm; b试样两端面不平行度误差,最大不超过0.005cm; c端面应垂直于轴线,最大偏差不超过0、25°; d方柱体试样得相邻两面应互相垂直,最大偏差不超过0、25°。 三、主要仪器设备 1、制样设备:钻石机、切石机及磨石机. 2、测量平台、角尺、游标卡尺、放大镜、低温箱等。

3、压力试验机。 四、实验步骤 1、取加工好得岩石试样15块,放入抽真空设备中进行饱水处理,浸泡24h; 2、a.(1)从饱水后得试样中取3块,进行冻结前常温(+20℃)条件下岩石得单轴压缩试验,并记录应力—应变曲线等信息;(2)从剩下得饱水岩样中取出6块放入低温箱中,在恒温—10℃条件下冻结48h;(3)取出冻结后得3块岩样,进行冻结-10℃条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息;(4)取出冻结后另外3块岩样,在室内常温环境下自然解冻后,进行岩石冻结解冻后恢复到常温条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息; b、以剩余得6块试样为对象,把冻结温度设置为—30℃,重复a中步骤(2)~(4); 3、通过试验数据分析在两种冻结温度下,岩样冻结前、冻结中与冻结解冻后三种状态下三种岩石单轴压缩下强度、应力-应变曲线及弹性模量等参数得变化情况. 五.成果整理与计算 1、按下式计算岩石得单轴抗压强度: -———-岩石单轴抗压强度,MPa; ———-最大破坏荷载,N; -—-—垂直于加载方向得试样横截面积,mm2。 2、固体材料得弹性模量就是指弹性范围内应力与应变得比值,反映材料得坚固性.计算割线弹性模量E50,即应力应变曲线零荷载点与单

岩体力学实验..

岩体力学实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

缝隙。 3.试样数量: 每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。 四.电阻应变片的粘贴 1.阻值检查:要求电阻丝平直,间距均匀,无黄斑,电阻值一般选用120欧姆,测量片和补偿片的电阻差值不超过0.5Ω。 2.位置确定:纵向、横向电阻应变片粘贴在试样中部,纵向、横向应变片排列采用“┫”形,尽可能避开裂隙,节理等弱面。 3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。 五.实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。 3. 电阻应变仪接通电源并预热数分钟后, 连接测试导线,接线方式采用公 1—百分表 2-百分表架 3-试样 4水平检测台 图5-1 试样平行度检测示意图 1—直角尺 2-试样 3- 水平检测台 图5-2 试样轴向偏差度检测示意图 图5-3 电阻应变片粘贴

针刀整体松解术常用术式(图谱)

针刀整体松解术常用术式 针刀整体松解术是以人体弓弦力学解剖系统和网眼理论为指导,松解弓弦结合部及弦的应力集中部位的粘连、瘢痕和挛缩,调节人体力学平衡的针刀术式。 针刀治疗 ①软组织损伤型:1次; “T”形针刀整体松解术,松解枕部及颈后侧的主要软组织。 ②骨关节移位型:3次;微信号:hzylsl 第1次:“T”形针刀整体松解术。 第2次:松解病变颈椎及上、下相邻关节突关节囊及关节突韧带的粘连和瘢痕。 第3次:松解两侧颈椎横突后结节及结节间沟软组织附着处的粘连和瘢痕。 术后效果

针刀整体松解术后颈部疼痛、僵硬、酸胀明显减轻,颈部活动度增加,头痛、头晕、麻木的症状明显改善。 其他辅助治疗 ①针刀术后施颈椎弹压手法一次,进一步拉开粘连组织。 ②配合针灸、推拿、红外线等康复治疗。 针刀治疗:2次 第1次:“C”形针刀整体松解术。

第2次:松解三角肌肌腹部的粘连和瘢痕。 治疗效果 针刀整体松解术后疼痛缓解、肩关节功能恢复。 其他辅助治疗微信号:hzylsl ①针刀术后辅以肩关节上举外展手法或后伸内收手法。 ②配合针灸、推拿、红外线等康复治疗。 针刀治疗:4次

第1次:“回”字形针刀整体松解术。 第2次:松解腰椎关节突关节韧带的粘连和瘢痕。 第3次:松解胸腰结合部软组织的粘连和瘢痕。 第4次:松解坐骨神经行径路线周围软组织的粘连和瘢痕。 治疗效果 针刀整体松解术后患者腰部疼痛及放射痛明显减轻,下肢麻木症状缓解甚至消失。其他辅助治疗 ①针刀术后施腰部拔伸牵引法、腰部斜扳法或直腿抬高加压法。 ②配合针灸、推拿、红外线等康复治疗。 ★“五指定位法”适用于Ⅰ型膝关节骨性关节炎,Ⅱ—Ⅳ型参照膝关节强直的

岩石力学实验

专业:年级姓名 指导老师 《岩石力学》实验报告书 西南科技大学环境与资源学院中心实验室

试验1、岩石单向抗压强度的测定 一、仪器设备 材料试验机、游标卡尺。 二、标准试件规格:采用直接为50mm 的圆柱体,高径比为2 :1;也可采用50×50×100mm 的长方体。 三、测定步骤: 1、 测试件尺寸(试件直径应在其高度中部两个互相垂直的方向量测,取算术平均值) 填入记录表内。 2、 选择压力机度盘:一般应满足0.2P <P max <0.8P 式中:P max ——预计最大破坏载荷,KN P ——压力机度盘最大值,KN 3、 开动压力机,使其处于可用状态,将试件置于压力机承压板中心,调整球形坐,使 试件上下受力均匀,0.5~1.0MPa 的速度加载直至破坏。 四、测定结果的计算: 试件的抗压强度: F P R 式中:R ——试件抗压强度,MPa P ——试件破坏载荷,N F ——试件面积,mm 2

试验2、岩石抗拉强度的测定(劈裂法) 一、仪器设备: 材料试验机、劈裂法实验夹具、游标卡尺。 二、试件规格 标准试件采用圆盘形,直径50mm 、厚25mm ;也可采用50×50×50mm 得方形试件。 三、测定步骤: 1、2同抗压强度相同。 3、通过试件直径的两端,沿轴线方向画两条互相平行的线作为加载基线,把试件放入夹具内,夹具上下刀刃对准加载基线,放入试验机的上下承压板之间,使试件的中心线和试验机的中心线在一条直线上。 4、开动试验机,以每秒0.03~0.05MPa 的速度加载直至破坏。 四、测定结果计算: DL P R L 14.32 式中:R L ——岩石单向抗拉强度,MPa P ——试件破坏载荷,N D ——试件直径,mm L ——试件厚度,mm 抗拉强度测定记录表

08填料塔流体力学特性曲线测定

实验八填料塔流体力学特性曲线测定 一、实验目的 1.了解填料吸收塔的结构和吸收操作流程; 2. 测定不同喷林密度下气体流速和压强降的关系曲线; 3. 测定不同不同喷林密度下的载点和泛点气速; 4. 观察持液和液泛现象。 二、实验装置 图1所示装置用于测定填料塔流体力学特性时,关停CO2管路即可。填料塔是一内径为90mm的塔体,塔内装填填料采用φ8×6mm瓷拉西环,水由水泵输送,流经转子流量计至塔顶,从塔顶喷林而下,最后从塔底流回水槽。空气由风机吸入,风机为旋涡风机,输入功率为250W,转速为2800/min,风压为10.5KPa,风量为26m3/h。通过转子流量计后到进口管,最后在塔顶排空。 空气和水的流量均由转子流量计测量,通过床层的压强降由差压计测定。 图1填料塔流体力学特性曲线测定工艺流程图

填料塔流体力学特性包括压强降和液泛规律。计算填料塔需用动力时,必须知道压强降的大小。而确定吸收塔的气、液负载量时,则必须了解液泛的规律,所以测量流体力学性能是吸收实验的一项内容。 实验可用空气与水进行。在各种喷淋量下,逐步增大气速,记录必要的数据直至刚出现液泛时止。测量结果经整理后标绘在双对数坐标纸上。 气体通过填料层时压降ΔP与气速u及填料特性(形状,尺寸)有关:ΔP∝u1.5~2.0(u空塔气速)。 气液两相逆流通过填料层时,气体的压降ΔP除与气速u和填料特性有关外,还取决于喷淋密度等因素。 在一定喷淋密度下,当气速较小时ΔP∝u1.5~2.0但比无喷淋时的ΔP值高。当气速增加到一定值时。气液间的摩擦力开始牵制液体向下流动。液膜增厚,气流通道变小。阻力增加较快,此时㏒ΔP~㏒u关系曲线上出现一个拐点,称为泛点。当喷淋密度增加时,压力降增加,载点与泛点的气速下降。一般填料塔的设计均应在泛点以下操作。(对于一般乱堆填料当每米高的填料层压降值为200~250mmH2o左右时即产生液泛)。如果要求压降很稳定。则宜在载点以下,但因为很多场合下没有明显载点,难以准确确定之。而泛点以后则已有较准确的关联式。因此塔的设计中一般均先计算泛点速度WF然后乘以负荷因子(一般为0.6~0.8)作为实际气速。泛点气速关联式: ㏒ 式中:W F—泛点空速气速,m/s; g —重力加速度,9.81m/s2; a/ε3—干填料因子,m-1; r G,r L —气相,液相密度,kg/m3; u L—液相粘度,CP。

相关主题